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Abstract

A parameter in a statistical model is identifiable if it has a consistent estima-
tor. We consider a conditional copula as a parameter in a regular vine model.
As a baseline, no assumptions are made regarding bivariate margins. A non-
simplified representation of a conditional copula expresses this copula as a convex
combination of other copulas indexed by a measurable function of the condi-
tioning variables. From this baseline three possibilities arise: (a) a non-simplified
representation does not exist, (b) a non-simplified representation exists and is
identifiable and (c) non-simplified representations exist but are not identifiable.
The data generation process may either (1) sample the same conditional copula
for each value of the conditioning variables, or (2) sample different conditional
copulas for different values of the conditioning variables. The combinations (a.1),
(b.1), (b.2), (c.1) and (c.2) are all possible. Moreover, different generation pro-
cesses may produce the same joint distribution. In cases of (¢) we may have strong
evidence against the simplifying assumption, but need additional assumptions to
render the non-simplified copula identifiable and define a consistent estimator.
This article is an introductory exploration of these issues. Distinct continuous
convex decompositions of the independent copula are found with different corre-
lation functions. We find new extreme copulas on the unit square using bijective
and non-bijective measure preserving maps, and conjecture that these constitute
the set of extreme copula.
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1 Introduction

The history of vines or vine copulas is described in (Cooke, Joe, and Aas, 2010). The
paper introducing vines [1], see also [2] associated the nodes of a regular vine with sets
of (conditional) bivariate copulas and remarked that for applications it is convenient
to choose copulas indexed by a single parameter such as rank correlation and to apply
minimal information constraints - which sum along the nodes of the vine - relative to
the product of one-dimensional margins. This implies that conditional copulas depend
on the values of the conditioning variables only through the conditional C DF’s of the
copulated variables and not on the conditioning values directly. For example:

CFx\y,sz(Fle(x)a FZ\y(Z)‘y) = CFX\vaFZ“/(FX‘y(l.)? FZ\y(z)) (1)

The right hand side, integrated over dF'(y), is called a partial or simplified copula.
These two notions diverge in higher dimensions depending on the fitting over lower
order conditional copulas, [3]. We skirt this issue here by restricting to 3-vines with one
conditional copula and refer only to ”partial copula”, in analogy with partial versus
conditional correlation. The constraint in (1) has become known as the “simplifying
assumption”. The term ”assumption” implies a proof burden; with equal justice one
could speak of a ”simplifying decision” to replace a complex random quantity with
its expectation. In any event, a distinction is made between the graphical structure
(regular vine) and the assignment of copulas to nodes (regular vine specification).
Every multivariate density can be uniquely represented on every regular vine [4] by
allowing the conditional copula to depend on the values of the conditioning variable.
This result immediately shows that a regular vine without the simplifying assumption
is not identifiable from the data. There is no ”true” regular vine just as there is no
”true” coordinate system.

Restricting the choice of copulas to a single parameter per copula restricts the
modeling of joint dependence of n variables to a choice of (g) scalars. This is of course
a strong restriction. While preserving the polynomial complexity of the modeling,
additional flexibility is obtained by allowing k& parameter families of bivariate copula.

A different issue altogether is allowing the conditional copula to depend on the
value of the conditioning variables. Regular vines with the simplifying assumption are
known as “simplified vines”. This blurs the distinction between the graphical structure
(regular vine) and the assignment of copulas to nodes, but draws needed attention to
this issue. Unlike general regular vines, simplified vines are not all created equal, some
simplified vines may fit the data better than others. [5] cataloged large differences in
fidelity among all simplified vines with up to 8 variables. The question of identifiability
is also recast: given a simplified vine, is there a non-simplified representation which is
identifiable from the data?

The literature to date on the simplifying assumption is recently summarized in [6]:
[3] show that the subclass of simplified vines is dense in the class of all distributions
for the supremum norm but not with regard to stricter norms. ”In fact, we prove
that the family of simplified copulas is even nowhere dense with respect to either of



these four topologies’ (emphasis in original)...”. To illustrate the difference between
measure theoretic and topological notions of size, the real line can be decomposed as
a disjunct union of a Lebesgue null set and a countable union of nowhere dense sets
and the set of differentiable functions on [0,1] is a countable union of nowhere dense
subsets of the set of continuous functions on [0, 1]([7] theorem 1.6, Chap. 11).

The simplifying assumption can be tested [8] and [9]. Fitting non-simplified vines
using the approaches of [10] and [11] requires large sample sizes to obtain stable esti-
mates. [3] state ”...since the (conditional) univariate marginal distribution functions
Fyj3(.|t) and Fy3(.|t) may fail to be continuous the (conditional) bivariate copulas
C{’2;3 are not unique in general. To the best of the authors’ knowledge, [this] obser-
vation has not yet been addressed in the literature ...”. The most recent review of
the current state of play, [12], makes the important observation that the simplify-
ing assumption constrains only the (g) — n conditional copulas in the regular vine,
which is a small fraction of all conditional bivariate copulas. [13] show that if {X;, Xa}
are independent and {Xs, X3} are independent and if the conditional copula func-
tion ¢; 3.0 does not depend on the value of Xs, then X is independent of {X7, X3}.
This strengthens an analogous result for partial correlations: p; o = p2 3 = 0 implies
£1,3;2 = P1,3-

This article studies the identifiability of non-simplified vines given the graphical
structure and restricts attention to the simple D-vine of three uniform random vari-
ables (X,Y, Z). Section 2 defines identifiability of non-simplified conditional copulas
in this context. Section 3 presents examples to illustrate the identifiability issue with
respect to partial copulas on the N x N grid. Section 4 distinguishes identifying non-
simplified representations of the partial copula and discovering the data generating
process. Section 5 considers the identifiability of arbitrary copula on the N x N grid.
Section 6 addresses the general case of bivariate copulas on [0, 1]2. Section 7 concludes.

2 Identifiability

By the Glivenko-Cantelli theorem, the unconditional copulas C'(X,Y), C(Y, Z) as well
as the partial copula [ Cry,, r, ., (Fx|y(z), Fz)y(2))dFy(y) can be obtained as a.s.
limits of functions of data (x;,v;,2;),7 = 1...N as N — oo. Indeed, the full joint
distribution is identifiable, albeit under the curse of dimensionality, but because of [4],
the R—vine representations are not. In the spirit of [14] we introduce %:

Definition: In D-vine X — Y — Z with partial copula
J Crypy oz, (Fx)y(2), Fz1y(2))dFy (y), a copula valued function C(y) =
Crx 1y Fr, 1, (Fx1y(2), Fz1y(2) | y) is an identifiable non-simplified representation of the
partial copula if:

L. E(C(Y)(x7z)) = fCFX\y)FZh; (FX\y(x)aFZ\y(Z))dF(y)
2. P{y|C(y)(z,y) # E(C(Y)(z,2))} >0 .
3. If C(Y) is another copula valued function satisfying (1) and (2) then C'(Y) = C(Y)

1D1, weak conditional convergence, total variation and the Kullback-Leibler divergence
2For the definition of higher order partial copulas see [8].



Conditions (1), (2) say that C(Y) is a non-simplified representation of the par-
tial copula: the partial copula can be written as a non-trivial convex combination of
the copulas C(y). (3) says that this representation is a.s. unique. If the partial cop-
ula is extreme in the closed convex set of copulas on [0, 1]? then condition (2) cannot
be satisfied and the non-simplified copula does not exist. If the partial copula can be
written as a convex combination of extreme copula in different y—measurable ways,
then condition (3) fails. In this case non-simplified copulas exist but are not identifi-
able. ”Identifiability is a natural and even a necessary condition: If the parameter is
not identifiable, then consistent estimators cannot exist.” [14], p. 62.

A non-simplified copula may be non-identifiable but nonetheless may be discov-
erable with exogenous information about the data generation process. An analogy
with right censored life variables may be instructive. Suppose we observe the smaller
of life variables X,Y and observe which it is. The conditional subsurvival functions
P(X > z|X <Y) and P(Y > y|Y < X) are identifiable from the data but without
further assumptions or exogenous information the unconditional survival functions are
not. [15] showed that the survival functions are identifiable, whatever the conditional
subsurvivor functions, if X and Y are assumed independent (see also [14] p.49). Exam-
ination of the data generation process may reveal that X is time to component failure
and Y is preventive maintenance triggered by observed degradation during periodic
inspection. This exogenous information constrains the shapes of the conditional sub-
survival functions and may or may not be consistent with observed data. In case of
consistency, the exogenous information enables identification of the survival functions
which are then dependent [16]. In this case we can adopt either the independent model
or the dependent model, whereby the dependent model is credited with passing an
empirical test whereas the independent model is not.

3 Examples

This, and the following two sections, are restricted to copulas with densities measurable
on the N x N grid of the unit square: Their densities are constant on the open squares,
(4,7) with upper right corner at coordinates (i/N,j/N),i =1...N,j = 1..N. These
are instances of checkerboard copulas studied in [17], which can uniformly approximate
any d-dimensional copula (Theorem 4.1.5). We denote (z,y, 2)1,3 = (, 2).

We consider a simple D-vine on uniform variables X, Y, Z. For convenience we let
(X,Y) and (Y, Z) be independent. The CDF of X|y is Fx|y—,(z) = = and similarly
for Z. The conditional copula Cry, (x),Fy, (=) | ¥ can be written simply as C(z, z|y).
If C(z, z| y) does not depend on y it is simply the (X, Z) copula, C(X, Z), and can be
chosen independently of y. We choose C'(X, Z) as the copula pictured in Figure 1 left
pane with mass distributed uniformly on the shaded squares. C(X, Z) can be written
as a (3, ) convex combination of the co- and counter-monotonic copulas on the N x N
grid. It can also be written as an a (3, 4) convex combination of the green and red
copulas in Figure 1, right pane. In fact, for each of the 2°-2 = 30 non-trivial subsets
of {1,2,3,4,5} we can form distinct (3, ) convex combinations which decompose the
partial copula in Figure 1 left pane, into distinct pairs of extreme copulas.

We now define G as a copula valued function of y:
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Fig. 1 Left: C(z, z]y), (can be expresssed as a (3, 3) convex combination of co- and counter mono-
tonic copulas); Right: C(z, 2| y) expressed as a (3, %) convex combination of green and red copulas.

G(y) = co-monotonic copula if (x,y, 2)1,3 is on diagonal and

(2)

= counter-monotonic copula if (z,y, 2)1 3 is on anti-diagonal

Note that G(y) is well defined except on the null set (z,y,2) N (¢/,y,2'),x # 2’
and/or z # z’. We can also define a different copula valued function of y:

H(y) = green copula if(x,y, z)1,3 € supp green copula in Figure 1 Right and
= red copula if(z, y, 2)1,3 € supp red copula in Figure 1 Right.

This gives a different non-simplified representation of the partial copula C(X, Z).
No amount of data from (X,Y, Z) will enable us to identify whether G or H is ”cor-
rect”. A non-simplified representation of the partial copula in Figure 1 is possible
but not identifiable. Note that the co- and counter-monotonic copulas on [0,1]* are
extreme in the set of bivariate copulas. For such copulas non-simplified representations
do not exist. More examples are given in Section 6.

Whether a non-simplified representation of the partial copula is identifiable
depends on the partial copula. In Figure 2, a partial copula with uniform mass 1/20
on the colored squares can be given a non-simplified representation in only one way
in terms of 2 copulas taking values 1/10 via the copula valued function

J(x,y, z) = green copula if (z,y, 2)1,3 is in a green square of Figure 2

3)

=red copula if (z,y,2)1,3 is in a red square of Figure 2

To appreciate the difference between Figures 1 and 2, define a graph whose nodes
are the colored cells and with an edge between two cells if they share a common row
or common column. This is a bipartite graph with chromatic index 2. A cycle is a
non-empty path in which only the first and last elements are identical. Figure 2 has
only one cycle, whereas Figure 1 right has five.

Figures 3 and 4 show examples of non-unique convex decompositions. Figure 3
shows a partial copula consisting of 3 cycles, each of which can be uniquely decomposed
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Fig. 2 Partial copula taking value 1/20 on shaded squares is uniquely decomposed into convex sum
of two copulas.
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Fig. 3 Graph with 3 cycles.

into 2 disjunct intra-cycle matrices having one shaded square in each row and column
as indicated by the letters. There are 22 ways of joining these to form pairs of copulas
on the whole grid. The partial copula can be given a (3, %) convex decomposition into
copulas taking value 1/10 on shaded squares in 23 ways. Figure 4 shows that uniform
convex combinations of overlapping copulas result in non-uniform partial copulas.

These possibilities are explored further in Section 5.
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Fig. 4 Left: Partial copula with mass 1/20 and 1/10 on light and dark squares respectively; Right:
Convex decomposition into green and red copula, intersecting on dark squares.

4 Identifying versus Discovering

This Section addresses the distinction between identifying a non-simplified conditional
copula and discovering the data generation process. Consider generating processes:



1. For the copula in Figure 2: for each y a fair coin is flipped; if heads the green
copula is chosen, otherwise the red copula is chosen. A square in the chosen copula
is selected by lottery with probability 1/10 and (z, z) is sampled uniformly from
that square

2. For the copulas in Figure 1: for some A C [0,1] of Lebesgue measure 1/2, for
each y, if y € A, the co-monotonic copula in Figure 1 left is chosen, otherwise the
counter-monotonic copula in Figure 1 left is chosen. A square in the chosen copula
is selected by lottery with probability 1/10 and (z, z) are sampled uniformly from
that square

3. For the copulas in Figure 1: for some B C [0, 1] of Lebesgue measure 1/2, for each
y, if y € B, the green copula in Figure 1 right is chosen, otherwise the red copula in
Figure 1 right is chosen. A square in the chosen copula is selected by lottery with
probability 1/10 and (z, z) are sampled uniformly from that square

Unlike the functions G and H in equations (2) and (3), these generating processes
appeal to random mechanisms, they are not functions of the data. Process (1) corre-
sponds to the simplified partial copula: even though different copulas are used on each
sample and even though the non-simplified copula is identifiable, the choice of condi-
tional copula is independent of y. For a given choice of A C [0, 1] process (2) could be
tested and rejected if data point (z,y, ) is found with y € A and (x,y, 2)1,3 on the
anti-diagonal. Of course it is possible that (2) and (3) are both non-rejected for some
A,B. Put A = {y|(z,y,2)1,3 € supp comonotonic copula} and B = {y|(x,y,2)1,3 €
supp green copula}.

Contrast this with the situation in Figure 2 where there is only one way to express
the partial copula as a convex sum of two distinct copulas. Various random mechanisms
could be proposed and tested for choosing between the red and green copulas in Figure
2 as functions of y. If we find a such mechanism that passes all tests then we may say
that the non-simplified copula is identified but in any case the non-simplified copula
is identifiable since there is only one pair of copulas from which to choose.

Suppose process (1) is changed to:

(1"): In Figure 2: A colored square is chosen randomly and (z,z) is sampled
uniformly from that square.

Processes (1) and (1) are physically distinct but yield the same distribution. In gen-
eral the data generating process cannot be inferred from the data alone, but hypotheses
regarding that process can be proposed and tested for consistency with the data.



5 Convex Decompositions of Copulas into Extreme
Copulas

The Krein Milman theorem [18] states that a compact convex set is the closed convex
hull of its extreme points. The set of all bivariate copulas on the closed unit square is
convex and compact with the uniform metric; however, the set of extreme copulas has
not been fully characterized [17]. For this reason we focus in this Section on copula
densities measurable on an N x N grid of the unit square.

A doubly stochastic, or bistochastic matrix is a non-negative matrix whose row
and column sums are 1. A permutation matrix is a bistochastic matrix in which each
row and each column has exactly one non zero entry whose value is therefore 1. The
permutation matrices are the extreme points in the convex compact set of bistochastic
matrices. The Birkoff von Neumann theorem [19] , [20] , [21] states that a bistochastic
matrix can be written as a (generally non-unique) convex sum of permutation matrices.
The problem of finding a convex decomposition into a minimal set of permutation
matrices is NP hard [22] [23]. The problem of finding all convex decompositions of a
given bistochastic matrix into permutation matrices is therefore also NP hard. The
volume of the set of bistochastic matrices is known up to dimension 10 [24]. [25]
gives a method of generating bistochastic matrices which is an instance of iterative
proportional fitting [26], [27] whose properties are well studied. A simple method [22]
uses the circulant matrix of a probability N-vector to generate bistochastic matrices
by rotating the vector’s components as illustrated by a probability 4-vector in Figure
5. Note that the left-most column and the top row are the same, idem second row and
second column, etc. The circulant of the N vector with one 1 and (N —1)0 s is a
permutation matrix.

04(01(03]0.2
0.1/03(0.2(/04
03[02(04]0.1
02[04(0.1[{0.3

Fig. 5 Circulant of a probability 4-vector.

The set of copulas on the N x N grid is convex compact. Dividing entries of an
N x N bistochastic matrix by N yields a copula. Assigning uniform mass of 1/N to
the non-zero cells of an N-permutation matrix results in a N-permutation copula. N-
permutation copulas are the extreme copulas in the compact convex set of copulas
measurable on the N x N grid.

We focus on the case N = 4 for reasons that will appear shortly. A permutation
matrix can be represented as a row 4-vector where each entry gives the row in which
a “1” is located. For example, the identity permutation is represented by the vector
(4,3,2,1), where 1 appears in the 4th row of the first column, in the 3rd row of the
2nd column etc. Circulants provide a handy way of organizing permutation matrices.
The circulant of (4,3,2,1) is:
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Fig. 6 Circulant of (4,3,2,1).

Figure 6 represents 4 permutations. Dividing the entries of the permutation matri-
ces by 4, the circulant of (4,3,2,1) gives the four permutation copulas (a,b, ¢, d) in
Figure 7.

copula a copula b copula c copulad
4 3 2 1 3 2 1 4 2 1 4 | 3 1 4 3 | 2
0.25 0.25 0.25 | 0.25 '
0.25 _ 0.25 . | joas| | Jo2s|
025 0.25 0.25 | ] . | | [ 0.25 ]
0.25 0.25 0.25 | 0.25

Fig. 7 Copulas represented by the circulant in Figure 6.

These 4 copulas together constitute a tiling of the N x N grid. They also consti-
tute a convex decomposition of the uniform copula into 4 disjunct extreme copulas.
Therefore, they also constitute a non-simplified representation of the uniform copula
via a copula-valued function of sample data:

G(z,y,z) = copula a if (z,y, 2)1 3 is in an orange square
(

1.3 is in a blue square

)

= copula c if (z,y, 2z)1,3 is in a green square

)

z)
copula b if (z,y, 2)
z)
z)

= copula d if (z,y,2)1,3 is in a gray square

There are 6 permutations of (3,2,1), each producing a distinct set of 4 permutations
yielding 6 distinct tilings of the uniform distribution on the 4 x 4 grid with no common
permutations. The 4! = 24 permutations of {1,2,3,4} are broken down into (4 —

1)! = 6 disjunct convex decompositions of the uniform copula into extreme copula,
each consisting of 4 disjunct extreme copula. 4 is the smallest integer N for which
(N-1)!>N.

Figure 8 with 16 uncolored rows and 24 columns shows the 24 extreme copulas
corresponding to permutations, grouped by circulant. Tiling boundaries are bolded.
For each tiling we have a distinct convex decomposition of the uniform copula into
extreme copulas. The non-identifiability of convex decompositions of the uniform cop-
ula on NxN in terms of extreme copula grows with (IV — 1)!. Note that because of the
circulation property each column of Figure 8 encodes one extreme copula in its tiling.



Thus, the first column concatenates the columns of the first 4 x 4 matrix in the first
tiling, the second column concatenates the second 4 x 4 matrix in the first tiling, etc.

L

- | : |

Fig. 9 For the leftmost tiling in Figure 8, the permutation copulas are named a, b, ¢, d , the 4 supports
obtained by individually removing each successively are shown with 4 non-simplified representations
for each. These representations are formed by switching row entries within a cycle, the cycles are
indicated by the corners of the embedded rectangles.

Tilings give some insight into non-identifiability of equal convex combinations of
permutations in a tiling. The union of the supports of three permutations in a tiling
is the compliment of the support of the excluded permutation. Since this excluded
permutation occurs only in one tiling, the union of the supports of the other three
is also unique to this tiling. Label the permutation copulas in the leftmost tiling of
Figure 8 as a,b, ¢,d. The rows in Figure 9 are non-simplified versions of the uniform
copulas on the supports after excluding one of the permutation copula. These are
generated by switching row and column entries in a cycle in the graphs of 2-copulas.
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The cycles are shown as the corners of the embedded rectangles. The uniform copula
on the support of 3-permutation copulas in a tiling can be represented as a uniform
mixture of permutation copulas in 4 different ways.

Fig. 10 Target copula.

Starting distributi igns weight 1 to copula 1...24 (with RMS error)

1 3 3 a 5 L] 7 L] s 10 11 12 1 14 15 1% 17 18 1% bl n n

M

Fig. 11 Starting with weight 1 on extreme copula 1...24, solve for weights over the 24 extreme
copula which yield the target distribution Figure 10, up to numerical error.

To illustrate the non-identifiability of a non-constant copula, the copula of Figure
5, is chosen as the target and illustrated in Figure 10. In general the problem of finding
a mixture of extreme copula recovering the target copula has no unique solution; a
solver’s result will depend on the starting distribution of weights over extreme copulas.
As a numerical exercise, a non-linear solver is started at 24 starting weight vectors,
each giving weight 1 to one extreme copula. The solver converges numerically in each
case to a distinct solution vector shown in Figure 11. The RMSE is 6.5 x 107, The
mean correlation between the 24 solution vectors is 0.631. Interestingly, the rank of
the matrix in Figure 8 is 10 and 10/16 = 0.625.

Each weight vector in Figure 11 represents a decomposition of the target copula
in Figure 10 into a distinct mixture of the 24 extreme copulas. Let A be the matrix
in Figure 8 without the colored rows, let B;,i = 1,...24 be the i*" column vector
in the matrix in Figure 11 and let Z = I,...I34 be a measurable partition of the
unit interval into measurable disjunct non-null subsets. For each such Z the following
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copula valued function defines a distinct non simplified representation of the partial
copula in Figure 9:
Gz(y) =Ax B;, lfy E]Z',i = 1,24
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6 Continuous Convex Decompositions of the
Independent Copula

The assumptions regarding the D-vine (X,Y, Z) in Section 3 and the notation C, ./,
remain in force. Continuous convex decompositions of the independent copula with
different correlation functions are constructed using box copulas (Section 6.1) and
shuffles of min (Section 6.2). As noted, the set of copulas on [0, 1]? is convex and com-
pact but the complete characterization of extreme copulas is still unknown [17], p.30.
Proposition 6.1 describes extreme copulas based on N-permutation copulas, which are
special cases of the ”Dirac copulas” discussed in Section 6.3 where a more general
result is proved.

Proposition 1 For any integer N, replacing the uniform density of the non-empty cells of
an N— permutation copula with uniform mass 1/N on the cells’ diagonal or anti diagonal is
an eztreme copula in the set of copulas on [0, 1]2.

Corelation of Box copula as function of y

¥

Fig. 12 (A): Family of box copulas parametrized by L =0... g; (B): The copula in A together
with its rotation by 90°. Correlation functions for red and green copulas are shown below.

6.1 Box Copulas

Figure 12 (A) depicts a family of ”box copulas” parametrized by the length of the
dotted line L = 0... g For each L the length of the boundary of the red box is

21/2. Distributing unit mass uniformly on the red line, the density at each point on
the boundary is ﬁ Figure 12 (B) shows a ”double box copula”, the (3, %) convex

combination in Figure 12 (A) (red) together with the result of rotating by 90° (green).
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Vertical (Value) Axis Major Gridlines

Fig. 13 Top row: a box copulas on the 10 x 10 grid with one cycle (identifiable). Middle row a box
copula on the 10 x 10 grid with 2 cycles (non-identifiable). Bottom row: A box copula on a 9 x 9 grid
with 3 cycles (non-identifiable).

Integrating either family (A) or (B) over L returns the independent copula®. Integrat-
ingover L =0,...qa, a < ‘/75 returns the 'diagonal band’ copula used in risk analysis
[28].

Setting y = 1—2L f ared box copula is associated with each value of y. For y = 0 this
is the comonotonic copula, for y = 1, the counter monotonic copula. More generally,
the red box copula R(y)’s correlation can be computed as (see apendix)

(&)

W=
e

p(Ry) =3 =20 T30 o 1) (4)

il

—p(R(1 — y)). Therefore, the correlation p(G(y)) of the

One verifies that p(R(y)) =
12 (B), is —p(R(y)). If the generating process samples a box

green copula in Figure

SAsL=0... ?, each point gets ’painted’ twice with density ﬁ Normalizing the integration interval,

i i 1 2 _
the mass at each point is 2 X N 1
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copula R(y) from Figure 12 (A) with parameter y =1 — 27% conditional on y then :

p(CFX\y,sz(FX\y(x)v FZ\y<Z)|y)) = p(R(y)) (5)

The conditional correlations range from 1 to -1.

The box copulas are not extreme and the problem of resolving these copulas into
extreme copulas is illustratively hard. Copulas on an N x N grid are dense in the set
of copulas on [0,1]? and provide a line of attack. A box copula is "inscribed on the
N x N grid if it can be represented with a copula on the N x IV grid by replacing the
uniform mass of the non-empty gird cells with equivalent mass on the diagonal or anti-
diagonal of these cells. Connecting cells which share a common row or column yields
a bipartite graph with chromatic index 2. Figure 13 gives an illustration. In the top
row, starting with cell number 1, the cells are numbered successively by following the
connections. Color the even numbered cells blue and the odd numbered cells red. The
red and blue cells constitute a (%, %) convex decomposition of the box copula into two
extreme copulas. In this case there is only one cycle in the graph so that the convex
decomposition is unique and a non-simplified version of the box copula is identifiable.
The middle row shows another possibility; the odd cells are colored dark red or dark
blue while the even cells are colored light red or light blue. The red and blue cells
constitute 2 cycles, and members of these cycles may be combined to form extreme
copulas in two ways. A non-simplified version of the box copula is not identifiable. The
bottom row shows a box copula with 3 cycles and 4 non simplified representations.

6.2 Shuffles of Min

Shuffles of min are extreme copulas formed by permuting rows and columns of the
co-monotonic copula on a N x N grid, not necessarily equally spaced and possibly
flipping the mass from the diagonal to the anti diagonal on any grid cell. [29] used
them to prove that the independent copula can be approximated by shuffles of the
min. [30] showed they are dense in the set of copulas with respect to the supremum
norm. Since extreme copula are simplified, [3] concluded that simplified copulas are
dense in the supremum norm.

Figure 14 shows 6 simple examples, A, B ("parallel copulas” ) and C,D,E, F
("hammer copulas”) as function of parameter h € [0,1]. A(h)...F(h) denote the cop-
ulas A...F for parameter value h. Beneath each copula the correlation function
p(W(h)),W € {A,B,C,D,E,F} is given and exhibited in the graph. The bottom
row shows results of integrating the copulas over h. The calculation is sketched in
the appendix. From the graphs we see that p(C(h))...p(F(h)) are invertible whereas
p(A(R)), p(B(h)) are not.

The families A(h), B(h), h € [0,1] constitute distinct continuous convex decom-
positions of the independent copula into extreme copulas. Copulas C(h)... F(h)
decompose curious half triangular copulas, shown in Figure 14 bottom. The fact that
these families realize all correlation values means that their mixtures can realize any
measurable correlation function p(h), h € [0, 1].
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Fig. 14 Six shuffles of min, A, B are parallel copulas, C...F are hammer copulas. Correlation functions
and partial copulas found by integrating over h are shown below.

Define hy : [-1,1] — [0,1] as:
hW(T) = p;[/l(r)aW € {CaDaEaF}

For each W € {C, D, E,F} , W(hw(p(Cx,z|y)), defines a family of copulas satisfying

g (/ _ Wl (p(Cx.z))dy) = p(Cx.z1,): W € {C. D, B, F}.

The results in this Section do not approzimate but represent the independent copula
as mixtures of parallel copulas (extreme) or box copulas (not extreme).

6.3 Dirac copulas

This Section introduces Dirac copulas which generalize those of the previous two sub-
sections. Let A denote Lebesgue measure, F the o-field of Lebesgue measurable subsets
of || = [0, 1], ¢ a measure preserving map || — || such that VB € F, A\(¢~1(B)) = \(B).
If 14 is a measure, supp(u) denotes the support of p (the intersection of all closed sets
having full measure). Unless stated otherwise, all integrals are over ||.
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The Dirac measure for A € F,0,0(A) =1 if xzo € A and = 0 otherwise. This can
also be written as

/1A(x)6wo(dx) = 14(xo0).

dz0(A) is not absolutely continuous with respect to A, indeed d,,({zo}) = 1. The
heuristic shorthand 6,,(dz) ~ 0,.(2)dx suggests that §..(x) is a Radon Nikodym
derivative, which does not exist. For any continuous function f on ||, the portmanteau
theorem says [ f(s)dz0(dz) = f(z0) [31].

The copulas in Figure 14 are Dirac copulas based on bijective measure preserving
transformations. We generalize this to simply measure preserving and illustrate with
measures which are measure-proportional on elements of a partition. Examples of this
construction are given in [32] p.60. Let 0 = ag < a1 < ... < ap =1, Let A; = (a;—_1, a;]
and let ¢; : A; — [0,1]:

pi(a) = —— 2 gp= BT (6)

ajr1 — ai Qi1 — Q5

The slope of ¢; may be positive or negative. It is easy to check that for B €
F, M9 (B)) = AM(A;)N(B). We now define

One verifies for B € F:

Mo (B) = Ao (B) = S ABINA) = A(B).

We define a Dirac copula as the measure cy(z,y) = 04(2)(dy)dz; x,y €. Nota
bene, we cannot reverse the order of integration as the Fubini theorem doesn’t hold
and d4(,) (dy) depends on x, so we must integrate dy(,)(dy) first.

Proposition 2 ¢y is an extreme copula.

Proof We have
es(l ) = / / L1 (@ 9)Boe) (dy)da = / 1y (@ 6z = 1.

To show that cg4 has uniform margins, choose B € F.
coB.) = [ [ 1m0y @ 0om @)z = [ 105,y 0la)do = [ 1pds = A(B)
co(ll, B) = //1{|\,B}(«’E7y)5¢(x)(dy)dw = /1{\|,B}($,¢>(I))dﬂf =

/1B(¢(x))dx = /1{¢—1(B)}d$ = )\((ﬁ_l(B)) = X(B)
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since ¢ is measure preserving. This shows that ¢, is a copula. To show it is also extreme,
suppose that ¢y = ac1 + (1 — a)cz, 1 > a > 0. supp(cy) = {(z, ¢(x)) |z €|} € F . Let A =
supp(cg) \ supp(c1) and suppose Mz|(z, ¢(x)) € A} > 0. We have cy(A) = ax 0+ (1 —a)ca,
contradicting o > 0. Therefore, supp(cy) = supp(c1) = supp(c2). Let B = {x]cs(B,]]) <
c1(B,||)} and suppose A(B) > 0. cy(B, ||) = A(B) < c1(B, ||) so that c1 does not have uniform
margins. O

Remark 1 The above proof also goes through, albeit with a profusion of notation, if we replace
equation (6) by broken linear functions as in the parallel or hammer copulas of Figure 14. In
this case ¢; is still measure proportional and ¢ is still measure preserving.

We have shown that the set of extreme copulas on [0,1]? is larger than the set
of Dirac copulas with bijective measure preserving maps and includes more general
measure preserving maps. We conjecture that this set is in fact the set of extreme
copula on [0, 1]?, though the proof has not yet been given.

We now further extend the construction given above, noting that the restriction
that the partition of [0, 1] into a finite partition A, As,... A, can be weakened to a
countably infinite non-intersecting closed intervals of [0, 1] with Lebesgue measure 1.
On each partition element A; we define ¢; : A; — [0, 1] to be one of the two linear
maps that map A; bijectively to [0,1].

For convenience we are going to express real numbers in their base 3 representation
x = 0.x12923. ..., where z € [0,1] and each z; is an integer taking the value 0, 1 or 2.
The real number z = >~ z;/3".

Following the construction given above we construct the Cantor copula as a prob-
ability measure on the graph of a piecewise linear function on [0,1] (Note that

1 = 0.2222222.. .., where the sequence of 2’s continuous indefinitely, when expressed
to base 3).
Given x € [0,1] , ¢ = 0.x12223 ..., set k(z) to be the smallest integer such that

Tp(y) = 1. Clearly given a particular x1...x,—1 of 0’s and 2’s there is an interval of
points & with base 3 representation 0.z;...x,_11 and for all such points z, k(z) = n.

For x = 0.z12223. ... we define a function ¢, . . () = (x—0.21. . .mk(m))x?)k(x),
or =0 if k(z) = co.

The set of points where k(z) is finite has Lebesgue measure 1, as is easily seen
since, for each n > 1 there are 2"~! possible intervals of points for which k(z) =
n, each of length 37". On each of these intervals ¢I1,,,wk(m>(x) is locally a linear
bijection from a closed set A, .. onto [0, 1]. The total length of these intervals is
220:1 2n—1/3—n =1.

The construction of the Dirac copula given above goes through in this case as well,
as is easy to see that the mass on any rectangle A x B, where A is a subinterval of an
Ay, and B is a subinterval of [0, 1] is equal to

. xk(z)

MANGLL 4, (B).

Figure 15 displays the Cantor copula.
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0.4 0.6 0.8 1

Fig. 15 The Cantor copula.

Note that this construction is based on the Middle Third Cantor Set C' C [0, 1],
which is well known to be “self similar” in the sense that it satisfies the property that
C = ¢1(C)h2(C) where Yg(z) = /3 and 2 (x) = 2/3+ x/3, and is the unique closed
set that satisfies that property [33] For © = 0.z 2223... we have ¢p(x) = 0.0z 12273...
and 2 (x) = 0.2212925..., and so we see that the functions (z,y) — (¢Yo(z),y) and
(x,y) — (¢2(x),y) maps the graph of the function onto itself. This explains the recur-
rence of structure with ever increasing slopes in the graph. A key feature of the Cantor
copula that goes beyond the finite piecewise linear Dirac copulas discussed above, is
that the gradients are unbounded. If we take the interval of x = 0.x1x223..¢y... with
no x; =1 fori=1,...,n, the slope is 3™ and the conditional distribution for Y given
that X is in this interval is uniform.
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7 Conclusions

The ”simplifying assumption” might also be called the ”simplifying decision” to repre-
sent a complex random quantity by its expectation, in casu replacing the conditional
copula by the partial copula. The partial copula is identifiable, that is it can be esti-
mated from the data without further assumptions. If the conditional copulas were not
in fact constant then their use would evidently provide a more faithful representation
of the data. This paper illustrates three possibilities: (a) a non-simplified representa-
tion of the partial copula does not exist, (b) a non simplified representation of the
partial copula exists and is identifiable and (c) non-simplified representations of the
partial copula exist but are not identifiable without further assumptions or exogenous
information. The independent partial copula falls in case (c), as does a non-simplified
copula chosen on the basis of its correlation function. Approaches such as [8] and [9]
involving partitioning the space of conditioning variables and estimating ” conditional
partial copulas” holds promise if we can judiciously select which conditional partial
copulas to estimate. [5] show that there is much to be gained with such an approach.

Appendix A Box Copula Correlation

Consider a box copula intersecting the x,y axes at (h,0), (1,1 — k), (1 — h,1),(0,h).
The computation of its correlation can be written in detail using Dirac copulas, using

0zo(dx/a) = adyo(dx),a €| For a sketch of the computation, first compute fol T X
y(x)dx:

L [M(@(~z +h) + x(z + h))de = b3
2. fhl—h(ar(a: +h)+a(x—h))de =2 —2h+2h% — 4h3
3. fll—h(‘r(x —h) + z(—x + 2 — h))dz = 2h — 3h*> + 3.

Adding these contributions,

! 2 2
de = Zh3 —h? + =,
/Oxxy(x)x 3 —|—3

This integral double counts the mass. Dividing by 2, subtracting the mean squared
and dividing by the variance we arrive at equation 6.

Appendix B Correlation Functions

The calculation of the correlation function for copula family A(h) is sketched, the
others are similar. For x € [0,h),y(z) =z + 1 — h; for z € [h,1], y(x) =z — h.

1 h 1 3 2 3

h h h h 1
dr = 1—h)d —hder=——+ —+—— -+ -.
/Oxy(x)x /Om(x—&— )a:—&—/hx(x )dx 6+2+6 2—1—3
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Subtracting the product of the means of z,y and dividing by the product of their
standard deviations:

> _h 1 _ 1
2 ~a3t3571

p(h) = 2 2 1
12
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