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Abstract

’s theorem characterizes the totally additive measures on the closed sub-
a separable real or complex Hilbert space of dimension greater than two.
r presents an elementary proof of Gleason’s theorem whieh is aecessﬂole to
luates having completed a first course in real analysis.

Introduction

a separable Hilbert space over the real or complex field. A (normalized)
a function assigning to H the value 1, assigning to each closed subspace
ber in the unit interval, and satisfying the following additivity property: '
subspace is written as an orthogonal sum of a finite or countable number
s, then the value of the state on the given subspace is equal to the sum of
f the state on the summands. States should be thought of as ‘quantum
probability measures’; they play an essential role in the quantum
formalism. For an exposition of these ideas we refer to Mackey[5].

of normalized states are obtained by considering positive self-adjoint
perators with trace 1 on H. Such operators correspond to preparation pro-
uantum mechanics. If 4 is such an operator, then it is easy to see that we
a state by associating to each one dimensional subspace generated by a
xe H the inner product {4z, z) and extending to subspaces of dimension
one by countable additivity. States of this type are called regular states.
urse on the mathematical foundations of quantum mechanics (see [5])
posed the following problem: determine the set of states on an arbitrary
plex Hilbert space. This problem was solved by Gleason in [2], and the
ult, known as Gleason’s theorem, states that every state on areal or complex
e of dimension greater than two is regular. Gleason’s proof uses the rep-
eory of 0(3), and relies on an intricate continuity argument. Because of
h Gleason’s theorem plays in the foundations of quantum mechanies,
veen several attempts to simplify its proof. Using elementary methods,
special case of the theorem, namely, that there exist no states on the
ces of a Hilbert space of dimension greater than two taking only the values
> [1]. Kochen and Specker proved a similar result for states restricted to a
er of closed subspaces [4]. Piron produced an elementary proof of Gleason’s
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traightforward to check that B can be uniquely extended to a symmetric con-
us bilinear form on H, and that p(%) = B(z,z) (|| = 1).]

shall call a closed real-linear subspace of H completely real if the inner product on
eal linear subspace takes only real values.
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theorem for the special case that the state is extreme (i.e. assigns the value 1 to s
one dimensional subspace)[6]. :

In this article we give an elementary proof of Gleason’s theorem in full genera
Although this proof is longer than Gleason’s proof, we believe that it contributes t
intuitive understanding of the underlying reasons for the validity of the theore
structure of the argument is as follows. In § 1 we show that it is enough to handle
case H = R3. This was part of Gleason’s original argument, and is well understood
essential difficulty of the proof is the treatment of the case H = R3. For this pur;
it is convenient to study a certain class of real-valued functions on the unit sphe
R3, called frame functions. §§ 2 and 3 are devoted to an exposition of the properti
frame functions and the statement of the theorem in the case of R? in terms of fr
functions. § 3 also contains two ‘warmup theorems’ whose contents were essent
known to 19th century mathematicians. Coupled with a basic lemma in § 4 (essent
due to Gleason and Piron), they yield a new proof for the extreme case, which is ¢
in §5. In §6 we show that a weak form of continuity in the general case follows
the result of § 5, and in § 7 we treat the general case. The proofs in §§ 2-7 are ace
to undergraduates who have completed a first course in real analysis.

MMA. If p is a state on a two-dimensional complex Hilbert space H, and if p is regular
ry completely real subspace, then p is regular.

of. We first show that there is a one-dimensional subspace # such that p(Z) is
mal. Put
M = sup p(z).
ceH

e a sequence x, € H such that lim,_, . p(Z,) = M. By passing to a subsequence,
e lim,_,,x, = x. Clearly there exist 6, such that {e¥rx,,z) is real and non-
ive, and passing again to a subsequence, we may assume that lim,,_,. 6, = 6. By
uity of the scalar product, the limit (e%z,x) = ¢%||z|? is also real, and hence
1. Thus lim,,_,, ez, = x, and for each n the vectors « and ¢'rz,, are in the same
etely real subspace. By uniform equicontinuity of regular states it follows that

M.
w for any ye H there exists 0 such that (x, %) is real; hence p(e®y) (= p(7)) is
to

M (Cz, e?yy)P+ (1= M) (1 - (o, €))?) = M <, |2+ (1~ M) (1= [ <o ) 2),

is therefore regular. ]

1. Reduction to H = R®

Let H be a real or complex separable Hilbert space, and let L be the set of cl
subspaces of H. If A€ L, and Be L, then we write 4 | B if A and B are ortho

For A,eL,iel, V,.; A, denotes the smallest closed subspace containing 4, for a

If z is a vector in H, then Z denotes the one dimensional subspace generated by
EOREM. If every state on R is regular, then every state on a real or complex separable

Definition. A function p: L - [0, 1]is called a state if for all sequences {4,}7_;, / . ;
t space H of dimension greater than two is reqular.

i=1...; with 4, 1 4;, for ¢ # j:

a0 @ of. Every state on H necessarily induces a continuous symmetric bilinear form
r (Y Ai) = 1_4310(1‘11)- very completely real three-dimensional subspace, and every completely real two-
sional subspace can be embedded in a completely real three-dimensional
ace. It follows that the restriction of a state on H to any two-dimensional com-
y real subspace is regular, and from the above lemmata it follows that every state

is regular. |

Definition. p is called regular if there exists a self-adjoint trace class operator .
H such that for all unit vectors xe H

p(E) = {dz, x).
LemMmA. The following statements are equivalent:

(@) p is regular.
(ii) T'here is a symmetric continuous bilinear form B on H such that

2. Frame functions

is section, we define frame functions, collect some of their properties, and give
les. Denote by S the unit sphere of a fixed three-dimensional real Hilbert space.
and s’ are elements (i.e. vectors) of 8, the angle between s and s’ is designated by
$). If0(s,s") =7 /2, we write s L &'

P() = B(z, ).
Moreover, both A and B are uniquely determined in this way by p.
Proof. See Halmos[3] (§§ 2 and 3). |

Lemma. If the restriction of p to every two-dimensional subspace of H is regular,
p is regular (the restriction need not be normalized).

nition. A frame is an ordered triple (p, ¢, r) of elements of S such thatp 1. ¢,p L7
qlr.

ven a frame (p,q,7), each point in S (and in the vector space) can be uniquely
, ressed as xp +yq +2r, with 2, y,2eR. We call (2, y,2) the frame coordinates of the
Proof. For each two-dimensional subspace E of H we can find a symmetric t with respect to the given frame.
tinuous bilinear form By such that By(z,z) = p(@) (xe K, || = 1). For || = [y|

choose a two-dimensional subspace E(x,y) containing x and y and define

B(CL‘, ?/) = BE(x: y)

¢finition. A frame function is a function f: § - R such that the sum

f@)+f@Q+f(r)
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has the same value for each frame (p, ¢, 7). This value, called the weight of f, will

denoted by w(f). . -
The following obvious properties of frame functions will be useful in the sequel,

(P,) The set of frame functions is a vector space, and
w(af) = aw(f), :
w(f+g) = w(f)+w(g) (xeR, f, g frame functions).

(£s) Iffv'is a frame function, f(—s) = f(s) (sef). = .
(P,) If fis a frame function, and if s,t,5't' €8 all lie on the same great circle and s
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ction, sois ¢(f), and ¢ can be chosen to have arbitrary values on a basis of R over Q,
course Cauchy’s classical theorem on functional equations tells us that if Y is
unded on an interval, then y(x) = cx for some constant ¢. This example shows that
restriction to bounded frame functions in the following theorem is essential.

3. Statement of Gleason’s theorem [2]
We now state the result to be proved.

EASON’S THEOREM. Let f be o bounded frame function. Define

s’ 1Lt then M = supf(s)
J6)+1®) =)+ s = it o)
To illustrate the use of P; we prove: o = w(f)—M—m.

(P,) Let f be a frame function with supf(s) = M < oo and inff(s) =m > —o0
£ > 0andlet seS with f(s) > M —§&. Then there iste S with s Lt and f(t) < m+E.

Proof. Given s with f(s) > M —§, choose & > Osuch that f(s) > M — £+0,and ¢ &
that f(t') < m+d. Then s and ¢’ determine a great circle on S, and if ¢, s" are chosetq
this great circle with s 1.¢, s" 1/, Py yields:

fO =f&)+fE)=f(s) < M+m+d—(M-£+9) .
=m+§.|

en there exists a frame (p, q,r) such that if the frame coordinates with respect to (p,q,7)
se S are (2,y,2),

‘ F(8) = Ma?+ ay? + mz2

all se8. ,

n particular, the proposition of § 2 provides all bounded frame functions. We remark
t the above representation implies that m < o < M;ifm <a < M , then the frame
¢,7) is unique up to change of sign; if m < @ < M then p is unique up to change of
n, and similarly form < a < M.

n order to clarify the idea behind our proof of the above result, we now state and
ve a theorem which might be called an ‘abelianized’ version of Gleason’s theorem.
content was essentially known to 19th century mathematicians.

ARMUP’ THEOREM 1. Let (0,11 >R be a bounded function such that for all
,0€[0,1] with a+b+c =1, f(a)+f(b)+f(c) has the same value ® = w(f). Then
) = (@—3f(0))a+f(0) for all ac 0, 1].

Proof. By subtracting a constant, we may assume f(0) = 0. Now take ¢ =0
- 1 —a to obtain

Next we give examples of frame functions. Obviously, constants are frame functio
If we fix a vector pye 8, then for any frame (p,¢,r) the frame coordénates of p,
respect to (p, ¢,r) are given by:

(COS ‘9(20071’): €os 0(p07 Q): cos B(pm ’I’)),

and the sum of the squares of these three numbers is one since p, € 8. Hence

[f(s) = cos*6(py, 5)

is a frame function, with w(f) = 1. Next, fix a frame (p,, ¢,,7,) and a triple'(oc, By
real numbers. Let (2, ¥, %) denote the frame coordinates of a point s€ 8 with re
t0 (Pg, 49 o). By the above and by B,

f(s) = aaf+ By +v2§

is a frame function, with w(f) = a+ B +7. Now recall that if @ is any quadratic fo
on our Hilbert space, then there exists a frame (py, g,, 7o) and a triple («, 8,7) of

3

| fl@) = w-f(1-a),

| then set ¢ = 1 — (a+b) to obtain

fl@)+f®) = B~f(1~(a+D)) = fa+b)
all a,b,a+be[0, 1]. This implies immediately that

numbers such that the restriction of @ to S is given by (). Hence we have proved: fla) = @a
following result: all rational a, and for general a [0, 1] and » > 1 with na < 1 we have
ProPOSITION. Let A be a linear operator from the given three dimensional Hilbert fn0) = nf @)

to dtself, and let
Q(s) =<s,4s)
be the quadratic form associated with A. Then the restriction of Q to S is a frame funct
whose weight is the trace of A. o /
Note that pg, gy, 7 are eigenvectors of §(4 + A7) with respective eigenvalues , f
Our last example shows that frame functions can be wildly discontinuous. !
¥: R - Rbe any map such that ¢/ (z +y) = ¥ (2) + ¢ (y) for allz, y € R. Then if fis a fral

Iice as a tends to 0, f(a) must tend to 0 because f is bounded, and thus
lim f(a-+5) = £
16€[0,1). Thus f(a) = @a for all aef0,1].]

¢ above formulation was chosen in order to make the analogy with Gleason’s
em clear. Actually, we shall use the following modified version in our proof.
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‘Warmve’ THEOREM IL. Let C be a finite or countable subset of (0,1). Let f [0,1\C —
be a function such that

(1) f(0) = 0.

(2) If a, [0, 1]\C and a < b, then f(a) < f(b).

(8) Ifa,b,ce[0,1\C and a+b+c = 1, then f(a)+f(b) +f(c) =
Then f(a) = a for all a€[0, 1]\0.

Proof. The set
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e N\{p} and s’ D,. Choose t,t' € D, with s 1 ¢, and s’ 1 ¢'. By property P,,
FE&)+f) = F(")+f(E").

d using the fact that {e £ we obtain

16)=£) = fO)~fO =fO)-m>0.] -
r on we shall need an )
— {re: ¢ C, r rational}U {r(1—c): ce C, r rational} PROXIMATE VERSION OF THE BASIC LEMMA. Let f be a frame function and £ > 0

is at most countable, so that there exists a point a,e (0, 1) with a0¢C~f. Now if 7 i
rational number such that ra,e[0, 1], then neither ra, nor 1 —ra, belong to 0, sir
ay¢ C. As in the proof above, we conclude that

flrag) +f(r'ag) = f((r+7) ap)

for rational 7, ' with ray, r'ag, (r+7')a,€[0, 1], and hence
flrag) = 1f(a,)

for rational » with ra, [0, 1]. It now follows from '(2) that f(a) = a for all a€[0, 1]}

f(e) has the same value for all ec K.
if se N\{p} and if s' € D, f(s) > f(s') —&.
oof. As above, property P, yields

fle) <m+E (ech),

with exactly the same choices of ¢ and #:

&) =f(s) =f)-ft) > f(¥)-m—E> - £.]
4. The basic lemma
In this paragraph, we prove a basic lemma to be used in the following ‘?wo sectii' 5. Simple frame functions
We fix a vector p e 8, to be thought of as the north pole, and use the following notaﬁ this paragraph, we show that Gleason’s theorem is true under +wo additional
theses on frame functions. We begin with a geometric lemma due to Piron[6].
METRIC LEMMA. Let s,te N\(p) such that I(s) > l(t) Then there exist n > 1 and
1 SnEN\(p) such that sy = s, s, = t, and for each 1 < i < n:

N = {seS: 0(p,s) < m/2} = ‘northern hemisphere’,
E = {se8:s 1 p} = ‘equator’.
For each se N, set

I(s) = cos20(p, s) = ‘latitude’ of s,

and definefor 0l < 1: s;eD,.

Sica”
= {seN:I(s) = I} = ‘lth parallel’.

Thus L; = {p} and L, = E.
For se N\{p}, there is a unique vector s* € N such that s 1 s* and I(s) + I(st) =
the ‘coldest’ vector orthogonal to s). The great half circle D, defined by
D,={teN:t 15} (seN\{p}) ~
will be called the descent through s; it is the great circle through s which has s a
northernmost point. (For ec B, D, = E). We can now state the basic lemma.:
Basic LEMMA. Let f be a frame function such that

(1) f(p) = supscsf(s), and
(2) f(e) has the same value value for all ec K.

Then if se N\{p} and if s'€ D,

oof. To facilitate the calculations, we transfer this problem to the plane tangent
at p by projecting each point of N onto this plane from the origin (center of the
re §). Points of the same latitude on S are projected onto circles centred at p, and
escent through s becomes the straight line through s tangent to the latitude circle
(see Fig. 1). In the simplest case, s and £ lie on a ray from the origin. In this case

f(s) = f(5).
Proof. Set f(p) = M. Property P, implies that

fle)y=m= ingf(s) (ec k).

Fig. 1.

ay choose n = 2 and pick s, asin Fig. 2. Now fix s, = s = (2, 0) (in R? coordinates)
n > 1. Choose s, ... s, successively such that s;e D, ; and such that the angle
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nce the set C:= {I: f(I) > f (1)} is at most countable, as

p2 (f B -f) <
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fO) =F0) =£0.

S50 178
Fig. 2. eorem II, and we conclude that
fy=1 for 1e[0,1\C.
his implies that ¢ = &, so that for each se N,
fls) = Fs) = Us) = cos?6(s, p).

n=8) theorem now follows from property F.

6. Extremal values

this section we use the results of the preceding section to show that bounded
e functions attain their extremal values. Let f be a bounded frame function,

M= supf(s),

hoose a sequence p, €8, n > 1, such that lim,,_,..f (pn) = M. Since S is compact,
ay assume by passing to a subsequence that p, converges, and we set

5y = (=, 0) so=(x,0)
Fig. 3.

between s; and s, in the plane is 7/n (see Fig. 3). Then s, has coordinates (—y, 0)
we wish to show that y —x — 0 as n — o0. Let dj, be the distance of s; from the ori
Then dy = z and d,, = y. For each ¢ we have

dy11/d; = 1/cos (m/n),

p =limp,,.

N0

me also p, € N for all #. OQur goal is to show that f(p) =

and hence 1. Changing coordinates

r each n, we would like to look at p,, as the north pole, instead of p. We do this as
ws. Choose and fix a point e, & and let C, denote the great circle segment from
ey Let p,: § — 8 be the rigid motion of § which takes p to p, and some point,
00 Gy to p. Obviously

nod 1 1
1<y/e=dy/dy= 11 d;y  (cosm/n)* < (1 -7/ 202

which approaches 1 as n tends to infinity. The lemma is proved.|

We now come to the main result of this section.
lim ¢, = p.

7 —~> o0

TaroreM. Let f be a frame function such that for some point peS

(1) f(P) =M:= SuPsesf(S)y
(2) f(e) takes the constant value m for all ec K.

Then f(s) = m+ (M —m) cos?O(s, p), for all s€ 8.

Proof. By property P,,m = inf,.¢f(s),so that if M = m the theorem is true. If ¥ +
then we may assume that m = 0 and M = 1 (replace f by (1/(M —m)) (f—m)).
s,te N\(p) with I(s) > I(t). Then by the geometric lemma and the basic lemma of
preceding section, we have

fis) 2 f(®).

f(l) =sup{f(s): seN, U(s) =1},
@) =inf{f(s): se N, U(s) = I}.

Then f(1) = f(1) = 1, f(0) = f(0) = 0, and if I, I'€[0, 1] with | < V', it follows from

above that N
) <f@).

define the sequence g, of frame functions by setting

9u(s) = flpns) (s€8).
10te the following properties:

lim,_, e g (p) =
M = sup,.59,(s) and m = mf s (s) = inf, g9, (s) for eachn > 1

g.(c,) = f(p) for each n >
2. Symmetrization

note by $: § — S the right-hand rotation by 90° of § around the pole p. For each
1, set

For each 1[0, 1], define:

() = gn(8) +gn(Ps) (s€8).
sequence k,, of frame functions (P1) has the following properties:

SUD,cgPp, € 2M forall = > 1.
) inf, ok, >2m forall = > 1.
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(3) lim, o b, (p) = 2M. ave from §4
(4) Each h,, is constant on E (by P3). $s) = 2M cos? 6 1 — cos?
®) o) = Mifp) forall n> L f)+f(Ps) o ios@ S(;,p)+(m+a)( —cos?0(s, p)) (%)

Step 3. Limit

We consider each %, as a point in the product space

[2m, 2M 5.

f(8)+1 (Ps) = g(s) +g(Ps)
second equation follows by analogous reasoning, since —f is a frame function
g its supremum —m at r).

Under the product topology, this space is compact, so that the sequence &, let (x,y,2) denote the (p,q,r)-frame coordinates of se8.

accumulation point, which we denote by . Then:
(1) h(p)=2M = Supsesh('g)'
(2) his constant on K.
(3) his aframe function, since the frame functions form a closed subset of [2m,

aim. (@) If either =y, x = 2, or y = , then f(s) = g(s);

Ifeither . = —y, = —2, y = —2z, then f(s) = g(s).

oof of claim. (a) Note that #(x, y,2) = (—y,%,2); P(x,y,2) = (¢, —2,¥).
ying these operations in succession, one verifies:

By the theorem of § 5, & is continuous (and has a special form, which does not i
us here). '

Ster 4. f(p)=M ;

Choose ¢ > 0, and choose ¢ C, such that h(c) > 2 —e. Applying the appro
version of the basic lemma to %, and noting that we can reach ¢ from c,, in tw
(easiest case of the geometric lemma) for sufficiently large n, we obtain

ﬁfﬁ(x,x,z) = (—CL', —Z, —Z),
P, 2,2) = (—x, —2, —2),

?I’?)ﬁﬁ?(%y,w) = ("'x; -Y, -—-.’E).

6se § = (,2,2). Since f(s) = f(—s), g(s) = g(—s) (by property B,), we conclude
(@): :
f(&)+1(Fs) = g(s) +g(Ps),
f (Rs) +[f (DPs) = g(Ps) +g(PPs),
F(9s)+1 (DpPs) = g(phs) +g(pBPs);

acting the second equation from the sum of the first and third; we conclude that
= g(s). The other two cases under (o) are proved similarly.

Suppose s = (z, —,2); then #(x, —x,2) = (,,2), which lies on the great circle
. From (a) we know that f(fs) = g(Ps), and from (*) we conclude that also
= g(s). The other two cases in (b) are proved similarly, and the claim is proved.
w define h:=g—f. h is clearly a frame function, and the claim implies that
h(q) = h(r) = 0, s0 that the weight of & is zero. We also know that 4 is zero on the
reat circles = +y, = + 2,y = + 2. The proof is completed by showing that % is
ically zero. Assume that % is not identically zero; then by §5 we may put

M':=suph = h(p'),
m' = infh = h(r'),
o :=h(g); ¢ Lr,¢ Lp".

hn(cn) > hn(c) e 287&
with &, > 2M —h,(p) - 0 as n — 0. Now choose a subsequence n; —> oo such t

lim %, (c) > 2M —e.
j—0 N

It then follows that (step 2, 5)
M+f(p) = im infhnj(cnj) > lim (hnj(c) =20,) > 2M —e¢,
; P

Frao
so that f(p) > M —e. Hence we have proved:

TarorEM. Bounded frame functions attain their extremal values.

7. The general case

We now prove the theorem stated in §3. Choose pe S such that f(p) =
re8, r 1 p, such that f(r) = m. This is possible because of F; and the theorem
Choose ¢ orthogonal to p and r, and set f(g) = «. We may assume that m <
since otherwise the result of §4 applies to for —f and the proof is finished. A
we let P, ¢, # denote the 90° right-hand rotations about p, ¢, and 7.

We shall now use the theorem of §5 to obtain information concerning
sufficient to know that f belongs to the space of quadratic frame functions. Taki
as the north pole, the function "

f(s)+f(Ps)

takes the constant value m +a on the equator, and attains its supremum 2
Letting

argument is broken into four steps.

M’ = —m': Assume that m’ > — M’. Then a' < 0, and by P;, a’ is the maximal
e of % on the great circle orthogonal to p’. However, the great circle x = y must
sect the former great circle in at least two points, and at these two points A must
the value zero. Considering — h, we derive a contradiction from the assumption
— M’ by the same argument.

&’ = 0: This follows immediately from (i) and the fact that 4 has weight zero.

) A, x',2') = M(x'2—2'2), where (/,y’,7') denote the (p’,¢’,r')-frame coordi-
s. Using the previous two steps, this follows from the claim, upon substituting &

g(s) = M cos?0(s, p) +m cos® (s, r) + « cos? 0(s, q), and M(z'2—2'?) for g.
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(iv) On the great circle 2" = y’, h takes the value zero at exactly the following f
points: (2',2',@"), (&, 2, =), (=, —2',2") and (-2, -2, —a).
The great circles « = y, = z and y = 2z intersect in the two points: (z,%,%) a
(=2, —x, —x). Ash is zero on these great circles, we see that the great circlez’ = y'm

CUNY Graduate Center ILL

e o i rold s i . AR
pomts onz’ =y at which % takes the value zero. The great circles = —yand & = )
intersect at (v, —, —x) and (—x,z,2). ¥’ = ¥’ must also intersect these points, si =r I3 ;3? 5 2 2 = § £ & b O
otherwise it would intersect # = —y and x = —z at four points, making six points ==r 3 95 < % S= “3’ £ = 3 9
which % would take the value zero on ' = y’. However, there is only one great cir S g § 3 g o o o ; g g3 S 5 o
R . —— - 2 o= -
passing through the four points (x,7,%), (-%, —, —%), (¥, —@, — %) and (=, =3 gﬁ ; ] é’ e . Q ‘g) g
. . , ’ . . S— v P =
namely 7 = z. It follows that ¥ = z and &’ =y’ describe the same great circle, =g 9o g e 3 3 T gy g =
* — . — O
therefore & must take the value zero at all points of ¥’ = y’. This contradlcts step ( =T %% > z- 28 ©= @ =N
s 0 = o "
and the theorem is proved. | =5 8 o 30O 25 83 N -
_ Lo o D af ©3F
. — m S o A a3 =
REFERENCES — 5 = c?p{ 2 lg o O N
. , — & = —
[1} J. S. BELL. On the problem of hidden variables in quantum mechanics. Rev. Modern Pl = iy 3 % % @ g’ _8_ E
38 (1966), 447-452. — 2 s %3 = Q. o =
[2] A. M. GLEasoN. Measures on the closed subspaces of a Hilbert Space. J. Math. Mech — . o 32 ~ §<-D* § 8
(1957), 885-893. , — o o 23 ~ < =
[3] P. R. Harmos. Introduction to Hilbert Space (Chelsea, 1957). % o, . ___5_-8 (o) 3 w)
[4] 8. Kocuen and E. P. SPECKER. The problem of hidden variables in quantum mechanies g © & = g »
Math. Mech. 17 (1967), 59-67. a 2 38 @ 3
[8] G. W. Mackey. Mathematical Foundations of Quantum Mechanics (Addison-Wesley, 196 (8 4 2w S,
[6] C. Piron. Foundations of Quantum Physics (Addison-Wesley, 1976). 3 2928 5
: [ V- [}
58
<

MmPrmn CS2TVIO 20 TOQ200C -
339 SS2332 §9 2988263 e 98
0% FomlTg xB ToEl<sS e 2=
=7, az2g8rs 84 =2338a§ 2 ==
w5 V55 oF% *==0 =3 X
o 9 Qpe 32 @ =230 0 o I
2 N gﬁﬁmm(ﬂ ~” ""Nm‘<g_Q, = xw
S & g8To n 02?22, = A
g 8§ ¢$°Z5°F 2 [5o0%8gc o=
S © og=8 8 8 858875 om
= O = = s Z0 o ™~
g 3 3 2 BT898™ 9 m <
)
® oS g m @ " O ITZFE §m
8 ¢ « <ES 3 -
3 Pacy = » NS e
M [ by o fre
o) o 3 o oo —
= 1 (0] o [V Q =
s} 2 sSoa_3 O Z
3 3 2=9F =
o S, -'Oc-m
) O %¥cas om
=1
- gga%g_ g A
@ 22586 =
® ~ 0=
€ So0gx O
) - >
= T3 2
=S ] o= .
32 m 5=
= o
m o
o
[aa G By A O ey AL WAk A 1) EF W T, \&)

e shall prove the perhaps rather surprising result:
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