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Abstract 

The social cost of carbon (SCC) is a crucial metric for informing climate policy, most 
notably for guiding climate regulations issued by the US government. Characterization 
of uncertainty and transparency of assumptions are critical for supporting such an 
influential metric. Challenges inherent to SCC estimation push the boundaries of 
typical analytical techniques and require augmented approaches to assess 
uncertainty, raising important considerations for discounting. This paper addresses 
the challenges of projecting very long-term economic growth, population, and 
greenhouse gas emissions, as well as calibration of discounting parameters for 
consistency with those projections. Our work improves on alternative approaches, 
such as nonprobabilistic scenarios and constant discounting, that have been used by 
the government but do not fully characterize the uncertainty distribution of fully 
probabilistic model input data or corresponding SCC estimate outputs. Incorporating 
the full range of economic uncertainty in the SCC underscores the importance of 
adopting a stochastic discounting approach to account for uncertainty in an 
integrated manner.   
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1. Introduction 

As the primary economic measure of the benefits of mitigating climate change, the 
social cost of carbon (SCC) has been called “the most important number you’ve never 
heard of.”1 Put simply, the SCC is an estimate, in dollars, of the economic cost (i.e., 
damages) resulting from emitting one additional ton of carbon dioxide (CO2) into the 
atmosphere. Conversely, it represents the benefit to society of reducing CO2 
emissions by one ton—a number that can then be compared with the mitigation costs 
of reducing emissions. There are analogous metrics for methane (CH4) and nitrous 
oxide (N2O). The SCC has deep roots in economics. Indeed, many textbooks use 
carbon emissions and the resulting climate change as the canonical example of an 
externality that must be addressed through Pigouvian taxation or other means to 
maximize human welfare. In particular, basic economic theory recommends that an 
optimal tax on CO2 emissions (a “carbon tax”) be set equal to the SCC, for which 
marginal damages are measured along an optimal emissions trajectory (e.g., Pigou 
1920; Nordhaus 1982).2 

But the relevance and application of the SCC go well beyond its role in determining an 
optimal Pigouvian tax. As political leaders and stakeholders debate both the broad 
outlines and the fine details of policies to reduce carbon dioxide emissions, the SCC 
lies in the background as a remarkably important calculation, used by the US federal 
government for more than a decade for developing vehicle fuel economy standards 
and power plant emissions rules. Such analyses have been a mainstay of the 
regulatory rulemaking process since Executive Order 12291 was issued more than 40 
years ago.3  

The SCC also was the basis for the value of federal tax credits for carbon capture 
technologies, beginning in 2018,4 and zero-emissions credits for nuclear power in New 
York State.5 The power grid operator for New York is working to include the SCC as a 
cost “adder” on top of energy supply bids submitted by power plants, thereby 

 
1 https://www.economist.com/united-states/2017/11/16/the-epa-is-rewriting-the-most-
important-number-in-climate-economics; 
https://www.bloomberg.com/news/articles/2021-01-22/how-do-you-put-a-price-on-
climate-change-michael-greenstone-knows 

2 This result derives from a simple model lacking many real-world complications such as 
leakage, tax-interaction effects, and other market distortions like R&D spillovers, but it 
represents a reasonable approximation. 

3 Executive Order 12291 was the original Reagan-era guidance for benefit-cost analysis, later 
superseded by Executive Order 12866 in 1993. 

4 https://www.whitecase.com/publications/insight/carbon-capture/us-tax-credit-
encourages-investment  

5 https://documents.dps.ny.gov/search/Home/ViewDoc/Find?id={44C5D5B8-14C3-4F32-
8399-F5487D6D8FE8}&ext=pdf, page 131. 

https://www.economist.com/united-states/2017/11/16/the-epa-is-rewriting-the-most-important-number-in-climate-economics
https://www.economist.com/united-states/2017/11/16/the-epa-is-rewriting-the-most-important-number-in-climate-economics
https://www.bloomberg.com/news/articles/2021-01-22/how-do-you-put-a-price-on-climate-change-michael-greenstone-knows
https://www.bloomberg.com/news/articles/2021-01-22/how-do-you-put-a-price-on-climate-change-michael-greenstone-knows
https://www.whitecase.com/publications/insight/carbon-capture/us-tax-credit-encourages-investment
https://www.whitecase.com/publications/insight/carbon-capture/us-tax-credit-encourages-investment
https://documents.dps.ny.gov/search/Home/ViewDoc/Find?id=%7b44C5D5B8-14C3-4F32-8399-F5487D6D8FE8%7d&ext=pdf
https://documents.dps.ny.gov/search/Home/ViewDoc/Find?id=%7b44C5D5B8-14C3-4F32-8399-F5487D6D8FE8%7d&ext=pdf
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reflecting social costs into market prices and plant dispatch.6 Many other states have 
used the SCC as the basis for climate policies7 and as a benchmark against which 
proposed carbon prices are compared.8 Proposed applications include federal 
procurement decisions9 and royalties on oil and gas leases on federal land (Prest 2021; 
Prest and Stock 2021).10 

Construction of the SCC and the benefits of reducing emissions is also somewhat 
distinct from the distribution of benefits. That is, because the consequences of climate 
change will be different for different communities (country, region, income, social 
identity), the benefits of mitigating climate change will similarly vary. For example, 
rising temperatures are likely to create heavier burdens on already hot (and often 
poor) countries like Bangladesh than for cold (and often rich) countries like Norway. 
Putting greater weight on dollar-value effects in poorer communities—that is, equity 
weighting (Errickson and others 2021)—is not the current standard practice, however. 
Rather, the distribution of effects (when available) is presented alongside the 
aggregate, unweighted summary. Weighting becomes important as we gain 
understanding of the distribution of effects. 

Estimation of the SCC goes back to Nordhaus (1982) and has recently seen increasing 
prominence. In 2018, the Sveriges Riksbank Prize in Economic Sciences in Memory of 
Alfred Nobel was awarded to William Nordhaus (alongside Paul Romer) for his work 
incorporating climate change into economic analysis, including the role of the SCC in 
informing policy. 

The SCC is typically estimated using integrated assessment models (IAMs), such as 
the DICE model developed by Nordhaus. IAMs couple climate and economic models to 
estimate the economic effect of an incremental pulse of CO2 emissions (in tons) on 
climate and economic outcomes. The net present value of changes in economic 
outcomes, divided by the number of tons in the pulse, delivers the SCC. However, 
many IAMs used in SCC estimates have not kept up with rapidly evolving climate, 

 
6 https://www.nyiso.com/carbonpricing  

7 https://costofcarbon.org/states  

8 https://www.rff.org/publications/explainers/carbon-pricing-101/, 
https://www.rff.org/publications/data-tools/carbon-pricing-bill-tracker/, 
https://www.wsj.com/articles/BL-EB-7156  

9 https://www.whitehouse.gov/briefing-room/presidential-actions/2021/05/20/executive-
order-on-climate-related-financial-risk/, Sec. 5(ii).  

10 Many aspects of climate policy decisions are not necessarily tied to the SCC. Essentially, 
those include all policy design issues beyond measuring benefits and balancing with costs, 
such as optimal R&D spending amid knowledge spillovers, cost-effective policy design (e.g., 
uniform standards versus flexible incentive-based policies), interactions between policies (e.g., 
Goulder 1995; Barrage 2020a, 2020b; Borenstein and others 2019), and differences in the 
distribution of the costs (and in certain cases government revenues) associated with different 
policy approaches. These are distinct from the question of estimating the marginal benefits of 
reducing emissions. 

https://www.nyiso.com/carbonpricing
https://costofcarbon.org/states
https://www.rff.org/publications/explainers/carbon-pricing-101/
https://www.rff.org/publications/data-tools/carbon-pricing-bill-tracker/
https://www.wsj.com/articles/BL-EB-7156
https://www.whitehouse.gov/briefing-room/presidential-actions/2021/05/20/executive-order-on-climate-related-financial-risk/
https://www.whitehouse.gov/briefing-room/presidential-actions/2021/05/20/executive-order-on-climate-related-financial-risk/
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economic, and demographic science. Moreover, as Nordhaus (1982) noted, many of 
the factors underlying the SCC are deeply uncertain—notably, our understanding of 
Earth’s climate, the effect of climate change on economic outcomes, and future 
socioeconomic conditions that capture the discounted consequences from changes in 
emissions today. The need for robust policy decisions implies we should update the 
SCC over time to refine central estimates and the range of uncertainty as our 
scientific understanding progresses.  

In this paper, we review efforts to update determinants of the SCC to reflect the best 
available science, based on the recommendations of a 2017 committee report by the 
National Academies of Sciences, Engineering, and Medicine (NASEM 2017). This 
updating is particularly relevant in light of Executive Order 13990 (January 20, 2021), 
which reestablished the Obama-era Interagency Working Group (IWG) on the Social 
Cost of Carbon and directed it to update the SCC. We also note other research efforts 
on updating the SCC. 

The NASEM report recommended creating an integrated framework comprising four 
components (“modules”) underlying the SCC calculation: 

• socioeconomics: probabilistic projections of population, gross domestic 
product (GDP), and emissions over multiple centuries; 

• climate: an improved model of Earth’s climate system and climate change; 
• damages: the economic consequences of climate change, based on recent 

studies; and 
• discounting: aggregated present-value marginal damages and stochastic 

discount factors that correctly reflect the uncertain socioeconomic drivers 
(above). 

Figure 1 shows how the modules fit together, including how socioeconomics affect 
emissions trajectories, which are input into the climate model to project future 
temperatures. These temperatures are converted into a stream of future economic 
losses in the damages model (also influenced by socioeconomic trajectories), which 
are then discounted to a present value in the discounting module.  

Because the SCC represents the marginal effect of an incremental ton of emissions, 
this entire model is run twice—once as a baseline and once with a small pulse of 
additional emissions (Figure 2). The resulting change in the stream of economic 
damages per ton from this emissions pulse, in present value, is the SCC. More 
generally, when inputs to a module are uncertain (e.g., because of uncertainty about 
the climate’s response to emissions or about future economic growth), modelers have 
incorporated that uncertainty through Monte Carlo analyses by taking draws of 
(potentially correlated) probability distributions of each random variable. The result is 
a distribution of SCCs, often summarized by its expected value. For example, the 
federal government’s current interim value of $51/ton CO2 reflects the expected value 
of the SCC over uncertainty in the climate’s warming response and scenarios of 
economic growth and population, at a 3 percent constant discount rate.  
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Figure 1.  Modularized Approach to Estimating SCC 
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Figure 2. Estimating Social Cost of Carbon under Uncertainty 

Note: Estimation involves a baseline case (solid) versus a pulse of emissions (red dashed lines and areas). Shading depicts 
probability distributions on projections. 

The NASEM report noted that IWG SCC estimates, including the current interim 
$51/ton SCC value, used somewhat dated and often simplistic modules. For example, 
five socioeconomic “scenarios” were not developed with formal probabilities attached 
but were treated as equally likely. The scenarios did not incorporate the work done by 
economists, demographers, and statisticians to estimate and quantify uncertainty 
around long-term economic and population growth. The discounting approach also 
used a constant discount rate, rather than treating the discount rate as stochastic; 
that choice becomes increasingly important as the decision horizon extends into the 
future. The IWG noted the potential for a declining term structure and correlation 
between the discount rate and damage outcomes but did not consider an explicit 
stochastic discount factor that accounts for both future discount rate uncertainty and, 
through uncertain socioeconomic outcomes, correlation with the damages being 
discounted. To address such shortcomings, the NASEM report issued 
recommendations for improvement, which Executive Order 13990 specifically directed 
the IWG to consider.  

This paper documents recent work that has improved the scientific basis for the 
modules so that the IWG can update the SCC to reflect the best available science. 
Section II discusses the improved socioeconomic module, with long-term probabilistic 
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projections of population, economic growth, and emissions. Section III illustrates how 
an incremental ton of emissions translates into climate and economic effects 
(“damages”). Section IV discusses the crucial role of the discount rate, given recent 
research on declining equilibrium interest rates, plus the importance of using 
stochastic discount factors and the shadow price of capital for valuing effects on 
investment. Section V then combines these elements into a simplified model of the 
SCC, with associated uncertainty bounds for the socioeconomic, climate, damages, 
and discounting components. Finally, section VI concludes and raises issues that await 
future research. 
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2. Economic and Demographic Drivers 
of Climate Effects 

Assessments of damages from climate change are influenced by projections of 
population, economic growth, and emissions. Population growth can drive emissions 
and increase or decrease total economic exposure to the health effects of climate 
change. Economic growth similarly affects both the level of expected emissions and 
the resulting damages, which are often estimated to scale with economic activity (Diaz 
and Moore 2017a). For example, the monetization of mortality consequences typically 
depends on per capita income. Economic growth projections can also influence the 
SCC through the discount rate if estimates are calculated using Ramsey-like 
discounting, where the discount rate is a function of the rate of economic growth: 
higher (lower) growth scenarios will yield a higher (lower) discount rate. Finally, 
projections of global emissions determine the background state of the climate system 
against which damages from an additional pulse of emissions are measured.  

Estimates of the SCC are highly sensitive to socioeconomic and physical projections 
(Rose and others 2017), but revised estimates have been based primarily on changes 
in socioeconomic projections, not on improved understanding of the climate system 
(Nordhaus 2017b). Explicitly considering realistic, probabilistic socioeconomic 
projections is thus important for improving the characterization of both the central 
tendency and the uncertainty in the SCC. 

A robust characterization of socioeconomic contributions to SCC estimates would 
ideally incorporate probabilistic projections of population, economic growth, and 
emissions. The particular requirements of SCC estimation, however, pose significant 
challenges for generating such projections. One is the time horizon: given the long-
lived nature of greenhouse gases in the atmosphere, the SCC needs to account for 
discounted damages 200 to 300 years into the future (NASEM 2017). Yet nearly all 
projections end at year 2100 and are often scenario-based rather than probabilistic. 
New probabilistic projections that extend well into the future are required.  

Another challenge is that although climate change can be projected from emissions 
scenarios consistent with globally aggregated projections of economic activity and 
population growth, the resulting climate damages are most appropriately estimated at 
a regional (or even local) scale. Thus they require geographically disaggregated 
estimates of GDP and population.  

A third challenge is that the future path of emissions likely depends on uncertain 
improvements in technology and on the scale and success of policy interventions 
outside the range of the historical record. That is, whereas historical data may be a 
reasonable guide to forecast population and economic activity, the same is not true 
for emissions. The SCC should be measured against our best estimate of future 
emissions, inclusive of future mitigation policies except the one under analysis.  
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The fourth issue is the interrelated nature of these variables: the projections for each 
variable must be consistent with one another. For example, emissions intensity might 
be lower with higher economic growth (and its associated wealth and technological 
improvements).  

2.1. Past Approaches to Socioeconomic Projections 

In lieu of using fully probabilistic socioeconomic projections, researchers have 
typically turned to socioeconomic scenarios, which can provide consistency across 
analyses and still incorporate specific narratives. The IWG adopted a scenario 
approach in its initial estimates (IWG SCC 2010), and these same scenarios support 
the interim estimates put forward by the Biden administration in January 2021 (IWG 
SCC 2021). The IWG used five socioeconomic scenarios drawn from the Energy 
Modeling Forum (EMF) 22 (Clarke and Weyant 2009) modeling exercise, selected to 
roughly span the range of emissions outcomes in the full set of EMF 22 scenarios and 
thus represent uncertainty across potential socioeconomic projections. Only one of 
the scenarios represented future climate policy. The IWG extended the five scenarios 
to 2300 by assuming that GDP and population growth each decreased linearly to zero 
in 2300. The five scenarios were assigned equal probability for computing an 
expected value for the SCC (no such probabilistic interpretation existed for the EMF 
22 work).  

The IWG scenarios were critiqued for not spanning the uncertainty in a full set of 
relevant socioeconomic variables (e.g., GDP, population) or reflecting the broader 
scenario literature overall (Rose and others 2014; Kopp and Mignone 2012). The 
resulting SCC estimates, then, may not reflect damage calculations based on the full 
range of expected variation. The NASEM panel noted that the IWG did not provide a 
rationale for its scenario weighting or the choice to extend the scenarios from 2100 to 
2300 by assuming that GDP and population growth each decreased linearly to zero. 
The panel recommended using a combination of statistical methods and expert 
elicitation to generate a set of probabilistic long-term projections for each variable.  

Subsequently, a multidisciplinary research effort developed the Shared 
Socioeconomic Pathways (SSPs) (Riahi and others 2017), scenarios intended primarily 
to support the assessment efforts of the Intergovernmental Panel on Climate Change 
(IPCC). Each of the five SSPs consists of quantified measures of development and an 
associated narrative describing plausible future conditions that drive the quantitative 
elements. The SSPs end in 2100, but researchers have offered extensions to 2300 
(Nicholls and others 2020; Kikstra and others 2021). The SSPs are freely available and 
comprehensive, have an extensive publication record, and are expected to be used in 
the IPCC’s Sixth Assessment Report. For these reasons, we use the SSPs as our 
primary point of comparison.  

Scenarios in general, and the SSPs in particular, do not come (as the IWG assumed) with 
associated probabilities. That limits their utility in evaluating uncertainty. Although the 
SSP authors have themselves cautioned against using the SSPs in a probabilistic 
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fashion, Ho and others (2019) sought to address this limitation through an expert survey 
assessing the likelihood of each SSP. Others have sought to guide scenario usage by 
characterizing the plausibility of various scenarios (Stammer and others 2021). Even 
without formal probabilities, in practice, the SSPs are often interpreted in modeling 
exercises as representing the uncertainty between high-emissions (SSP5) and low-
emissions (SSP1) futures, at times with the implication that the difference represents a 
“no policy” counterfactual versus a “likely policy” scenario. This has led to a recent 
debate over the viability of the high-emissions scenario, given the current pace of 
technology evolution, among other factors (Hausfather and Peters 2020).  

Previous efforts to quantify the uncertainty of socioeconomic projections over a 
century are limited. Raftery and others (2017) used a statistical approach to generate 
density functions of country-level economic growth per capita, population, and carbon 
intensity (CO2/GDP) to project a density of future emissions trajectories via the IPAT 
equation (Commoner 1972), similar to our socioeconomic approach. Müller, Stock, and 
Watson (2021, hereafter MSW) employed a Bayesian latent factor model that projects 
long-run economic growth based on low-frequency variation in the historical data of 
country-level GDP per capita.11 Christensen and others (2018) conducted an expert 
survey of economists to quantify the 10th, 50th, and 90th percentile ranges of 
economic growth for six groupings of countries. Comparing results with the SSP 
ranges, they found that the SSPs underestimated the range of uncertainty expected 
by the experts and that using the increased range for economic growth with the DICE 
model suggested that emissions were also underrepresented by the SSPs.  

The NASEM report noted that statistical models based solely on historical data are 
unlikely to fully inform the variability of future projections over centuries, suggesting 
caution in using raw outputs from statistical models over long time scales. This 
concern led the NASEM panel to recommend using formal expert elicitation to 
quantify the uncertainty around future long-run projections, which can then be used 
to augment projections from statistical models.  

We next describe efforts undertaken by the Resources for the Future (RFF) SCC Initiative 
and collaborators to build on both statistical and expert-based approaches to generate 
distributions of projections of population and GDP per capita at the country level, plus 
distributions of the three primary greenhouse gases (CO2, CH4, and N2O) at the global 
level. The resulting probabilistic distributions, collectively referred to as the RFF 
Socioeconomic Projections (RFF-SPs), fully incorporate the NASEM recommendations for 
generating an improved socioeconomic module for SCC estimation.  

 

 
11 The MSW method extends the approach provided in Müller and Watson (2016), which was 
suitable only for global estimates of economic growth, to generate internally consistent growth 
projections at the country level. 



The Social Cost of Carbon: Advances in Long-Term Probabilistic Projections 
of Population, GDP, Emissions, and Discount Rates   10 

2.2. Probabilistic Population Projections to 2300 

2.2.1. Methods 

To develop probabilistic, country-level population projections through 2300, we start 
with the fully probabilistic statistical approach that has been used since 2015 by the 
United Nations (UN) for its official population forecasts to 2100. We then extend the 
statistical model to 2300, incorporating feedback and improvements suggested by a 
panel of nine leading demographic experts that we convened to review preliminary 
results. This work is detailed in Raftery and Ševčíková (2022, forthcoming). 

The UN uses a probabilistic method built on the standard deterministic cohort-component 
method of population forecasting (Preston, Heuveline, and Guillot 2001). This method 
projects forward the three components of population change: fertility, mortality, and 
migration, broken down by age and sex. The probabilistic method builds Bayesian 
hierarchical models for each of the three components and projects them forward 
probabilistically using a Markov chain Monte Carlo (MCMC) method, which produces a 
large number (typically 1,000-2,000) of trajectories of future numbers of births, deaths, 
and migration events in each country by age and sex. Each trajectory of fertility, mortality 
and migration is then combined to give a trajectory of future population by age and sex in 
each country. These 1,000-2,000 trajectories of population numbers in turn approximate a 
probability distribution for any population quantity of interest (Raftery and others 2012; 
Raftery, Alkema, and Gerland 2014; Gerland and others 2014). 

Fertility is projected by focusing on each country’s Total Fertility Rate (TFR), which is 
the expected number of children a woman would have in a given period if she survived 
the reproductive period (typically to age 50) and at each age experienced the age-
specific fertility rates of that period. The UN models the evolution of fertility in all 
countries using a Bayesian hierarchical model that divides it into three phases 
depending on where it lies in the fertility transition from high to low fertility (pre-
transition, transition, post-transition). It then fits a time series model to each phase, 
accounting for spatial correlation between countries (Alkema and others 2011; Raftery, 
Alkema, and Gerland 2014; Fosdick and Raftery 2014; United Nations 2019; Liu and 
Raftery 2020).12 Mortality is similarly projected by focusing on life expectancy at birth.13 
This is projected by another Bayesian hierarchical model for all countries for both sexes 

 
12 The TFR has evolved in a similar way in all countries. Typically, in pre-industrial times, the TFR for 
a typical country was high (in the range 4-8 children per woman). Then, usually after the onset of 
industrialization, it started to decrease. After a bumpy decline lasting several decades to a century, 
the TFR flattened out at a level below the replacement rate of about 2.1 children per woman. This 
decline is called the fertility transition. After the end of the fertility transition, the TFR has fluctuated 
without a clear trend, mostly staying below the replacement rate. For example, in the US, the TFR 
was around 7 children per woman in 1800, and then declined, reaching 1.74 in 1976, and thereafter 
fluctuating up and down; it is now 1.64, close to the level it was at in 1976 (Raftery 2021). 

13 The general trend since 1840 has been that life expectancy has increased steadily (Oeppen 
and Vaupel 2002), with slower increases for countries with the lowest and highest life 
expectancy, and the fastest increases for countries in the middle. 
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(Raftery and others 2013; Raftery, Lalic, and Gerland 2014). The UN has traditionally 
projected net international migration for each country deterministically by assuming 
that it would continue in the future at the same rate as currently (United Nations 2019). 

We extended this UN method, designed for projections to 2100, out to 2300 and 
preliminary results were reviewed by a panel of nine expert demographers that we 
convened. While broadly supportive, the panelists were in agreement that the 
resulting uncertainty bounds for TFR in 2300 were too narrow, and that in particular 
the lower bound of the 95% prediction interval for world TFR in 2300 (1.66) was too 
high. A lower bound of 1.2 children per woman for the world TFR in 2300 was 
suggested as a more plausible lower bound. We incorporated this recommendation by 
adding a worldwide random walk component to the TFR model.  

Experts on the panel also suggested that international migration should be projected 
probabilistically, in line with the general approach, rather than deterministically as 
done by the UN. We implemented this by projecting net international migration using a 
Bayesian hierarchical model (Azose and Raftery 2015; Azose, Ševčíková, and Raftery 
2016). We additionally implemented the final panel recommendation, to impose 
constraints on population density to prevent unrealistically high or low population 
numbers in some age groups in some countries.  

2.2.2. Results 

The resulting population projections for 2300 for the world as a whole and for the 
continents, are shown in Figure 3. They show that total world population is likely to 
continue to increase for the rest of the 21st century, albeit at a decreasing rate, to level 
off in the 22nd century, and to decline slightly in the 23rd century. Uncertainty for 2300 
is considerable, appropriately, reflecting the very long forecast time horizon, with a 
median forecast of 7.5 billion, but a 95% interval from 2.3 to 25.8 billion. The results agree 
closely with the UN forecasts for the period to 2100 (United Nations 2019). 

Figure 3 also shows the results for each major continental region. They show that the 
populations of Asia, Europe and Latin America are likely to peak well before the end of 
this century and then decline substantially. The populations of Africa and Northern 
America are also likely to peak and then decline, but much later, in the 22nd century. 
In the case of Africa this is due to population momentum (with a high fraction of the 
population currently in reproductive ages) and current high fertility. In the case of 
Northern America it is due to a combination of modest population momentum, fertility 
that is closer to replacement level than in other continents, and immigration. 
Uncertainty for each region in 2300 is high. 

In comparison to the population projections from the SSPs, our population projections 
are centered around a peak of slightly over 10 billion people globally reached late this 
century, lying closest to SSP2, although SSP2 levels off at a higher level than our 
median projection after 2200. Through 2300, the 90% confidence distribution around 
our median is narrower than the range indicated by the SSPs, and considerably 
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narrower through 2200. SSP1 and SSP5 lie below the 5th percentile of our distribution 
through almost the entire time horizon to 2300. SSP3 features a very aggressive 
population projection in the top tail of the distribution, at about the 99th percentile in 
2300. In sum, none of the SSPs has a central tendency for population in line with our 
fully probabilistic projections, and the range of population given by SSP1-SSP5 is wide 
relative to ours. 

We are aware of only three other detailed efforts to project world population to 2300, 
all of them deterministic, in contrast with our probabilistic method described here. One 
was carried out by United Nations (2004) and was deterministic, but containing 
several scenarios. The range of these projections for 2300 from the different scenarios 
went from 2.3 to 36.4 billion, compared with our 98% prediction interval of 1.7 to 33.9 
billion. Although using different methodologies and carried out over 15 years apart, the 
two sets of projections give results that are compatible with one another, perhaps to a 
surprising extent.14  

Another such exercise was carried out by Vallin & Caselli (1997), also deterministic 
with three scenarios corresponding to different long-term trajectories of world TFR. 
Two of the scenarios led to world population stabilizing at around 9 billion, while the 
other resulted in 4.3 billion people in 2300. All three of these scenarios give world 
population in 2300 well within our 80% interval, though with a range that is much 
narrower than either ours or that of United Nations (2004). Gietel-Basten and others ( 
2013) also performed a projection exercise to 2300, with a very wide range of 
scenarios for long-term world TFR. They obtained projections of global population 
yielding anything from zero to 86 billion in 2300.15  

  

 
14 The very high upper bound for the UN (2004) projections is likely an artifact due to the 
perfect correlation implied by the deterministic scenarios and the aggregation of such results. 

15 As in the UN (2004) projections, these very extreme outcomes are likely in part due to the 
perfect correlation between countries implied by the deterministic scenarios and the 
aggregation of such results. 



Resources for the Future   13 

Figure 3. Probabilistic Population Projections for World and Major 
Regions, to 2300  

 

Notes. Data prior to 2020 are from the UN’s World Population Prospects 2019 (UN 2019). The 
predictive medians are shown as solid curves; the shaded areas show the 90% and 98% 
predictive intervals. The world population projections from the extended SSPs are shown for 
comparison. 
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2.3. Probabilistic Economic Growth Projections to 2300 
and Economic Growth Survey 

2.3.1. Methods 

The probabilistic projections of economic growth often used in analyses by 
governments and the private sector have not incorporated the time scale of centuries, 
as is needed to support SCC estimates and other economic analyses of climate 
change. MSW (2019) took a significant step forward by providing probabilistic 
econometric projections over long periods. The MSW methodology involves a 
multifactor Bayesian dynamic model in which each country’s GDP per capita is based 
on a global frontier of developed economies (countries in the Organisation for 
Economic Co-operation and Development, OECD) and country-specific deviations 
from that frontier. Correlations between countries are also captured in a hierarchical 
structure that models countries in “covariance clubs,” in which country-level 
deviations from the frontier vary together. The hierarchical structure also permits 
pooling information across countries, an approach that tightens prediction intervals. 
This model is then estimated on data for 113 countries over 118 years (1900 to 2017). 
The model yields 2,000 sets of trajectories of country-level GDP per capita from 2018 
to 2300. Each can be considered an equally likely uncertain future. Each is 
characterized by a path for the global factor and 113 country-specific deviations from 
that pathway. The results are described more fully below; for more information about 
the model, see MSW (2019). 

As noted earlier, however, NASEM (2017) recommended augmenting statistical models 
with formal expert elicitation to quantify uncertainty, especially for long-term 
projections. But surveying experts on long-term uncertainty of economic growth at 
the country level is impractical because of time constraints and the difficulty of 
accounting for intercountry correlations. Consequently, our study was designed to 
work in tandem with an econometric model that provides country-level projections 
and represents the intercountry dynamics. Our Economic Growth Survey (EGS) 
focused on quantifying uncertainty for a representative frontier of economic growth in 
the OECD countries. The results informed econometric projections based on the MSW 
model of an evolving frontier (also based on the OECD), in turn providing country-
level, long-run probabilistic projections.  

The methodology we applied is the “classical model” (Cooke 1991, 2013) of structured 
expert judgment, analogous to classical hypothesis testing. In essence, the experts are 
treated as statistical hypotheses: they are scored on their ability to assess uncertainty 
based on their responses to calibration questions whose true values are known to us 
but unknown to the experts. This scoring allows us to weight the experts’ judgments, 
and the scores of combinations of experts serve to gauge and validate the 
combination that is adopted. The ability to performance-weight experts’ combined 
judgments has generally been shown to provide the advantages of narrower overall 
uncertainty distributions with greater statistical accuracy and improved performance 
both in and out of sample (Colson and Cooke 2017, 2018; Cooke and others 2021).  
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Ten experts, selected for their expertise in macroeconomics and economic growth and 
recommended by their peers, were elicited individually by videoconference in roughly 
two-hour interviews in 2019–2020. They received an honorarium where appropriate. 
The full elicitation protocol is available in the online appendix; the general process was 
as follows. First, experts quantified their uncertainty for several initial questions, after 
which answers were provided for self-assessment; this step was intended to 
familiarize them with the process and alert them to potential biases. The experts then 
provided a median and 90 percent confidence range for 11 calibration questions for 
which the true values were known to us.  

Experts next provided their 1st, 5th, 50th, 95th, and 99th quantiles for the variables of 
interest: levels of OECD GDP per capita for 2050, 2100, 2200, and 2300. For experts 
more comfortable working in growth rates (rather than levels), we provided a 
spreadsheet tool that translated average growth rates into GDP per capita levels. 
Experts were informed that their combined quantiles of GDP levels would be 
combined with country-level econometric projections, as described below, but they 
were not shown the results. Experts were given historical data on economic growth to 
provide a consistent baseline of information across the panel, and they were permitted 
to consult outside sources if desired. Experts provided additional rationale for their 
quantiles verbally throughout the elicitation and concluded the survey by formally 
identifying the primary factors driving their low and high future growth scenarios.  

Given that the projections were being used as an input to the estimation of climate 
change damages, which would reduce economic activity below the projected level, 
experts were specifically asked to provide quantiles of economic growth absent the 
effects of further climate change as well as absent further policy efforts to reduce 
emissions. Two of the 10 experts provided a pair of modified base quantiles to reflect 
the absence of effects from climate damages and climate policy that are utilized here, 
but in general the proposed modifications to their original distributions were minor. 
Moreover, several experts noted that although climate change was a primary factor 
underlying their probability of low growth projections, the complexity of the multiple 
uncertain factors represented in their base quantiles precluded systematic removal, 
and they deemed their base quantiles appropriate for assessing uncertainty in the 
SCC and other analyses assessing the economic damages from climate change. 

The results of the expert elicitations were combined by first fitting each expert’s five 
quantiles for each year, in log GDP per capita, with a Johnson SU distribution (Johnson 
1949) to generate a continuous cumulative distribution function (CDF) specific to 
each expert. We next combined the CDFs in two ways: averaging across the set of 
expert CDFs with equal weight, and performance-weighting the experts according to 
their performance on the calibration questions. This process yielded a pair of final 
combined elicited values of OECD GDP per capita for each elicited year and quantile.16  

 
16 See online appendix for further detail.  
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2.3.2. Results of Economic Growth Survey 

On the calibration questions (see online appendix), the experts demonstrated an 
overall high level of statistical accuracy compared with other structured expert 
judgment studies and results that are robust against expert loss. As shown by their 
individual quantiles (Figure 4) and as expressed in comments during the 
videoconferences, most participants’ median forecast was that long-term growth 
would be lower than the growth rate of the past 100 years. The responses show 
considerable diversity in their characterization of uncertainty around the median, 
however, with some of the widest ranges being driven by their explicit inclusion of 
events that are not present or fully realized in the historical record of economic 
growth on which statistical growth projections are based.17 When asked to identify the 
primary drivers of the low-growth quantiles, the experts most commonly responded 
climate change, followed by world conflict, natural catastrophes, and global health 
crises. Rapid advancement of technology was cited most often as the primary driver of 
high growth, followed by regional cooperation and advances in medical science. Many 
experts expected that technology breakthroughs in clean energy would dramatically 
lower global emissions. Implicit in this narrative is a negative correlation between 
economic growth and carbon dioxide emissions. 

As shown in Figure 4, both the performance-weighted and the equal-weighted 
combinations of the experts’ distributions yield narrower ranges as well as lower 
medians than do the statistical trajectories for all four years (2050, 2100, 2200, and 
2300). The median of the equal-weighted combination is consistently higher than that 
based on performance weighting, but the difference shrinks throughout the period 
until the medians nearly converge in 2300. Overall, the experts viewed sustained long-
term growth rates above 4 percent or even slightly below 0 percent as highly unlikely 
but not impossible.  

2.3.3. Results of econometric growth projections augmented with expert 
judgment 

We used the EGS results to modify econometric projections of GDP per capita based 
on the MSW (2019) methodology and generate density functions of internally 
consistent projections of economic growth at the country level. As indicated in MSW 
(2019), economic growth 100 to 300 years into the future is highly uncertain, well 
beyond that captured in typical scenario projections (see Figure 5 below).  
 
 

 
17 The quantiles from one expert included global civilization-ending events that were outside 
the scope of the survey and incompatible with assumptions for US federal policy analysis; they 
unreasonably distorted the combined distributions toward extreme values. Quantiles from this 
expert were excluded in the final survey.  
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Figure 4. Distributions of Future Average GDP Growth Rates for OECD from Experts and 
Econometric (MSW) Sources  

 

Note. For each bar, the circle shows the median and the lines show the 1st, 5th, 95th, and 99th percentiles of the relevant 
distribution. 

The tails of the MSW distribution are quite wide, leading to some implausibly small or 
implausibly high long-term average growth rates in the extreme tails (e.g., below the 
1st percentile or above the 99th percentile). These extreme tails correspond to 
extremes of persistent economic growth beyond what has been observed historically 
over long periods (e.g., below –1 percent or above +5 percent annually on average 
through 2300). Specifically, according to the Maddison Project dataset (one of two 
datasets used by MSW),18 which includes country-level GDP per capita data as far 
back as 1500 for some countries, no country has experienced such extreme growth for 
such long periods.19 In the MSW model, those extreme tail simulated outcomes are 

 
18 Available at https://clio-infra.eu/Indicators/GDPperCapita.html. 

19 For example, no country in Maddison Project data has observed 100-year growth rates below 
–1 percent or above +3 percent. 

https://clio-infra.eu/Indicators/GDPperCapita.html
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driven by the structure of the Bayesian model with its embedded distributional 
assumptions, rather than by the historical data used to estimate the model. 

Further, the 1st and 99th percentiles of the combined distribution of long-run growth 
rates based on the EGS are –0.6 percent and +4.4 percent, indicating that long-run 
growth rates are unlikely to fall outside this range. For these reasons, and in 
consultation with James Stock (an MSW coauthor), we omit some projections in the 
extreme tails of the MSW distribution that are outside the range of historical 
experience and also outside the long-run range implied by the EGS (see online 
appendix for our approach). Hereafter, we refer to this censored MSW version as the 
“MSW projections,” while noting that it differs slightly in the extreme tails.  

The EGS provides quantiles of economic growth for the OECD for four discrete years. 
To maintain the rich country-level information of the econometric model while 
incorporating the information from the experts, we reweight the probability of 
occurrence of each of the 2,000 MSW draws to satisfy the experts’ combined 
distribution over the long run. The underlying projections from MSW remain 
unchanged, but the likelihood of drawing a given trajectory is modified such that the 
quantiles of OECD growth reflect the distribution produced by the EGS.  

We accomplish this reweighting in two steps. First, we generate a set of target 
quantiles for the years 2030, 2050, 2100, 2200, and 2300 by calculating weighted 
averages of the combined CDFs from the experts and the corresponding CDFs from 
the raw MSW data. The NASEM report recommended giving expert judgment 
increasing weight for longer horizons, so the near-term weighting is governed more by 
historical evidence and that of the long-term future more by the experts. For this 
reason, we increase the weight of the EGS quantiles versus the MSW quantiles linearly 
over time from 0 percent in 2030 to 100 percent in 2200 and thereafter.  

We then use iterative proportional fitting (Csiszar 1975) to impose the target quantiles 
for OECD growth on the 2,000 trajectories of the frontier from MSW for each of the 
four benchmark years. For each range of values between each elicited quantile, this 
algorithm reassigns probabilities to each trajectory whose value falls within that range 
by minimizing a penalty for nonequal weights, subject to matching the target 
quantiles. Because there are four years for which we have a combined expert 
distribution to satisfy, the algorithm iterates between each year until all years’ 
distributions are satisfied. Figure 5 compares the resulting distributions from MSW 
with those reweighted according to the EGS.  
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Figure 5. Average Projected Growth Rates of GDP per Capita in OECD 
Countries 

 

Notes. Adapted from MSW (2019) and an EGS performance-weighted average of those data. 
Shaded areas and dashed/dotted lines represent 5th to 95th (darker, dashed) and 1st to 99th 
(lighter, dotted) percentile ranges. 

Figure 6. Average Projected Growth Rates of Global GDP per Capita 

 

Note. The solid line represents the median value, and dark and light shading represent the 5th 
to 95th (darker) and 1st to 99th (lighter) percentile ranges of the RFF-SPs. 
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We next generate a distribution of projected global GDP per capita20 rates by taking 
10,000 independent samples from the population and EGS projections, taking the 
product of population and GDP per capita at the country level, summing to yield global 
GDP, and dividing by the global population for that draw. Figure 6 shows that the 
resulting median global GDP growth rates from the RFF-SPs track slightly higher than 
SSP3, with SSP1, SSP2, and SSP5 also falling within the 90th percentile range. The 
SSPs do not span the full range of potential growth paths, especially below the median 
for the RFF-SP growth trajectories. As will be discussed in section V, these relatively 
low growth potential paths contribute substantially to the SCC. 

2.4. Projected Emissions to 2300 Based on Economic 
Growth: Future Emissions Survey 

2.4.1. Methods 

To generate very long-run distributions of global emissions of CO2, CH4, and N2O, our 
Future Emissions Survey (FES) elicited 10 experts in socioeconomic projections and 
climate policy who were nominated by their peers and/or by members of the RFF 
Scientific Advisory Board. The experts surveyed were based at universities, nonprofit 
research institutions, and multilateral international organizations. They have expertise 
in, and have undertaken, long-term projections of the energy-economic system under 
a substantial range of climate change mitigation scenarios.  

Like our Economic Growth Survey, the FES employed the classical model of structured 
expert judgment: experts first quantified their uncertainty about variables for which 
true values were known, for calibration and performance weighting. Experts next 
provided quantiles of uncertainty (minimum, 5th, 50th, 95th, maximum, as well as 
additional percentiles at the expert’s discretion) for four variables for a case we called 
Evolving Policies, which incorporates views about changes in technology, fuel use, and 
other conditions, and consistent with the expert’s views on the evolution of future 
policy. The Evolving Policies case corresponds to the USG approach to benefit cost 
analysis, which evaluates US regulations as incremental against a more expansive 
backdrop of other policies and conditions and is responsive to NASEM 
recommendations for including future background policy in the uncertain distributions 
of socioeconomic projections.  

 
20 The raw MSW dataset provides growth projections for 113 countries. Here we expand on that 
scope of coverage to include the full 184 countries represented in the SSPs by undertaking the 
following steps to impute each country omitted in MSW: (1) identify the country within the 
same continent and within 30 degrees of latitude with the closest matching log(GDP/capita) 
for the year 2020 (or, for 11 countries missing data for 2020, we use the most recent year 
available, typically 2019); (2) calculate a scaling factor based on the ratio between the 
respective 2020 GDP/capita values; and (3) apply the scaling factor to each trajectory for the 
matched country to generate corresponding trajectories for the omitted country.  Matches for 
omitted countries from Oceania were identified from within Asia. The countries imputed 
represent a total of 3% of global GDP for the year used for the match.  
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Experts provided quantiles of uncertainty for (1) fossil fuel and process-related CO2 
emissions; (2) changes in natural CO2 stocks and negative-emissions technologies; (3) 
CH4; and (4) N2O, for five benchmark years: 2050, 2100, 2150, 2200, and 2300. For 
category 1, they were also asked to indicate the sensitivity of emissions to five GDP 
per capita trajectories.21  

For each expert we generate a set of cumulative distribution functions (CDFs), one for 
each benchmark year, emissions source, and economic growth trajectory, by 
piecewise linear interpolation between the quantiles provided. Then, as in the EGS, we 
generate a corresponding set of combined equal-weight CDFs by averaging the CDFs 
in equal measure, and a set of performance-weighted CDFs by averaging in 
accordance with the experts’ relative performance on the calibration questions. 
Quantile values from the combined CDFs were linearly interpolated in time between 
each of the benchmark years to yield a distribution of piecewise linear, nonoverlapping 
trajectories for each emissions source and sink.  

Based on the FES, we developed a distribution of emissions scenarios to pair, 1-1, with 
our economic growth scenarios. First, we sampled from one of 10,000 economic 
growth trajectories, described above. Second, we sampled a value (q) on the 
continuous interval [0,1] to determine the percentile of the expert’s emissions 
trajectory to evaluate. Third, at five-year intervals from 2025 to 2300 we generated an 
interpolated value of the qth percentile of emissions based on the realized GDP level 
corresponding to that GDP trajectory in that year, and the qth percentile of the 
experts’ emissions distributions for the bounding GDP values elicited. Net emissions of 
CO2 were generated by sampling independent q values for direct emissions (category 
1) and natural carbon stocks and negative emissions technologies (category 2) and 
summing the resulting trajectories, thereby including the possibility of net negative 
emissions.22,23 

 
21 See online appendix for a more detailed discussion of the survey methodology and the full 
elicitation protocol. 

22 The experts received real-time feedback about the implications of their prescribed 
distributions for future outcomes. After each had provided a full set of quantiles, we followed 
the same sampling process described above to generate distributions of emissions trajectories, 
except that the emissions distributions were based on input provided by only that expert 
rather than the full set of experts, and that for expediency we presented results based on 100 
to 1,000 samples at the discretion of the expert. Experts were shown their full distributions of 
emissions trajectories, the economic growth paths sampled, population, emissions intensity, 
and the resulting climate outcomes from the FaIR 2.0 climate model (described in section III) 
for their verification. They were permitted to modify their quantiles after seeing their 
distributions and resulting climate outputs, but in general they found the results to be in 
agreement with the intent of their quantiles and consistent with their supporting rationale.  

23 For each emissions trajectory generated, we used a cubic spline to interpolate between 2020 
emissions and 2050 (the first quantiles provided by the experts) based on the slope of the 
global emissions trajectories over the 2010-2020 period and the emissions trajectory post 
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2.4.2. Results of the Future Emissions Survey 

Experts’ performance on the calibration questions was high, as measured by statistical 
accuracy, informativeness, and robustness of results (see online appendix). Experts 
described their rationale and the conditions supporting their distributions of 
emissions, often citing the same factors. For direct CO2 emissions (category 1), experts 
viewed low economic growth as likely to reduce emissions overall but also lead to 
reduced global ambition in climate policy and slower progress to decarbonization. For 
median economic growth conditions, experts generally viewed policy and technology 
evolution as the primary driver of their emissions distributions, often offering a median 
estimate indicating reductions from current levels but with a wide range of 
uncertainty. Several experts said high economic growth would increase emissions 
through at least 2050, most likely followed by rapid and complete decarbonization, but 
with a small chance of substantial continued increases in emissions. In general, the 
distributions were inconsistent with keeping global temperature increases below 1.5 
degrees C, even when considering the potential for negative emissions. 24  

Figure 7.  Cumulative Distribution Functions (CDFs) of Annual CO2 
Emissions  

Panel (a): Individual Expert and Combined CDFs for 2050 

Panel (b): Combined CDFs of Expert Projections for 2050 to 2300

 

Though their rationales were often similar, experts’ interpretation of those narratives, 
as shown in their quantiles of emissions, differed substantially (Figure 7). For example, 
for the median growth trajectory to 2050, the median emissions ranged from 15 to 45 

 
2050. We also used a cubic spline to interpolate trajectories between the additional years for 
which quantiles were provided by the experts. 

24 See online appendix for a more detailed summary of the rationales of the experts, including 
discussion of emissions from the other categories. 
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Gt CO2, a span encompassing a decrease of more than 50 percent to an increase of 
more than 30 percent from today’s levels. Experts often provided highly skewed 
distributions, with significant chances that direct CO2 emissions (category 1) would be 
exactly or near zero while allowing for much higher emissions in the middle and upper 
quantiles of their distribution.25 

The experts’ narratives support an evolution of the combined distributions (Figure 7). 
Over time, emissions distributions for all growth trajectories exhibit a shift, particularly 
evident for the median and high-growth trajectories, with median emissions 
approaching zero in and after 2150. Emissions distributions for the lower-growth 
trajectory show a decreased range of emissions overall compared with the higher-
growth trajectories, but the temporal trend toward lower emissions is not as strong. 
Higher-growth trajectories show relatively greater probabilities of increased emissions 
in the near term, followed by greater chances of full decarbonization in the next 
century, while also allowing for the possibility of much higher emissions over the long 
term. (For the other categories of emissions sources and sinks, see online appendix).  

2.4.3. Resulting global greenhouse gas emissions projections 

Figure 8 shows the resulting distribution of projected net CO2 emissions based on the 
FES. The median emissions trajectory is a roughly 50 percent decrease from today’s 
levels by 2100, followed by slowly decreasing levels that approach but do not reach 
net zero. The median of our CO2 emissions and concentrations paths is similar to 
SSP2, and the 98 percent confidence interval spans a range similar to that of SSP1 
through SSP3, at least through 2140.26 The magnitude of CO2 emissions associated 
with SSP5, however, is considerably higher than the upper end (99th percentile) of our 
distribution through the middle of the next century, consistent with the findings of 
Raftery and others (2017) and Liu and Raftery (2021). Beyond the middle of the next 
century, all the SSP emissions trajectories increasingly lie well within our distribution 
because their extension beyond 2100 is constructed to achieve zero emissions by 
2250. This is a weakness of the SSPs as a basis for SCC estimation, even if a subset of 
the SSPs spans a “reasonable range” during this century.  

For CH4 (Figure OA-9), the emissions distribution resulting from the FES is centered 
between SSP2 and SSP5 and spans a range similar to that of SSP1–SSP5, at least 
through 2100. After that point, as with CO2, the emissions range spanned by the SSPs 
narrows, whereas the FES CH4 emissions maintain a relatively wide distribution, similar 
to that in 2100. For N2O (Figure OA-10), the median of the FES emissions paths is 
between SSP2 and SSP5 through roughly 2200, and the full distribution from the FES 
spans a range wider than all the SSPs.  

 
25 See online appendix for results for additional years and gases.  

26 For comparison of emissions consistent with the SSPs beyond 2100, we adopt the commonly 
used extensions provided by the Reduced Complexity Model Intercomparison Project (Nicholls 
and others 2020). 
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In sum, no single SSP is centered similarly to the FES median emissions paths across 
all three major greenhouse gases. The full range of emissions represented by the SSPs 
is higher than for the FES for CO2 through 2140, by construction narrows to zero for 
CO2 after that point, and is narrower than the FES results for both CH4 and N2O for 
nearly the full period.  

Figure 8. Net Annual Emissions of CO2 from RFF-SPs and SSPs  

 
Notes. Lines represent median values, and dark and light shading represent the 5th to 95th 
(darker) and 1st to 99th (lighter) percentile ranges of the RFF-SPs.  
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3. From Emissions to Monetized 
Climate Damages 

3.1. Climate System Methods 

The second step in estimating the SCC is using a climate model to calculate changes 
in the climate system corresponding to changes in GHG emissions. Climate models 
vary in their representation of the underlying physics, in their spatial and temporal 
resolution, and in their computational requirements. Earth system models, such as 
those used for IPCC analyses, require supercomputers, but SCC calculations, typically 
generated from tens to hundreds of thousands of samples to characterize their 
uncertainty, preclude use of full-scale earth system models. SCC models are designed 
to emulate the response of full earth system models across a subset of relevant 
climate outputs, such as globally averaged surface temperature.  

Previous SCC calculations from the federal government used the integrated 
assessment models DICE, FUND, and PAGE, each of which employs its own reduced-
form climate model. These IAMs can deliver substantially different temperature 
increases for the same pulse of emissions (Rose and others 2014), leading to 
inconsistency when results are averaged to calculate the SCC. The NASEM report 
therefore recommended adopting a uniform climate model that met certain criteria, 
including that it generate a distribution of outputs across key climate metrics 
comparable to distributions of outputs from the full earth system models.  

The Finite Amplitude Impulse Response (FaIR, Millar and others 2017) model was 
highlighted in the NASEM report as a reduced-form model that met the criteria. To 
assess the changes in global mean surface temperatures resulting from the RFF-SPs, 
we ran the latest version, FaIR 2.0 (Leach and others 2021), using 10,000 draws from 
the emissions trajectories of CO2, CH4, and N2O while also sampling across FaIR’s 
native uncertainty in climate variables.27  

3.2. Resulting Temperature Change from RFF-SPs 

Figure 9 shows the median temperature trajectory associated with the RFF-SPs: 
increases reaching nearly 2.6 degrees C above the average global temperature for 
1850–1900 (the standard IPCC preindustrial benchmark) through 2100 and continued 
increases through 2300. The low end of the distribution indicates a roughly 20 
percent chance that the increase will remain below 2 degrees C through 2100. Our 
experts’ expectations for negative-emissions technologies lead to an increasing 
chance of drawing down atmospheric CO2 to yield temperatures at current levels and 
below by the late 2100s.  

 
27 Trajectories for non-CO2, CH4, and N2O were drawn from SSP2.  
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The RFF-SP median temperature trajectory tracks closely with SSP2 through 2150, 
thereafter continuing to increase slightly. SSP1 is largely consistent with the 5th 
percentile results throughout the period. Temperatures resulting from SSP3 emissions 
are consistent with the 95th percentile of the RFF-SPs through the middle of the next 
century, at which point temperatures stop increasing, by construction. The median 
temperature from SSP5 is roughly consistent with the 99th percentile of temperatures 
from the RFF-SPs through 2100, at which point it begins to level off to meet the 
imposed requirement for net-zero emissions by 2250.   

Figure 9. Global Mean Surface Temperature Change from RFF-SPs and 
SSPs  

 

Notes. Temperature change is relative to the standard 1850–1900 preindustrial average. Solid 
lines represent median values. Dark and light shading represent the 5th to 95th (darker) and 
1st to 99th (lighter) percentile ranges based on the RFF-SPs. For clarity of presentation, 
uncertainty in the climate system is reflected in the uncertainty range only for the RFF-SPs 
(and not the SSPs). 

In this comparison, uncertainty in the climate system itself, as represented by the 
uncertain distributions of climate parameters in the FaIR model, contributes 
significant uncertainty to the range of projected temperatures. The temperature 
distributions for the RFF-SPs include climate uncertainty from FaIR, but for clarity we 
omit climate system uncertainty in presenting projected temperatures from the SSPs. 
For a sense of scale, the 90th percentile range in temperatures from FaIR in 2300 for 
SSP5 is about –2.5 to +7 degrees C about the median.  
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3.3. Methods for Climate Damage Estimation 

The third step in estimating the SCC is translating changes in the climate system, 
such as temperature, into total economic damages over time. Damages can be 
calculated by estimating costs for various sectors (e.g., human health and mortality, 
agriculture, energy usage, coastal flooding) and summing them, or by taking an 
aggregate approach to estimate damages across the economy as a whole.  

Recent advances in methodologies for damage estimation are not reflected in the 
IAMs used by the federal government to calculate the SCC (NASEM 2017; Diaz and 
Moore 2017). The NASEM report made recommendations on improving sectoral 
damage estimation, finding sufficient peer-reviewed research to support updates on 
human health and mortality, agriculture, coastal inundation, and energy demand. Since 
the report was issued, the literature addressing specific sectors has grown.  

Nevertheless, few studies meet the full requirements (e.g., global coverage with 
regional detail, translation into economic damages) put forward by Diaz and Moore 
(2017b) or Raimi (2021) to serve as the basis for an updated damage function for the 
SCC. For example, two independent, comprehensive reviews (Bressler 2021; Raimi 
2021) found just three suitable studies (World Health Organization 2014; Gasparrini 
and others 2017; Carleton and others 2018). Our own further assessment of the 
damages literature found two candidates for agricultural damages (Moore and others 
2017; Calvin and others 2020), two for energy demand (Clarke and others 2018; 
Ashwin and others 2021), and one for coastal damages (Diaz 2016). 

Among the notable additions, the Climate Impact Lab (CIL) has developed a 
methodology to generate empirically derived, hyper-localized damage functions 
accounting for adaptation. The CIL in its research has been applying its methodology 
across a comprehensive set of sectors including health, agriculture, labor, energy, 
conflict, coastal, and migration (Carleton and others 2018). Upon completion, this full 
set of sectors is intended to support fully empirically based climate damage estimates.  

Much of the new sectoral damages research identified here is currently under peer-
review for publication, and efforts to implement the existing peer-reviewed studies will 
similarly be completed on a timeline that is compatible with the IWG process to update 
the SCC. As described below, for the purposes of this paper we have deployed the 
aggregate global climate damage function from the widely used DICE model 
(Nordhaus 2017b) to develop illustrative SCC estimates, coupled with the RFF-SPs, the 
FaIR climate model, and the stochastic discounting approach described in the next 
section. 
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4. Discounting Approaches for the 
Social Cost of Greenhouse Gases  

The long residence time of CO2 in the atmosphere implies that today’s emissions will 
have consequences for centuries. This time horizon makes the discount rate a major 
factor for the SCC. For example, the IWG’s 2021 interim SCC estimate is $51/ton with a 
3 percent discount rate (IWG SCC 2021) but would be about $121/ton at a 2 percent 
discount rate (RFF and NYSERDA 2021). That 1 percentage point difference alone 
would more than double the SCC and, by implication, greatly strengthen the economic 
rationale for substantial emissions reductions. 

The discount rates used in federal regulatory analysis are guided by Circular A-4, 
issued by the Office of Management and Budget (OMB) in 2003, which endorses rates 
of 3 percent and 7 percent reflecting, respectively, consumption and investment rates 
of return. OMB guidance also allows for additional sensitivity analysis in cases with 
intergenerational consequences, such as climate change. However, this guidance runs 
counter to current economic thought and evidence, for three reasons: (1) a constant 
deterministic discount rate becomes increasingly problematic for long-horizon 
problems (Weitzman 1998); (2) benchmarks for the consumption rate of interest 
(currently 3 percent) have declined substantially over the past two decades (CEA 
2017; Bauer and Rudebusch 2020, 2021); and (3) the rationale for 7 percent—to 
address possible policy effects on capital—is flawed in ways that are magnified for 
very long-term decisions (Li and Pizer 2021).  

The NASEM (2017) report and recent technical guidance on the SCC (IWG SCC 2021) 
acknowledged those concerns. A 2021 executive order28 directed OMB to reassess 
existing practice and consider “the interests of future generations” in revisions to 
Circular A-4. Alongside issues related to empirical discount rate uncertainty over long 
time horizons, the comparison of welfare across generations creates an ethical 
concern dating back at least as far as Ramsey (1928): do we discount the welfare of 
future generations simply because they are born later? 

One rationale for changing the government’s discounting approach  is the systemic 
decline in observed interest rates over at least the past two decades (Kiley 2020; Del 
Negro and others 2017; Johannsen and Mertens 2016; Laubach and Williams 2016; 
Caballero and others 2017; J. H. E. Christensen and Rudebusch 2019; CEA 2017; Rachel 
and Summers 2019; Bauer and Rudebusch 2020, 2021), which along with other 
research (Giglio and others 2015a, 2015b; Drupp and others 2018; Carleton and 
Greenstone 2021) has led to calls for using a lower discount rate; 2 percent is often 
suggested.  

 
28 https://www.whitehouse.gov/briefing-room/presidential-
actions/2021/01/20/modernizing-regulatory-review/, Sec. 2.  

https://www.whitehouse.gov/briefing-room/presidential-actions/2021/01/20/modernizing-regulatory-review/
https://www.whitehouse.gov/briefing-room/presidential-actions/2021/01/20/modernizing-regulatory-review/
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The second argument for a modified discounting approach stems from uncertainty in 
the discount rate, which tends to lead to declining future discount rates. Weitzman 
(1998) showed that if one is uncertain about the future trajectory of (risk-free) 
discount rates, and uncertain shocks to the discount rate are persistent, the certainty-
equivalent (risk-free) discount rate declines with the time horizon toward the lowest 
possible rate. This result stems from a straightforward application of Jensen’s 
inequality to a stochastic discount factor, leading to declining (risk-free) discount 
rates (Arrow and others 2014). At the same time, if the payoffs to investments in 
emissions reductions are correlated with future income, the effective risk-adjusted 
rate could be higher if the correlation is positive, or lower if it is negative (Gollier 
2014). This correlation is often termed the “climate beta,” but it is not clear ex ante 
whether the beta is positive, as in Nordhaus’s work and as argued by Dietz and others 
(2018), or negative, as in Lemoine (2021). 

The third issue is the need, in light of recent research (Li and Pizer 2021), to rethink 
the use of the higher discount rate (7 percent) reflecting the return to capital. Several 
decades ago, researchers suggested that when taxes create a wedge between 
consumption and investment interest rates, the alternative rates could be used to 
bound a benefit-cost analysis, as a shorthand version of the shadow price of capital 
(SPC) approach (Harberger 1972; Sandmo and Drèze 1971; Marglin 1963a, 1963b; Drèze 
1974; Sjaastad and Wisecarver 1977). However, the assumptions underlying the 
soundness of that approach are quite restrictive: costs are assumed to occur entirely 
in the first period; benefits are constant and occur either in a single period or in 
perpetuity; and benefits displace only consumption while costs displace either 
investment or consumption. Li and Pizer (2021) extend Bradford (1975), showing that 
the traditional approach of using 7 percent as a short-hand means for representing 
investment impacts of regulatory costs becomes increasingly very inaccurate the 
further one looks into the future.  

The NASEM (2017) report foreshadowed those results and recommended using a 
central consumption rate estimate along with sensitivity cases. Newell and others 
(2021) provide some guidance, examining central values of 2 and 3 percent and a 
range of values between 1.5 percent and 5 percent (though they do not recommend 
those particular values). Their discussion of discount rates is based primarily on 
questions of the most appropriate near-term consumption rate and does not address 
the SPC approach. Pizer (2021) details how the SPC approach could be implemented, 
suggesting sensitivity cases that employ the consumption discount rate, with costs 
and benefits alternately multiplied by the SPC to reflect the possibility that the 
entirety of each of these impact streams falls on investment: an SPC of 1.2 is proposed 
as a conservative value. Alternatively, simply multiplying regulatory costs by the SPC 
provides a sensitivity case that is consistent with an (extreme) scenario where all 
costs fall on investment. Conceptually, this is equivalent to what is being sought with 
the traditional approach of discounting benefits at the higher 7 percent rate, but has 
the advantage of both being analytically correct, and allows for a consistent 
discounting approach across different elements of benefit-cost analysis. The 
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consumption discount rate would be employed in all cases, and the SPC approach 
would apply generally, not just in the context of the SCC. 

Each of those discounting ideas (including stochastic growth discounting, discussed 
below) could be incorporated in a revision to Circular A-4, with relevance to both SCC 
estimation and other contexts. This would harmonize SCC discounting and broader US 
government guidance on benefit-cost analysis. 

4.1. Stochastic Growth Discounting with Economic 
Uncertainty 

One rationale for discounting, generally, is the concept of declining marginal utility of 
consumption. Intuitively, a $100 cost in a future in which society has grown 
dramatically wealthier should be valued less, from today’s perspective, than the same 
$100 cost in a relatively poor future with stagnant economic growth. This result is 
often embodied by the classic equation derived in Ramsey (1928) that relates the 
consumption discount rate (𝑟𝑟𝑡𝑡) to the rate of consumption growth (𝑔𝑔𝑡𝑡) over time. 

 𝑟𝑟𝑡𝑡 = 𝜌𝜌 + 𝜂𝜂𝑔𝑔𝑡𝑡 . (1) 

In equation (1), 𝜌𝜌 represents the rate of pure time preference (how much utility is 
discounted over time) and 𝜂𝜂 represents the curvature of an iso-elastic utility function.29 
We use time subscripts to refer to the compound average value of the indicated variable 
from today (time 0) to year t. If average consumption growth to year t, 𝑔𝑔𝑡𝑡 , is uncertain, 
as it is given the probabilistic socioeconomic scenarios discussed earlier, then the 
average discount rate to year t, 𝑟𝑟𝑡𝑡 , is also uncertain. This leads to a stochastic discount 
factor, which is used to discount stochastic marginal damages from an incremental ton 
of emissions (𝑀𝑀𝐷𝐷𝑡𝑡) to a present value (𝑃𝑃𝑃𝑃) equivalent: 

 𝑃𝑃𝑃𝑃(𝑀𝑀𝐷𝐷𝑡𝑡) = 𝐸𝐸[𝑒𝑒−𝑟𝑟𝑡𝑡𝑡𝑡𝑀𝑀𝐷𝐷𝑡𝑡],  (2) 

where 𝑟𝑟𝑡𝑡 is determined by equation (1) based on the uncertain growth rate 𝑔𝑔𝑡𝑡 . An 
alternative is to base the discount rate on some market proxy for the discount rate as 
in Bauer and Rudebusch (2021). Either way, the discount rate is considered uncertain, 
and the first term inside the expectation, 𝑒𝑒−𝑟𝑟𝑡𝑡𝑡𝑡 , represents a stochastic discount 
factor. In our treatment, the discount factor and rate are uncertain due to the 
stochastic growth rate. The importance of a stochastic discount factor is well 
established in the finance literature, and its importance is increasingly recognized in 
the literature at the nexus of macro and climate economics (Cai and Lontzek 2019; 
Barnett and others 2020, 2021). A stochastic discount rate leads to a declining 
certainty-equivalent risk-free rate (Weitzman 1998). To clearly see the derivation of 
this result, suppose for the moment that the discount rate is normally distributed, 
𝑟𝑟𝑡𝑡~𝑁𝑁(𝜇𝜇𝑡𝑡 ,𝜎𝜎2), and that it is uncorrelated with marginal damages, 
𝑐𝑐𝑜𝑜𝑜𝑜𝑜𝑜(𝑒𝑒−𝑟𝑟𝑡𝑡𝑡𝑡 ,𝑀𝑀𝐷𝐷𝑡𝑡) = 0, which is often referred to as a climate beta of zero. Then it is 

 
29 𝑢𝑢(𝑐𝑐) = 𝑐𝑐1−𝜂𝜂/(1 − 𝜂𝜂). 
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easy to show30 that the certainty-equivalent rate, which is denoted 𝑟𝑟𝑡𝑡𝑐𝑐𝑐𝑐 and represents 
the rate at which to discount expected marginal damages (as in 𝑒𝑒−𝑟𝑟𝑡𝑡𝑐𝑐𝑒𝑒𝑡𝑡𝐸𝐸[𝑀𝑀𝐷𝐷𝑡𝑡]), 
declines with the time horizon of the impacts being discounted, 𝑡𝑡:  

 𝑟𝑟𝑡𝑡𝑐𝑐𝑐𝑐 = 𝜇𝜇𝑡𝑡 −
1
2
𝑡𝑡𝜎𝜎2. 

Of course, this equation represents a special case. More generally, absent these two 
specific assumptions, the risk-free rate given by this equation does not account for 
the risk profile of the benefits of emissions reductions, namely through the climate 
beta, which is the potential correlation of the stochastic discount rate with marginal 
damages. If one wants to retain the certainty-equivalent approach to discounting, 
Gollier (2014) shows that a risk adjustment is necessary to account for any such 
correlation, but the form of this adjustment depends on the potentially complex nature 
of the joint uncertainties. We instead take a more general approach to account for 
these issue by directly using the more general equations (1) and (2) to implement 
stochastic discounting as part of the Monte Carlo estimation of the SCC, which 
explicitly accounts for any such correlation. Accounting for this correlation is 
important both in theory (Barnett, Brock, and Hansen 2021) and also, as our results 
show, matters greatly in practice when the climate beta is not zero.  Indeed, the 
climate beta in most IAMs is implicitly taken to be close to one.  

For example, in the DICE model, damages are assumed to be a percentage of GDP 
(where that percentage depends on global temperature), and the discount rate is a 
linear function of economic growth (as in a Ramsey-like framework). This implies a beta 
of essentially one, since higher income (and, in turn, greater discounting) is perfectly 
correlated with higher undiscounted damages. That is, a positive beta implies that 
undiscounted damages are largest when economic growth is largest, and smallest when 
growth is smallest. Mirroring this, with 𝜂𝜂 > 0, the discount factor is smallest when 
growth is largest and largest when growth is smallest. Using a stochastic discount factor 
as in equation (2) will therefore discount damages most in states of the world where 
they accrue to rich future generations and correspondingly discount them least in states 
where the future is poor. Amid uncertainty about socioeconomic trajectories, ignoring 
this stochastic discount factor (and its correlation with climate impacts) could severely 
bias estimates of the SCC. The magnitude of this bias depends on the climate beta and 
on the nature of the uncertainty in socioeconomic and emissions trajectories; Newell and 
others (2021) and our illustrative results (below) show that this bias could change the 
SCC by a factor of two or more. 

 
30 A version of this result is shown in Newell and Pizer (2003), but for clarity of exposition we 
explain it briefly here. Starting with the definition that the certainty-equivalent rate yields the 
same present value of equation (2), we have 𝑒𝑒−𝑟𝑟𝑡𝑡𝑐𝑐𝑐𝑐𝑡𝑡𝐸𝐸[𝑀𝑀𝐷𝐷𝑡𝑡] = 𝐸𝐸[𝑒𝑒−𝑟𝑟𝑡𝑡𝑡𝑡𝑀𝑀𝐷𝐷𝑡𝑡] =
𝐸𝐸[𝑒𝑒−𝑟𝑟𝑡𝑡𝑡𝑡]𝐸𝐸[𝑀𝑀𝐷𝐷𝑡𝑡], where the last equality follows by the assumption of zero correlation. Solving 

for 𝑟𝑟𝑡𝑡𝑐𝑐𝑐𝑐 yields 𝑟𝑟𝑡𝑡𝑐𝑐𝑐𝑐 = 1
−𝑡𝑡

log(𝐸𝐸[𝑒𝑒−𝑟𝑟𝑡𝑡𝑡𝑡]). A well-known property of the exponential function, 𝑒𝑒𝑥𝑥 , 

applied to a normally distributed variable, 𝑥𝑥~𝑁𝑁(𝜇𝜇,𝜎𝜎2), is that 𝐸𝐸[𝑒𝑒𝑎𝑎𝑎𝑎] = 𝑒𝑒𝑎𝑎𝑎𝑎+
1
2𝑎𝑎

2𝜎𝜎2 . Applying 
this formula with 𝑥𝑥 = 𝑟𝑟𝑡𝑡 and 𝑎𝑎 = −𝑡𝑡 yields the result. 
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Despite the importance of stochastic discounting, federal government benefit-cost 
analysis has historically not treated the discount rate as explicitly uncertain, nor has the 
discount rate been connected to growth as in the Ramsey framework. Instead, the 
consumption discount rate used in past government estimates of the SCC has been a 
constant rate of 3 percent.31 This is equivalent to implicitly choosing the discounting 
parameters 𝜌𝜌 = 3% and 𝜂𝜂 = 0, corresponding to a linear utility function. Yet this 
approach effectively eliminates any consideration of declining discount rates, as in 
Weitzman (1998), and risk premia, as in Gollier (2014). More intuitively, it also treats a $100 
cost to a member of a wildly rich future generation the same as a $100 cost to a poor one, 
which is incorrect from a welfare perspective. Correspondingly, such parameter values 
receive little support from economists working in this field (Drupp and others 2018). 

Although the case for using stochastic discounting as in equation (1) is strong, the 
choice of the parameters in that equation is not a simple matter, and their values can 
lead to very different effective discount rates (e.g., Stern 2007; Nordhaus 2017a) and 
its connection to economic growth and climate damages. One recent paper surveyed 
economists about their preferred values of 𝜌𝜌 and 𝜂𝜂 (Drupp and others 2018). This is 
valuable, but the federal government has a long tradition of relying on descriptive, 
empirical approaches to informing discounting guidance, as in other aspects of 
benefit-cost analysis. In particular, Circular A-4 has referred to observed interest rates 
in selecting 3 and 7 percent. A choice of 𝜌𝜌 and 𝜂𝜂 might therefore sensibly start with 
the constraint that the associated near-term rate match the consumption rate used 
elsewhere in benefit-cost analysis, as recommended in NASEM (2017). However, a 
continuum of (𝜌𝜌, 𝜂𝜂) combinations can match any particular near-term rate, so another 
constraint is needed. 

Newell and others (2021) provide such an approach. They calibrate the values of 
(𝜌𝜌, 𝜂𝜂) such that, when applied to the MSW growth distribution, the implied discount 
rate term structure starts at a specified rate in the near term (say, 3 or 2 percent) 
before declining with the time horizon in a manner consistent with evidence from the 
empirical literature on future interest rate term structures (Bauer and Rudebusch 
2020, 2021).32 Figure 10 illustrates the calibrated combinations of (𝜌𝜌, 𝜂𝜂) yielding 
implied (fitted) term structures when applied to the RFF-SPs (dashed lines). These 
parameters were calibrated to be as consistent as possible with those implied by the 
Bauer and Rudebusch (2021) model initialized to given targeted near-term rates of 1.5, 
2, or 3 percent (solid lines). For example, using the estimated model from Bauer and 

 
31 Although 3 percent was the central rate, the IWG also previously used constant rates of 2.5 
and 5 percent as sensitivity cases. Because those values were estimated to roughly 
approximate the effects of explicitly accounting for uncertainty in risk-free and risk-adjusted 
rates (Newell and others 2021), those motivations are no longer appropriate when stochastic 
discounting can be captured explicitly in the IAMs, as we propose. 

32 The parameters shown here differ slightly from those in Newell and others (2021) because 
we calibrate them to the full RFF-SPs, corresponding to the MSW distributions weighted based 
on the EGS. The methodology developed in Newell and others (2021) was demonstrated on the 
raw MSW distribution, before the weights were applied. 



Resources for the Future   33 

Rudebusch (2021) and starting with a near-term rate of 2 percent, we construct a 
target term structure (solid black curve). We then find the combination, (𝜌𝜌, 𝜂𝜂) = (0.2%, 
1.24), that best fits the target term structure. 

Figure 10. Calibrated Certainty-Equivalent Risk-Free Term Structures 
and Target Term Structure from Bauer and Rudebusch (2021) 

 

The Newell and others (2021) calibration procedure can be implemented for any 
specified near-term rate. Here we present four cases: 1.5, 2, and 3, 5 percent (see 
section 3.2 of that paper for the rationale behind each rate, and its appendix for 
additional alternative near-term rates): 

𝑟𝑟𝑡𝑡1.5% = 0% + 1.02𝑔𝑔𝑡𝑡 

𝑟𝑟𝑡𝑡2% = 0.2% + 1.24𝑔𝑔𝑡𝑡 

𝑟𝑟𝑡𝑡3% = 0.8% + 1.57𝑔𝑔𝑡𝑡 

These 𝜌𝜌 and 𝜂𝜂 parameters lie in the middle of the range often used in the literature, 
particularly for target near-term rates of 3 and 2 percent. Implementing them 
simultaneously with the socioeconomic trajectories discussed in section II produces a 
declining term structure of certainty-equivalent, risk-free rates consistent with the 
empirical literature (Bauer and Rudebusch 2020, 2021). Importantly, implementing the 
stochastic discount rate alongside stochastic damages via equation (2) explicitly 
captures risk aversion and the correlation between the discount rate and climate 
damages, meaning no ex post risk adjustment to the discount rate is necessary. 

This calibrated stochastic discounting rule can now be used with the undiscounted 
damage estimates (discussed above) to estimate the SCC in an internally consistent 
manner. 
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5. Illustrative Calculations of the Social 
Cost of Carbon 

We present illustrative estimates of the SCC based on our socioeconomic projections 
(the RFF-SPs), the FaIR climate model, and our discounting methodology—all of which 
speak directly to the NASEM (2017) recommendations—and apply them using the 
DICE damage function (Nordhaus 2017a). This approach is directly responsive to three 
of the four NASEM recommendations. The fourth recommendation is to update the 
damage functions with the best available science on sectoral damages, rather than 
using an aggregate damage function such as that in DICE. We will include more recent 
sector-specific damage estimates, reflecting the best available science, in future work, 
but for the moment we use the DICE damage function to produce illustrative SCC 
estimates. Although the values we present here should be considered illustrative, they 
highlight the importance of socioeconomic uncertainty and stochastic growth 
discounting, and the interaction of these two important drivers of the SCC.  

We also compare our SCC estimates with those from SSPs 1, 2, 3, and 5. Because of the 
lack of socioeconomic uncertainty in each SSP—and the lack of relative probabilities 
across them—we cannot meaningfully calibrate 𝜌𝜌 and 𝜂𝜂 parameters for those 
scenarios to deliver comparable near-term rates. We therefore apply constant 
discount rates of 2 and 3 percent to the SSPs.33  

The results are shown in Figure 11, leading to our first major conclusion: a quantitative 
probabilistic accounting of socioeconomic uncertainty matters greatly for the SCC. 
The top panel of Figure 11 shows the distributions of our illustrative SCC values 
calibrated to 2 and 3 percent discount rates in the near term (means are also in the 
left columns of Table 1). The bottom two panels show the SCC distributions under 
each SSP at 3 percent (left panel) and 2 percent (right panel) discount rates. The top 
panel reflects socioeconomic uncertainty implicitly, leading to central SCC estimates 
of $61 and $168/ton CO2 under 3 and 2 percent near-term stochastic discounting, 
respectively. The distribution underlying those means reflects both socioeconomic 
and climate uncertainty. We disaggregate that distribution below, but the bottom 
panel shows the importance of socioeconomic uncertainty explicitly by comparing 
across the SSPs. SSP5 (high income growth) produces mean SCC values three to six 
times higher than the other SSPs. Hence, if one were to use a weighted combination of 
the SSPs, the resulting average SCC would reflect the relative weight given to each 
SSP, especially SSP5—a choice with no clear empirical basis. This result highlights the 

 
33 As an additional comparison, Figure OA-13 of the online appendix presents an analogous 
figure to Figure 11 but applying our RFF-SP-calibrated discounting parameters (𝜌𝜌,𝜂𝜂) to the 
SSPs. This is purely for presentational purposes, and we caution that our discounting 
parameters were not calibrated to the SSPs. Because the SSPs have no uncertainty within 
them, it is not possible to calibrate discounting parameters to them as we can do to the 
socioeconomic distributions (Newell and others 2021). 
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importance of incorporating a quantitative accounting of economic uncertainty, as in 
the RFF-SPs. 

Next, Figure 12 demonstrates the effect of stochastic versus constant discounting on 
the mean SCC, leading to our second major conclusion: stochastic growth discounting 
is crucially important to SCC estimation in the context of socioeconomic uncertainty. 
The first two columns of the first row show mean SCCs under the RFF-SPs for 
stochastic growth discounting approaches consistent with 3 and 2 percent near-term 
rates (both in 2020 dollars), producing mean SCC estimates of $61 and $168/ton CO2, 
respectively. These estimates, reflecting the updated socioeconomic, emission, 
climate, and discounting modules (three of the four NAS recommendations), are 33% 
and 50% higher than the corresponding DICE-only SCC estimates from the 2016 IWG 
($46 and $112/ton CO2 in 2020$, see RFF and NYSERDA 2020). 

We also present the results from the RFF-SPs with constant discounting to illustrate 
the importance of stochastic discounting, but as previously discussed, constant 
discounting is inappropriate when uncertainty in economic growth is considered, as 
here. When constant discounting is coupled with uncertain growth, the mean SCC is 
higher than is appropriate by a factor of three to nine, $194 and $1,557/ton CO2 for 3 
and 2 percent discount rates, respectively, because it ignores the correlation between 
damages and growth (the climate beta) and hence the discount rate. In other words, 
ignoring the risk profile of the SCC threatens to overstate the mean SCC in this 
example by a factor of three or more ($194 versus $61/ton with 3 percent discounting, 
and $1,557 versus $168/ton with 2 percent discounting). 

More specifically, the high expected values reflect a right-skewed distribution of 
damages. It is well known that skewed distributions and tail events can influence the 
expected value of the benefits of mitigating climate change (e.g., Gollier 2008; 
Weitzman 2011, 2014). Under constant discounting, such tail events are very rich 
futures with associated large amounts of consumption at risk from climate change. 
Yet constant discounting treats each dollar of cost to those wealthy future 
generations the same as a dollar of cost to a relatively poor future. Hence, with 
constant discounting, the effects on the future rich inappropriately dominate the 
expected value of the SCC, leading to a strong upward bias in the SCC estimate. 
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Figure 11. Illustrative Probability Distributions of Social Cost of Carbon 
(2020$/ton CO2) under Alternative Socioeconomic Inputs and 
Discounting Approaches, with FaIR Climate and DICE Damage Modules 

 

This problem is recognized in the finance literature as the result of ignoring the risk 
properties of an investment—namely, the correlation of an uncertain payoff with the 
stochastic discount rate. Stochastic growth discounting addresses this by discounting 
the high-growth, high-damage states at a higher rate. By discounting high-growth 
states more, stochastic discounting stabilizes the mean and variance of the SCC, as 
documented in Newell and others (2021). 

The second row of Table 1 highlights this greater stability under stochastic 
discounting by showing a sensitivity case in which we drop the top and bottom 1 
percent of the global average income trajectories.34 Under constant discounting, the 
mean SCC is quite sensitive to dropping these 1 percent extremes, falling from $194 to 
$96/ton at a 3 percent discount rate and from $1,557 to $450/ton at a 2 percent 

 
34 Specifically, we drop the draws with global average GDP per capita in 2300 in the top 1 
percent and bottom 1 percent of draws, before taking the average SCC. 
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discount rate. By contrast, the mean SCC is virtually unchanged under stochastic 
discounting, changing by less than 1.5 percent for each of the stochastic rates that are 
consistent with 2 and 3 percent near-term rates. More generally, the SCCs with 
stochastic discounting change only negligibly even when much larger percentiles are 
dropped from the tails. For example, with stochastic discounting, the mean SCCs also 
change by less than 1.5 percent even when the top and bottom 10 percent of draws of 
global average income trajectories are dropped, whereas under constant discounting, 
the mean SCCs fluctuate by factors of 3 to 11. This result highlights the stabilizing 
effect of properly incorporating stochastic growth discounting, as anticipated in the 
NASEM (2017) report. 

This stability with stochastic discounting is apparent in Figure 12, which plots the 
individual Monte Carlo SCC draws against each draw’s long-run (2020–2300) global 
GDP per capita growth rate, under the 3 percent near-term stochastic discounting 
parameters (𝜌𝜌 = 0.8%, 𝜂𝜂 = 1.57).35 Roughly speaking, the vertical spread of SCC 
values in the figure largely reflects climate uncertainty for each given level of growth 
in GDP per capita, whereas the horizontal spread of SCC values reflects uncertainty in 
long-run income growth. Because the DICE damage function is proportional to GDP, 
undiscounted marginal damages scale roughly one-for-one with income growth, but 
with 𝜂𝜂 > 1 they are discounted somewhat more than one-for-one with stochastic 
discounting, leading to a modest negative relationship between the SCC and GDP per 
capita growth. In other words, the SCC is higher when income growth is lower, and 
vice versa. 

Table 1. Illustrative SCC Estimates Using RFF-SPs, with FaIR Climate and 
DICE Damage Modules (2020$/ton CO2) 

 
Stochastic growth  

discounting 
Constant discounting 

 
3% near-term  
𝜌𝜌 = 0.8% 
𝜂𝜂 = 1.57 

2% near-term  
𝜌𝜌 = 0.2% 
𝜂𝜂 = 1.24 

3% 
Constant 

2% 
Constant 

Mean SCC, full 
distribution 

$61.4 $168.4 $194 $1,557 

Mean SCC, drop top 
and bottom 1% 
global income draws 

$60.6 $167.9 $96 $450 

 

 

 
35 The shape of the curve is similar under the 2 percent near-term parameters (𝜌𝜌 = 0.2%, 𝜂𝜂 =
1.24) but shifted up to a higher level. 
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Figure 12. Illustrative SCC Estimates versus Average GDP per Capita 
Growth Rate (2020 to 2300), under 3% Near-Term Stochastic Growth 
Discounting (𝝆𝝆 = 𝟎𝟎.𝟖𝟖%,𝜼𝜼 = 𝟏𝟏.𝟓𝟓𝟓𝟓), Using RFF-SPs and Stochastic 
Discounting, with FaIR Climate and DICE Damage Modules 
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6. Conclusion 

Since the SCC is a vitally important metric guiding climate policy, its calculation must 
be supported by the best available science, including an explicit incorporation of 
uncertainty. Our results demonstrate that socioeconomic uncertainty and stochastic 
discounting are important drivers of the SCC, and our work presents an opportunity to 
incorporate those uncertainties into ongoing updates. 

Although the SCC estimates presented here are meant to be illustrative and use a 
highly simplified estimate of climate damages, they nonetheless highlight two major 
conclusions. First, socioeconomics matter significantly to the SCC, highlighting the 
importance of a quantitative accounting of socioeconomic uncertainty. Whereas 
scenario-based socioeconomic projections like the SSPs have no formal probabilities 
attached to them, our approach to quantifying uncertainties in future trajectories of 
population, GDP, and emissions helps account for these uncertainties in the SCC. 
Second, when incorporating socioeconomic uncertainty, stochastic growth 
discounting is crucial to account for the correlation of climate damages and the 
discount rate, whereas ignoring it leads to a large upward bias in the SCC estimate. 
Our work represents an advance in uncertain socioeconomic trajectories and 
discounting approaches based on empirically based explicitly probabilistic methods. 
Nevertheless, potentially important components have not yet been fully incorporated 
into officially adopted SCC values. Recent work has begun to account for how the risk 
of tipping points influences the SCC (Dietz and others 2021). Other important factors 
include climate-related migration, conflict, and loss of at-risk species. Another 
conceptual issue is equity weighting, wherein effects on poorer regions of the world 
could be weighted more than equivalently sized dollar-value to rich regions (Errickson 
and others 2021). Future research in these areas could be incorporated into official 
SCC values over time.  

More generally, the SCC should be continually updated as the scientific frontier 
advances, as recommended by NASEM (2017). Our work speaks directly to those 
NASEM recommendations and presents an opportunity for the US government to 
improve on simple, deterministic approaches to socioeconomic projections and 
discounting methodologies to better reflect the interrelated uncertainties about future 
population, income, emissions, climate, and discount rates. 
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