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Abstract—A classical approach to expert resolution is
presented using the concepts of calibration and information.
Methodological problems with calibration measurements are
brought to light and solutions arc proposed. An experiment
is described in which this approach is shown to have
descriptive value.

Introduction

INTEREST in expert resolution is motivated by the increasing
use of subjective probabilitics in scientific studies, particu-
larly in quantitative risk assessment. The principles of expert
resolution are also applicable in situations where probabil-
istic diagnostic systems must be evaluated as well as in
training and selection programs for personnel who may be
called upon to give expert probability assessment (Mendel
and Thijs, 1983).

The first author to address expert resolution as such was
Roberts (1965). Important contributions can be found in
Harrison (1977), Morris (1974, 1977), Lindley (1982), De
Groot and Fienberg (1983) and in Lichtenstein and Fischhoff
(1977) and Lichtenstein er al. (1982). Recent contributions
reflecting increasing interest among statisticians can be found
in Genest and Schervish (1985) and Agnew (1985). De Groot
and Fienberg (1986) and Winkler (1986) take up the problem
of evaluating probabilistic forecasters, and Kempthorne and
Mendel (1987) discuss Bayesian calibration of forecasters.
Cooke (1987) provides a theory of combining expert opinions
based on the notions developed in the present article.

The theory of expert resolution is concerned with the
development of criteria for evaluating and utilizing cxpert
probability assessments. The sources mentioned above
approach this problem from a Bayesian perspective, and
analyse the way in which a decision maker should process
expert probability assessments. The models proposed all
require the decision maker to make two types of probability
asscssments. First he must make a prior assessment of the
decision variable of interest, and second he must assess the
likelihoods of the expert’s responses conditional on the
values of the decision variable. Morris (1977) shows how the
decision maker can use calibration data to correct for expert
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bias. As pointed out in Agnew (1985) and Genest and
Schervish (1985), these assessment tasks are rather
forbidding. Kempthorne and Mendel (1987) draw attention
to other problems in Morris’ theory. On the other hand, the
Bayesian approach enables the decision maker to calculate
the precise value of an expert for a particular decision
problem in terms of increased expected value.

De Groot and Fienberg (1986) and Winkler (1986)
propose using proper scoring rules for evaluating probabil-
istic forecasters. Their approach is somewhat similar to the
ideas presented here, though Cooke (1987) points out several
significant differences.

In this article we approach the problem of expert
resolution from a classical perspective. An expert probability
assessment is treated as a statistical hypothesis in the sense of
“objectivist” statistics, and we show how experts can be
evaluated from this perspective.

Morgan et al. (1979, p. 12) discuss four criteria for
evaluating probability assessments (these criteria are
attributed to Sarah Lichtenstein). Assessments should be:

—congsistent, they should not vary with the assessment
method, nor over time (assuming the assessor gets no new
information),

—coherent, they should obey the laws of probability (e.g.
Bayes’ rule),

—informative, they should contain information about actual
outcome values of the quantities assessed,

—uwell-calibrated, in the long run assessed probabilities
should approximate empirical frequencies of outcomes.

In this article we are concerned with the last two criteria,
informativeness and calibration. We introduce two scores for
measuring information and calibration of expert probability
assessments; a calibration score and an information score. A
good expert should be good with respect to both scores.

An experiment is discussed in which the performance of
experienced and inexperienced probabilistic assessors can be
compared. It emerges that the group performance of
experienced assessors is significantly better with respect to
both calibration and information than that of inexperienced
assessors, on items relating to their field of expertise. At the
same time, there is a negative correclation between the
individual scores for calibration and information. On general
knowledge items the groups are not distinguishable. This
suggests that experienced assessors as a group are indeed
“better experts” than the inexperienced assessors in their
field of expertise.

Since the scores used here do not depend on any prior
distributions, or on any specific decision problem, the notion
of “goodness” is not restricted to a given problem or to a
given decision maker. We claim that these scores provide
objective criteria for evaluating expert probability assessors.
Such criteria can be of practical importance in training and
selection, and also in decision situations where the relevant
prior distributions are not available (for example, the
decision maker may be a group of individuals unable to agree
on priors). Naturally, this approach suffers from the same
weaknesses as any classical approach; for instance, the
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evaluation of an expert is not nearly as precise as in the
Bayesian analysis.

The first section of this paper presents the basic concepts
of expert resolution. The second section considers im-
plementing this theory in psychometric measurement
procedures. The third section analyses the experiment, and
the final section presents discussion and conclusions.

1. Theoretical considerations

Suppose that we are required to estimate the mean time to
failure in days of a new system component which cannot be
subjected to destructive experimental tests. Our only way of
obtaining quantitative data is to ask the opinion of experts
acquainted with similar kinds of components. Given the
amount of uncertainty inherent in predictions of this sort, the
experts may feel uncomfortable about giving point
predictions, and may prefer to communicate something
about the range of their uncertainty. The best they could do
in this respect would be to give their subjective probability
mass functions (or density functions in the case of continuous
variables) for the quantity in question. In other words, they
could provide a histogram over the positive integers such that
the mass above the integer i is proportional to their
subjective probability that the mean time to failure is i days.

The mean time to failure will eventually become known,
and when it is known, we may want to pose the question how
good was this expert’s assessment. We shall discuss two
general features of subjective probability mass functions
which are relevant to performing this kind of evaluation,
namely, information and calibration. We assume that
subjective probability mass functions over the integers can be
solicited from each of several experts, for a large number of
uncertain quantities.

Information. The information associated with a probability
mass function P over the integers is defined as

I(P)= 20 P(i) log (P(i)) 1)

where P(i) is the probability assigned to the integer i. I(P)
attains its maximum value (zero) if P(i)=1 for some i
Roughly speaking, smaller values of I(P) correspond to a
“flatter”” mass function. For mass functions concentrated on
a finte number N of integers, I(P) attains its minimum value
—log (N) when P is uniform. Notice that the range of the
information function depends on the set of possible values on
which the distribution is concentrated.

For functions having a small number of “peaks” (as is
usually the case for subjective probabilities) I(P) is a good
measure of the degree to which the density is “spread out”.
Unlike the variance, I(P) is not sensitive to the mass in the
“tails” of the function P.

Obviously, high information is a desideratum in expert
probabilistic assessment. Other things being equal, we should
prefer the advice of the expert whose probability functions
have the highest information. We shall sce, however, that
other things are usually not equal.

Suppose we have a set of experts and a set of uncertain
quantities, and suppose we solicit a subjective probability
mass function from each expert for each quantity. For each
quantity we can meaningfully compare the information in
each expert’s distribution. However, this is not enough. We
also nced a way of scoring the experts with respect to
information for the whole set of uncertain quantities. If the
uncertain quantities have the same intrinsic range (for
example, the uncertain quantity might be a percentage, or a
truth value), then it is reasonable to define an information
score for each expert as the information in his joint
distribution for all the quantities in question. If the
distributions are independent, then the information of the
joint distribution is just the sum of the values I(P) for each
uncertain quantity.

If the uncertain quantities do not have the same intrinsic
range then there are good arguments for not using the “joint
information™ as an information score. For example, if one of
the uncertain quantities can take 10,000 possible values, then
the miminal information for this quantity is —log (10,000) =

—9.21 (“log” denotes the natural logarithm). If the other
quantities can take only one of two possible values, the
minimal information for these quantities is —log (2) = —0.60.
Simply adding the information scores may therefore give
inordinate weight to quantities with intrinsically larger
ranges. In particular, if we rank the experts according to
“joint information”, then we may well find that the
information rank is largely determined by the rank on the
variable with the largest intrinsic range. If we do not wish the
intrinsic ranges of the uncertain quantities to influence the
information score, then the joint information score is not
appropriate.

In the tests of Alpert and Raiffa (1982), which serve as a
model for the tests described below, one of the uncertain
quantities was “percentage of students preferring bourbon to
scotch” (true value 42.5). Another was “‘number of eggs
produced in the U.S. in 1965" (true value 6.5E10). As the
intrinsic ranges of these quantities are vastly different,
summing the information values for distributions for these
quantities was deemed inappropriate. In the following
section we discuss a method of scoring information in terms
of relative information which is not sensitive to the intrinsic
ranges of the uncertain quantities.

Calibration. If an expert consistently provided highly
informative mass functions, while the true values always fell
in the “tails” of his mass functions, then we would say that
his assessments did not have a high degree of correspondence
with reality. Roughly speaking, calibration is intended to
measure the extent to which a set of probability mass
functions “‘corresponds to reality”.

To get an idea how a calibration score could be defined,
suppose for the sake of argument that an expert gives the
same probability mass function P for a large number n of
physically unrelated uncertain quantities. By observing the
true values for all these quantities we generate a sample

_ distribution §" with 5'(7) equal to the number of times the

value i is observed, divided by n.

It might appear reasonable to say that the expert is
mis-calibrated if S’ # P. Upon reflection, however, this is
easily scen to be quite unreasonable. Suppose the true values
represent independent samples from a multinomial random
variable with distribution P. P certainly ‘“‘corresponds to
reality” (by assumption), but in general we will not have
§'= P, as statistical fluctuations will cause P and $’ to differ.
In line with the intuitive definition of calibration given in the
introduction, we might say that the cxpert was well
calibrated if §' = P in the long run. The problem with this, as
Keynes was fond of saying, is that in the long run we are all
dead. This definition gives us no way of measuring
calibration for finite samples. We shall see shortly that
“$'=P in the long run” is a necessary but not a sufficient
condition for calibration.

Roughly speaking, we want to say that the expert is well
calibrated if the true values of the uncertain quantities can be
regarded as independent samples of a multinomial random
variable with distribution P. This entails that the discrepancy
between S' and P should be no more than what one might
expect in the case of independent multinomial variables
with distribution P. We therefore propose to interprete the
statement

“the expert is well calibrated”
as the statistical hypothesis:

H(P) = “the uncertain quantities are independent and
identically distributed with distribution P
We want to define a calibration score as the degree to which
the data supports the hypothesis H(P). A procedure for
doing this is described below.
The “discrepancy between S’ and P can be measured by
the relative information of §' with respect to P, I(S', P):

I(S', P)= %S'(f) log [S'())/P()]”. (2)

Of course, I(S', P) is not a metric, as I(S', P)#I(P, §').
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I(S’, P) may be taken as a measure of surprise which
someone would experience if he believed P and subsequently
learned §'. I(S’, P)=0 if and only if P=S§', and larger
values correspond to greater surprise. Obviously, large
values of I(S', P) are critical for H(P). We interprete the
“degree to which the data supports the hypothesis H(P)” as
the probability under H(P) of observing a discrepancy in
sample distribution S at least as large as I(S', P) on n
observations:

Prob {I(S, P)=I(S', P) | H(P), n observations}.  (3)

This probability can be used to define statistical tests in the
classical sense. Of particular interest is the following. If P is
concentrated on a finite number M of integers which include
all observed values, then as the number n of observations
gets large, 2nl(S’, P) becomes chi-square distributed. The
number of degrees of freedom is M —1 (see Hoel, 1971).
The natural logarithm must be used in (2). Expanding the
logarithms in (2) via a Taylor series and retaining the
dominant terms yields the familiar chi-square statistic for
testing goodness of fit between the sample distribution " and
the “theoretical distribution™ P.

We call the above conditional probability the expert’s
calibration score for the n observations, and we propose to
use this quantity to measure calibration in expert probability
assessments. Good calibration corresponds to a high
calibration score and is also a desideratum in expert
resolution.

We can now understand why asymptotic convergence of §’
to P is not sufficient for good calibration. Suppose that P is
concentrated on six values so that the number of degrees of
freedom of the chi-square distribution is five, and suppose
that as the number of observations n goes to infinity, the
expert’s calibration score converges to 1%. From a
chi-square table we conclude that 2nI(S', P) converges to 15.
This entails that /(S’, P) converges to zero, and hence, that
$' converges to P. However, for all n greater than some n,,
the hypothesis H(P) would be rejected at the 5% significance
level.

The basic principle of a classical approach to expert
evaluation can now be outlined: good experts should have
good information scores and good calibration scores. This
theory is normative in the scnse that it prescribes how
experts should perform. In the third section we present
evidence that experienced probability assessors do indeed
perform better as a group with respect to both scores than
inexperienced assessors, for items relating to their field. A
few remarks are in order.

—There is a natural antagonism between good calibration
and high information. Choosing a “tighter” function P
will produce a higher information score, but will make it
more “likely” that the true values will fall in the tails,
producing a low calibration score. A priori, one would
expect a negative correlation between the information
and calibration scores, and this indeed is found.

—There is no a priori reason to expect the group of
experienced assessors to perform better in their field of
expertise than the inexperienced group in both scores.
This requires an explanation. Our explanation, of
course, is that experience teaches assessors to be better
experts in the above sense. If this explanation is correct,
then we should expect that outside their field of
expertise the difference between the two groups on both
scores should be smaller. This prediction is also borne
out in the experiment discussed in Section 3.

—The assumption of independence underlying the
probability (3) is generally unwarranted when referred
to the subjective probability functions of the experts
themselves. Indeed, subjective probabilities are depend-
ent whenever the subject is prepared to “learn” from
the observed values of the quantities involved.
However, the individual or group seeking expert advice
may well regard the quantities as independent, and may
legitimately use the independence assumption in
evaluating calibration.

—The above principles for evaluating expert probability

assessors should be regarded as a *“first pass”. The
calibration and information scores are “global” pro-
perties of assessors. In a concrete problem other aspects
may be important as well, such as the existence of a bias
in the «central tendency or a bias toward
“‘overconfidence”.

2. Implementation

The approach presented above is not yet very practical
since it requires a large number of quantities for which the
expert gives the same probability mass function. We discuss
two methods of implementing these ideas in terms of
psychometric tests. The first method, the fractile method, is
the one used in the experiment discussed in Section 3. The
second method, the discrete method, corresponds to the
most common type of calibration experiments found in the
literature. Each method has its strengths and weaknesses.
Roughly speaking, the fractile method is better for
calibration and the discrete method is better for information.
We also draw attention to methodological problems inherent
in the design of most calibration experiments done to date.

The fractile method. The fractile method for soliciting
subjective probability assessments (Morris, 1977; Alpert and
Raiffa, 1982) provides an elegant technique for overcoming
the difficulty mentioned above. Instead of soliciting the
entire mass function from an expert, we can solicit various
fractiles from his mass function. The r-fractile of the mass
function P is by definition the smallest value i for which

S P(j) =, ©)

j=i

In the experiment described in the third section, the 1%,
25%, 50%, 75% and 99% fractiles are solicited for each
uncertain quantity. After observing the true values, we note
between which fractiles the true value falls. If the subject is
perfectly calibrated, we should expect 1% of the true values
to fall beneath the 1% fractile, 24% of the true values to fall
between the 25% and the 1% fractile, etc. If we number
these fractiles with i =1, ..., 5, then we can let { denote the
event that the true value falls between the fractiles number i
and i —1. “6” denotes the event that the true value lies
above the 99% fractile. Obviously:

P'(1)=P'(6)=1%; P'(2)=P'(5)=24%;
P'3)=P'#)=25% (5)

where P’(i) denotes the expert’s subjective probability for
the event i, i =1, ..., 6. When we solicit the same fractiles
for different uncertain quantities, variables with the same
subjective distribution are generated. The theory of Section 1
can now be applied in a straightforward manner: by
observing the true values for the uncertain quantities, we
build up a sample mass function §’, where $'(i) denotes the
fraction of the true values falling between fractiles number |
and i—1. As before, we can now calculate the expert’s
calibration score for the n observations, with P’ replacing P
in (3).

In measuring the information in the expert’s distributions a
number of problems must be addressed. In the first place, as
we have solicited only certain fractiles from each expert’s
distribution, we can only approximate his true distribution.
In the experiment described below we approximate the
experts’ distributions by distributing the appropriate
probability mass evenly between the various fractiles. The
mass functions obtained in this way are the maximal entropy
distributions consistent with the constraints imposed by the
expert’s fractiles.

Secondly, the elicited fractiles enable us to locate only the
central 98% of cach expert's probability mass. We do not
know how far the tails extend below the 1% fractile and
above the 99% fractile. In scoring information in the
experiment we cut all distributions off at the lowest 1% and
highest 99% fractiles in the whole set of responscs for the
items in question. In other words, we consider these
extremes as the 0% and 100% fractile for each distribution,



and this defines the intrinsic range for the item. The
contribution to the information score from the tails is small.

We are still left with the problem of different intrinsic
ranges discussed in the previous section. Each uncertain item
is given in certain units, for example degrees celsius,
percentages, kilograms, etc. Let Rg denote the intrinsic
range for the item as specified above; that is, the set of
integers between the highest 99% fractile and the lowest 1%
fractile. Let P denote the maximal entropy approximation to
the expert’s distribution and let P'(i), i=1,...,6 denote
the distribution given in (5). Let n; denote the number of
units falling between the i-th and the (i — 1)-th fractiles (i =0
corresponds to the 0% fractile, and i=6 to the 100%
fractile, i.e. the lower and upper endpoints of Rg). If j is an
integer falling between the i-th and (i — 1)-th fractiles, then
clearly

P(j) = P'(i)/n,.
Applying equation (1), the information in P is given by:

I(P)= 3, P(j)log P(j)

jeRg

[
= >, P'(i) log (P'(i)/n;)
1

l:
= 2 P'(i) log P'(i) — P'(i) log (n,). (6)

One way of eliminating the effect of different intrinsic
ranges for different items would be to rescale all the items so
that the number of units in the range of each item was the
same. If we multiply each n, in (6) by a constant c then the
information will be decreased by the amount log (c).

A more elegant way of dealing with the problem of
differing inirinsic ranges is to calculate the information in P
relative to the uniform distribution over Rg. Let U denote
this uniform distribution and let n = ¥, n;, then:

I(P,U)= 2,1 P'(i)log (nP'(i)/n;). (7)

Whereas (6) has a maximum value of zero and a minimum
value of —log (n), (7) has a minimum value of zero, and no
finite maximum®*. Moreover, I(P, U) is not affected by a
change of scale, as the constant drops out in the logarithm.
Hence, the relative information is not sensitive to the
intrinsic range of the quantity in question. If we consider two
independent uncertain quantities, then it is easy to check that
the information of the product of the expert’s distributions
relative to the product uniform distribution is just the sum of
the relative informations given by (7). We conclude that
I(P, U) provides a suitable method for scoring information in

* In saying that /(P, U) has no finite maximum we assume
that P can be concentrated on fractional units. If the
uncertain item is given in kilograms, for example, P may be
concentrated on grams. If we do not admit this possibility,
I(P, U) has a maximum at log (n).

It may be that the units in which the uncertain items are
given influence the subject’s distributions. Asking for the
number of eggs produced in the U.S. in 1965 may produce
distributions with higher information than asking for the
number of “mega-eggs” produced in the U.S. in 1965, It is
our impression that this type of influence may be present to
some degree on the general knowledge items, and that the
information scores for these items are “more noisy” than for
the technical items.

We therefore analysed the information with a different
method as well. In the second analysis we computed the
information for each uncertain item and ranked the subjects
with respect to information for each item. A total
information rank was determined by adding the ranks for
each individual item. The results reported as significant were
also significant under this alternative scoring method, with
one exception. For the experienced group on the technical
test the (negative) correlation between calibration and
information ranks was not quite significant.

the fractile tests. The total information score for an expert is
defined as the sum of the values I(P, U) for each item.

Measuring calibration with fractile tests is not without its
disadvantages. First, it demands a bit of mathematical
sophistication on the part of the experimental subjects.
Second, it can only be applied for variables whose ranges are
continuous, for all practical purposes. Third, there is
evidence that the score is influenced by the order in which
the fractiles are solicited (see Pickhardt and Wallace, 1974
and Selvidge, 1980). On the other hand it has the very
important advantage of producing uncertain quantities for
which the subjective distributions are identical.

The discrete method. The fractile method for measuring
calibration is not the method most commonly used. A typical
calibration test involves giving the subject a set of
statements, asking the subject to determine whether the
statements are true or false, and asking him to state his
probability that his choice is correct (for variations on this
method see Lichtenstein et al., 1982). The probabilities are
coarse-grained into discrete probability bins, usually 50%,
60%, 70%, 80% and 90%. In this way we generate sets of
identically distributed variables, one set for each bin. For
each probability bin we can apply the foregoing theory
directly. The problem now is to define scores for all the bins
simultaneously.

A calibration score could be introduced as follows. If p;, is
the probability corresponding to the i-th probability bin, then
we can associate the probability distribution {p,, 1 — p,} with
the i-th bin. A sample distribution §; = {s;, 1 —s,} can also be
associated with the i-th bin by considering the fraction s, of
items in the i-th bin which are correct.

What does it mean to be well calibrated on this type of
test? In accord with the discussion in the previous section, we
must identify good calibration with a statistical hypothesis.
We shall say that a subject is well calibrated for a discrete
test if he is well calibrated for each bin in the sense defined
previously, and if the items in distinct bins are independent.

If the subject is well calibrated and if the items are
properly chosen, then we should expect the fluctuations in
different bins to be independent. A complication arises here
as the total number of items, n, is fixed beforehand, and this
can introduce a dependency between different bins, Roughly
speaking, if n—1 items have been placed in the first bin,
then the fluctuations in the remaining bins are severely
constrained. Under suitable conditions, however, these
fluctuations are asymptotically independent in n. Let n, be
the number of items in the i-th bin. We have:

P{2n,(S, P)=<K)

= 3 PRLIS, B)<K|n,=L)P(m=L}. (8)
L=0

For large L the conditional probabilities approach the value
given by the chi-square distribution with one degree of
freedom. Therefore, if P{n,=L} is sufficiently small for
small L, we may approximate the right-hand side with its
asymptotic value. The dependencies between the distribu-
tions for the relative information statistics for different bins
under these conditions disappear as the total number of
items n gets large. This entails that:

R:=3n1(s, B) ©

is the sum of asymptotically independent asymptotic
chi-square variables with one degree of freedom. It follows
that R itself is asymptotic chi-square with k degrees of
freedom, where k is the number of probability bins. Hence,
R could be used to define a likelihood function which in turn
could be used as a calibration score as in the case of the
fractile tests.

Concerning the information score, we note that in a
discrete test all variables have the same intrinsic range,
namely “correct” and “not correct”. The quantity

I:=3 n(P) (10)



Brief Paper 91

is the information of the joint distribution for all items when
the items are independent and the probability for each item
is the probability corresponding to the bin in which it has
been placed. For a discrete test, I defines a suitable
information score.

An example will help illustrate this quantity. Suppose for
one year two experts are asked each day to give their
probability of rain on the next day. The probability bins run
from 10% to 90%. Both experts know that the yearly “base
rate” of rainy days is 20%. The first expert simply predicts
rain with 20% probability each day and may expect that he
will be well calibrated. The second expert tries to distinguish
between days in which rain is more or less likely. As he is
also aware of the base rate, he will assign days to probability
bins such that:

2 (ny/n)p; =20%.

Let I(E;) denote the information score of expert L
Considering I(p;) as a function of p;, we note that I(.) is
convex, so by Jensen’s inequality:

I(E,) = nl(20%) = 2, n(p;) = I(E,).
<]

Under the hypothesis of independence, the information
contained in the second expert’s responses is greater or equal
to that of the first. The second expert need not be well
calibrated. However, he will be well calibrated if in addition
to the above, his sample distribution satisfies:

s;=p;; foralli

Concerning the calibration score, the discrete method is
inferior to the fractile method in two respects. First, the
speed of convergence in (9) is determined by the numbers n;
which the experimentor does not control. We should also
recall that according to standard statistical procedure, the
chi-square approximation in (9) is appropriate for the 90%
bin only if about 50 items are placed in this bin. Second, no
account is taken of the fact that the subject’s probabilities are
coarse-grained by placing them into discrete probability bins.
On the other hand, the information score (10) represents a
distinct improvement over the score used in the fractile tests.
Methodological difficulties. The score R introduced above
is not found in the literature, so far as we know. In the more
recent literature the weighted Euclidean distance score is
used. Using the above notation, this score is defined as:

Z (pi—s:)’miln.

Murphy (1973) extracted this score from the Brier score
(1950). As pointed out by Lichtenstein et al. (1982), the
sampling properties of this score are not known. Indeed, this
score depends not only on the sample distribution in the
various bins, but also on the number of items which the
subject puts in the various bins. The experimentor does not
have this number under control and does not know its
statistical behavior. When the results of an experiment are
reported in terms of this scoring variable, we have no way of
distinguishing ~ miscalibration  from mere  statistical
fluctuations.

In practice, people seem to rely on gathering a large
amount of data. How much data is necessary? Of course,
without performing a statistical analysis it is impossible to
say. To get a rough idea of the size of the statistical
fluctuations, suppose a subject is given 15 items and puts
them all in the 90% bin. Suppose 73% of these items (i.e.
11) are in fact true. Assuming the items are independent we
can represent the subject with a binomial model and easily
check that the hypothesis “well calibrated” could not be
rejected at the 5% significance level. If the subject
distributes 15 items over five probability bins more or less
evenly, then it may be very difficult to reject the hypothesis
that he is well calibrated.

One way of obtaining more responses, of course, is to give
the subject more items. As this method places demands on
both the subject and the experimentor, the method often used

in practice is to give the same items to more subjects. This
method is employed when one is interested in a set of
subjects which have been selected according to some
common characteristics, or have been “‘treated” in some
particular way.

However, this way of obtaining more data is problematic.
If the subjects place the same items in the same bins, then
the number of independent items in the bins need not
increase, or need not increase very rapidly. In general, we
should expect that different subjects should have a tendency
to place the same items in the same bins, especially when the
subjects have been pre-selected or treated in some way. In
any event, the number of independent items in each bin
cannot exceed the number of items given to each subject.
Experiments involving a small number of items per subject
(on the order of 10) and a large number of subjects (on the
order of 50-100) are not uncommon in the literature (see for
example Lichtenstein and Fischhoff, 1977). Experiments of
this type always neglect to report the multiplicitics of the
items in the various bins. It remains to be demonstrated
whether such experiments yield statistically significant
results.

3. The experiment

A series of Bayesian tests was recently conducted at a
training facility for operators of large technological systems.
The purpose of these tests was to investigate whether
subjects with more practical experience exhibit more
conformity with the axioms of Bayesian decision theory in
areas related to their specific competence, and if so, whether
this generalizes to other areas. Overall results of this study
will be described in another publication (Thijs, 1987). We
focus on the calibration tests.

The subjects. The experimental subjects fell into two
groups. One group, the inexperienced operators, was in the
last year of a 5-year training program, roughly equivalent to
a bachelor of science program at an American university.
Their field of study is mechanical engineering. All these
subjects were between 20 and 23 years of age, and had
completed a course in statistics.

The second group, the experienced operators, had all
completed the training program. Their average age was 36
years and they had on the average 15 years of practical
experience. Some of them were teachers at the training
facility. Twenty two inexperienced and 12 experienced
subjects took both general knowledge and expertise-specific
calibration tests. Three additional experienced operators
took only the general knowledge test. All subjects were
male.

The tests. The tests were modelled on the fractile
calibration tests of Alpert and Raiffa (1982). Some of the
general knowledge items were taken literally from this test,
and others were adapted to the situation in Holland. The
following are examples of uncertain quantities from the
technical test:

the maximal efficiency of the Tyne RM1A gas turbine

the maximum admissible intake temperature for gas in the
Olympus power turbine.

Each test contained 10 uncertain quantities, and for each
quantity the 1%, 25%, 50%, 75% and 99% fractiles were
solicited. The format of the test was such that the subjects
themselves determined the order in which the fractiles would
be chosen. The tests were explained in detail, and a question
was worked out and discussed beforehand as an example.
Scoring and results. Calibration was scored in the manner
set forth in the second section for fractile tests. For each
subject the relative information of his sample distribution
with respect to the distribution P’ in (5) was calculated for
both the general knowledge test and the technical test. As
the number of uncertain quantities was the same for all
subjects, I(S, P') was used as an index for calibration. We
then rank-order the entire set of subjects for the two tests,
with rank 1 corresponding to the lowest calibration index.
The results are presented in Table 1.
_ Using the Wilcoxon two-sample test we determine whether



TABLE 1. CALIBRATION AND INFORMATION SCORES ON THE
GENERAL KNOWLEDGE AND TECHNICAL TESTS

Calibration rank Information rank

Subject General General
number knowledge Technical knowledge Technical

1 8 2 13 23

2 27 31 1 7

3 3 25 31 4

4 6.5 6 24 10

5 17 1 2 24

6 25.5 4 18 33

7 11 7 36 22

8 22 15 15 5

9 12 11 1 16
10 29 %) 6 1
11 19.5 22 27 3
12 25.5 20 28 2
13 31 —_ 5 —
14 23 — 21 —
15 18 - 26 —
16 4 12 19 30
17 24 26 10 27
18 9 13 17 26
19 1 5 25 28
20 32 30 29 8
21 5 23 32 9
22 19.5 8 34 34
23 2 19 33 19
24 10 24 35 15
25 21 17.5 8 20
26 33 16 37 32
27 14.5 21 30 13
28 34 1725 14 18
29 30 32 23 12
30 35 29 12 17
31 16 27 2 25
32 14.5 14 20 29
33 36 33 3 6
34 6.5 9 9 31
35 37 10 7 14
36 28 34 16 11
37 13 28 4 21

Subjects 1-15 were experienced operators.
Subjects 16-37 were inexperienced operators.

the experienced operators are significantly higher ranked
with respect to calibration in the general knowledge and the
technical tests. This was indeed the case for the technical test
(significance level 0.012) but not for the general knowledge
test.

For each uncertain quantity, we also score the entire group
of subjects with respect to the information relative to the
uniform distribution for that quantity. We do this in the
manner set forth in the second section by distributing the
probability mass evenly between the solicited fractiles and
applying equation (7). The values for the information
relative to the uniform distribution for each item are added
to determine a joint information score, and these scores are
then ranked (highest information corresponding to rank 1).
The results are presented in Table 1. The Wilcoxon
two-sample test for determining whether experienced
operators had significantly more information in their
distributions yielded results almost identical to the results for
calibration. On the technical test the experienced operators
had significantly more information (significance level 0.022),
but not on the general knowledge test.

The Spearman rank correlation coefficient test was used to
test the null hypothesis “good calibration is not correlated
with low information”. For the experienced group on both
tests and for the whole group on the general knowledge test
there was significant correlation at the 5% level. For the

inexperienced group on both tests and for the whole group
on the technical test there was significant correlation at the
1% level.

On the technical test one (experienced) subject was
extremely well calibrated (rank 3) and extremely informative
(rank 1). This subject emerges as a very good expert.
Interestingly, there was no “good expert” for the general
knowledge items. The above-mentioned individual was
ranked 29th and 6th for calibration and information
respectively on the general knowledge test (see Table 2).

A chi-square table may be used to determine the
calibration score (3) for these subjects. Since there are 10
items in each test and five degrees of freedom in the
“theoretical distributions”, a calibration index greater than
0.6 would be significant at the 5% level. If we regard the
uncertain quantities as independent, we could not reasonably
believe that scores higher than 0.6 were produced by
statistical fluctuations. Of the 34 subjects participating in the
technical calibration test, 31 would be regarded as
miscalibrated at the 5% level. For the general knowledge
test, these figures are 37 and 33, respectively. For the
experienced group nine of the 12 would be rejected at the
5% level on the technical test, and 14 of the 15 on the
general knowledge test.

Since the expected number of observations in the tails of

TABLE 2. GRAPHICAL REPRESENTATION OF THE CORRELATIONS

BETWEEN CALIBRATION AND INFORMATION RANKS FOR THE TOP

THREE RANKED SUBJECTS ON THE GENERAL KNOWLEDGE AND
TECHNICAL KNOWLEDGE TESTS

General knowledge Technical knowledge

Calibration Information Calibration Information
Rank rank rank rank rank
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i denotes inexperienced operator; e denotes experienced
operator.



Brief Paper 93

the theoretical distributions is quite small (0.1 for each tail),
the chi-square approximation is not very reliable. For
example, the theoretical probability of finding more than one
event in the tails is 0.017, but two observations in either of
the tails contribute only 0.599 to the calibration scores.

As with other test reported in the literature, these
calibration results can be described as poor. One way of
judging this is to compare the number of rejected assessors
with the number which would be rejected if in (3) the
uniform distribution were used instead of P’ in calculating
the experts’ calibration score. On the technical test, only two
experienced operators and three inexperienced operators
would be rejected at the 5% significance level in this case.
This means, roughly speaking, that most of the subjects
behave more as if they were asked for the fractiles 17%,
33%, 50%, 67% and 83%.

The “surprise index” is the percentage of true values
falling in the tails of the solicited distributions. On the
general knowledge test the surprise indices for experienced
and inexperienced operators were 43% and 45%, respec-
tively. On the technical test these were 30% and 43%.

In spite of the overall poor showing in calibration, we
think it important to emphasize that the experienced group
was significantly better in their arca of expertise. Apparently,
calibration and information do measure something objective
about being an expert.

Several attempts have been made in the past to relate
calibration to “knowledge”. Adams and Adams (1961) found
no correlation between knowledge and calibration for
subjects taking a final examination. Sieber (1974) found
similar results. Attempts to calibrate experts in the area of
their expertise have produced sharply divergent results.
Some groups of experts show excellent calibration, other
groups show very poor calibration. Lichtenstein and
Fischhoff (1977) found a negative correlation between
calibration and difficulty on general knowledge items and
found that calibration first improves, then declines with
increasing knowledge. Another study (Lichtenstein et al.,
1982) found that calibration improved as the number of true
statements among the test items was increased. The more
recent research suggests that there may be some relation
between calibration and knowledge. We hope the present
results help clarify this relation.

4. Conclusions

It is interesting to compare the classical and the Bayesian
approaches to expert resolution with respect to the foregoing
experiment. Very roughly, a Bayesian would use prior
information to recalibrate each expert, and would use each
recalibrated expert to update his distribution on the decision
variable of interest. The classical approach would say: on
items similar to those on the technical test, take the advice of
the expert who was ranked high on the both calibration and
information.

Much theoretical and empirical work remains to be done.
On the theoretical side, it would be desirable to have more
rigorous methods for chosing a “best expert”, as the choice
will not always be as clear as in the foregoing test. It would
also be desirable to investigate other possible parameters for
expert resolution. It was noted that the chi-square
approximation is not very good under normal test situations
when very small or very large fractiles are solicited. It would
be useful to have a better approximation.

On the empirical side, it is important to get a consistent
picture of the relation between calibration and knowledge,
and a coherent view of the reliability of expert opinion. It is
unlikely that this can be achieved without first clearing up the
methodological difficulties surrounding calibration measure-
ments. More empirical work needs to be done on the factors
influencing calibration and overconfidence, and on the
possibility of training people to be good probability
assessors. The results of the experiment discussed in the third
section leave no doubt that the experts in this study have
ample room for improvement. That which “nature” teaches
inefficiently is what training programs should teach
efficiently.
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