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FORWARD  
This document is a guide for using structured expert judgment to quantify uncertainty in quantitative models. The 

methods applied here have been developed by a host or researchers over the last 30 years. During the years 1990 - 

1999, the European Commission and the United States Nuclear Regulatory Commission undertook a joint 

uncertainty study of accident consequence codes for nuclear power plants using structured expert judgment. The 

purpose was not only to perform an uncertainty analysis of the US accident consequence code MACCS and the 

European accident consequence code COSYMA. The wider purpose was to form a baseline for the state of the art in 

using structured expert judgment for quantifying uncertainty. The reports emerging from this work are intended to be 

useful outside the community of nuclear accident consequence modeling. Indeed the quantification of uncertainty in 

the modeling of dispersion, deposition, foodchain transport, and cancer induction, may be used in many fields of 

environmental modeling and health protection. In the same spirit the methods for using structured expert judgment to 

quantify uncertainty are applicable far beyond the accident consequence modeling community. 

 

Results of the EU-USNRC joint research with regard to expert judgment are summarized in APPENDIX I. Reports 

from this joint research are listed in APPENDIX II. Training material developed in the joint research is included as 

APPENDIX V. 

 

We gratefully acknowledge the enthusiastic and wholehearted participation of all the experts in this study. All 

experts provided written rationales explaining how they arrived at their assessments. These rationales, reproduced in 

the published reports, are highly recommended to those readers who wish deeper insight into the sources of 

uncertainty in these issues. We also gratefully acknowledge the help of many institutes, in particular the National 

Radiological Protection Board, the Forschungszentrum Karlsruhe and the Energy Centrum Netherlands, in 

developing seed variables. 
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PART I: GENERIC ISSUES 

 

1. WHAT IS UNCERTAINTY?   
 

Uncertainty is that which disappears when we become certain. In practical scientific and engineering contexts, 

certainty is achieved through observation, and uncertainty is that which is removed by observation. Hence 

uncertainty is concerned with the results of possible observations.  Uncertainty must be distinguished from 

ambiguity. Ambiguity is removed by linguistic conventions regarding the meaning of words. The two notions of 

uncertainty and ambiguity become contaminated when observations are described in an ambiguous language. Much 

of the work of an uncertainty analyst consists of developing a sufficiently clear language for expressing the possible 

observations. We assume that it is always possible to reduce any given ambiguity to any desired level. It is 

impossible to remove all ambiguity, and the work of disambiguation goes on until the residual ambiguities are not 

worth the effort required to remove them.   

 

To be studied quantitatively, uncertainty must be provided with a mathematical representation. The 'representation of 

uncertainty' has received much attention of late from groups which were not previously in contact and which do not 

share a common vocabulary or background. Without wishing to adjudicate the many theoretical questions raised by 

this recent activity, the following proposes a perspective from which practical work can proceed without closing the 

door to interesting theoretical questions.  

 

The problem of representing uncertainty is similar to the problem of representing reasoning in logic. A logic 

adequate for the representation of mathematical reasoning was developed at the end of the 19th century. The first 

half of the 20th century witnessed a proliferation of "alternative logics". Some were specifically meant to capture 

reasoning in other domains, e.g. moral reasoning, temporal reasoning, and reasoning with possibility and necessity. 

Paradoxes in physics were used to motivate such innovations as additional truth values and non-Boolean logical 

operations. Some innovations have earned a permanent place in logic. Many more are gratefully forgotten. Through 

this development, a core theory emerges and forms the theme on which variations are given. This core theory is 

roughly the most convenient representation which is adequate for the class of problems most people deal with. The 

present core theory is not sacred; the marginal variation of today may develop into the core of tomorrow as the class 

of 'core problems' evolves. This picture of a core theory with variations remains valid as long as an active research 

community is focused on a common set of problems.  

 

In the same spirit, we suggest that there is a core theory for the representation of uncertainty, namely as subjective 

probability. Every aspect of this representation has been challenged, relaxed or strengthened. These variations 

remain just that, variations on a theme. Within the subjective interpretation of probability, uncertainty is a degree of 

belief of one person, and can be measured by observing choice behavior. In well-defined circumstances, subjective 

probabilities will coincide with observed relative frequencies.  

 

For more background and discussion on uncertainty, the reader is referred to (Granger Morgan and Henrion 1991, 

Cooke 1991, Hogarth 1987).   

 

Perhaps one final remark is useful. Viewed from the theory of rational decision (Savage 1954) one subjective 

probability is as good as another. There is no rational mechanism for persuading individuals to adopt the same 

degrees of belief, just as there is no mechanism for persuading them to adopt the same preferences. When 

observations are made, however, degrees of belief will change and under appropriate circumstances will converge. 

Uncertainty analysis is not about getting people to agree about uncertainty, rather it explores the consequences of 

uncertainty with respect to quantitative models. That having been said, in practical uncertainty analysis, we are 

typically interested in the uncertainty of experts in relation to quantitative models. Hence structured expert judgment 

provides a key input to uncertainty analysis. 
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 2. WHAT IS UNCERTAINTY ANALYSIS?   
 

This chapter presents a first pass at uncertainty analysis, with the intention of orienting the reader in the variety of 

ideas, terminology and techniques that are applied in quantitative uncertainty analysis. A glossary of terms for 

uncertainty analysis is provided in Appendix III.   

 

2.1 When is uncertainty analysis indicated?  

 
Uncertainty analysis is indicated for a decision problem when the following features are present:     

 Decision making is supported by quantitative models     

 The modeling is associated with potentially large uncertainties     

 The consequences predicted by the models are associated with utilities and disutilities in a non-linear way 

(threshold effects are the most common instance of this)     

 The choice between alternative courses of action might change as different plausible scenarios are fed into the 

quantitative models  

 

 

A simple example illustrates these features. Suppose a firm is considering alternative investment programs. 

Quantitative models predict the profit resulting from each program as a function of factors like market share, price 

and production costs. If these factors were known with certainty and if the models were known to be correct, then 

there would be no uncertainty in the models' output, and no need for uncertainty analysis.  

 

Even though the above factors are not known with certainty, it might be argued that the expected market share, 

expected price and expected production costs could be fed into the models to yield a "best estimate" of the profit. If 

the models were linear in these variables, then the "best estimate" would be the expected profit; in other cases the 

meaning of "best estimate" is unclear. If the models were indeed linear and if the firm's (dis)utilities were linear in 

profit, then this would provide a suitable basis for reaching a decision. The firm wouldn't care whether the expected 

profit were realized with certainty, or whether the expected profit was computed from a "favorable scenario" yielding 

high profits and an "unfavorable scenario" involving negative profits (losses). This may well be the case when the 

potential losses are not too heavy and the profits not too large. However, if the losses exceed a certain threshold the 

firm goes bankrupt. The disutilities of negative profit exhibit threshold behavior: losing twice as much is more than 

twice as bad if the solvency threshold is crossed. Even this is not enough to motivate an uncertainty analysis. It might 

be the case that the excessive losses arise from "acts of God" which would produce excessive losses no matter which 

of the proposed alternatives were adopted. The firm is then confronted with a risk which it cannot avoid; it needn't 

quantify this risk in order to decide between the alternatives at hand.  

 

Suppose however, that different alternative entail different risks of excessive loss. Further rational deliberation of 

alternatives now requires identifying the possible scenarios, quantifying the probability the each scenario occurs, and 

running each scenario through the models, yielding a distribution of possible profits associated with each alterative 

investment program. This is uncertainty analysis.  

 

Notice that uncertainty analysis does not solve the decision problem. The firm must still decide how to trade heavy 

loss off against high profits. It is clear, however, that uncertainty analysis is an essential ingredient in responsible 

decision making when the features listed above apply. In many contexts we are not dealing with a full decision 

problem. For example, a regulatory authority is typically charged with regulating the risks from one type of activity. 

The choice between alternatives is made at a different level, where the trade-off of utilities against disutilities of 

different stake holders is factored in. It is nonetheless incumbent upon the regulatory authority to provide such 

information as is deemed necessary for responsible decision making.   

 

For background on uncertainty analysis, consult (Baverstam et al 1993, Cooke 1995, Glaser et al 1994, Kalos and 

Whitlock 1986, Ripley, 1987. Ross, 1990, Rubenstein 1981, Dagpunar 1988, de Ruyter van Steveninck 1994). 

 

2.2 How is Uncertainty Analysis Performed?   
 

An uncertainty analysis is performed with respect to a given quantitative model. It may be broken into three steps:    

 

 Assessing uncertainty over the model input    

 Propagating uncertainty through the model     



 8 

 Communicating results to decision makers.  

 

Assessing uncertainty over model input  
 

Sophisticated physical models, such as those met with in accident consequence modeling, contain a large number of 

parameters. Few of these are known with certainty. It is seldom feasible to devote full resources to quantify the 

uncertainty on all parameters. Typically the parameters are divided into two groups. The first group contains those 

parameters whose uncertainty is thought to have a large impact on the uncertainty of the model output. The second 

group contains those variables whose uncertainty does not have significant impact. Methods for defining the 

significant variables are discussed in (Iman et al 1981, Iman and Helton 1988, McKay 1988), and will not be 

pursued here.  

 

Once a set of potentially important parameters has been identified, uncertainty over these parameters must be 

quantified. This is done by assigning (joint) probability distributions to the parameters. When sufficient statistical 

data is available, these are used to generated distributions. When statistical data is not available, uncertainty is 

quantified via structured expert judgment. The following sections provide an overview of expert judgment methods.  

 

Propagating uncertainty through the model  
 

When probability distributions have been obtained on the model parameters, these distributions must be "pushed 

through" the model. In very simple cases this can be done analytically. In practice the models to be analyzed are 

much too complex to allow analytic propagation. For complex models, the distribution of model output is determined 

by simulation. To perform one simulation run, a value for each parameter is drawn from the appropriate uncertainty 

distribution, the model is run with these parameter values and the result is stored. This is repeated many times until a 

distribution over model output is built up.   

 

Communicating results to decision makers  
 

Complex models compute many quantities of interest, or "endpoints". In accident consequence modeling endpoints 

might include, acute and chronic fatalities, area of land denial, number of persons evacuated, economic damages, etc. 

In fact, the accident consequence codes analyzed in (Harper et al 1995) compute, on each run, distributions arising 

from uncertainty in meteorological conditions at the time of a hypothetical accident. In performing an uncertainty 

analysis, distributions over model input parameters generate distributions over the meteorologically induced 

distributions for each endpoint. The question how best to compress all this information in a form which can be used 

by decision makers deserves careful attention. It is often important to distinguish different 'kinds' of uncertainty. 

Usually, this is done to distinguish those uncertainties which we might reduce with future research, and those 

uncertainties which we cannot reduce.  

 

Many authors distinguish "objective" or "statistical" uncertainty from "subjective" uncertainty. In this context, 

statistical uncertainty refers to natural variation incorporated into the model endpoint calculations. In other words, 

the models compute statistical distributions of endpoints based on measured natural variation. The most familiar 

example is natural variation due to weather. The consequence codes contain a meteorological file reflecting different 

possible weather scenarios. In running the code, the endpoints are computed for each weather scenario and the 

distribution of endpoint values is output, which is taken to reflect natural or statistical variation in endpoint values 

due to weather. The computations of these distributions call parameters whose values are in fact uncertain, even 

though they are represented by a single number in the code. In such cases we speak of (subjective) uncertainty over 

statistical distributions. We perform an uncertainty analysis; we repeatedly sample these parameters from the 

subjective uncertainty distributions and compute a large number of statistical distributions.  In general the distinction 

of objective and subjective aspects is often less straightforward than the above example would suggest.   

 

Consider for example deposition velocity. The accident consequence codes have one deposition velocity for a given 

contaminant to 'pasture'. On the other hand it is known that deposition velocities may vary over an order of 

magnitude according to the species of grass. We may distinguish three cases:  

 

(i)  We believe that the pasture in the vicinity of our nuclear power plant consisted of one species of grass, but we 

don't know which. A distribution over this deposition velocity should then reflect our subjective uncertainty with 

regard to the species of grass.  
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(ii)  We believe that the pastures have different kinds of grass. In this case, if we religiously distinguish objective and 

subjective uncertainties, we should incorporate this 'natural variation' into the model output. If we are uncertain 

how exactly the grass species are distributed over the pastureland, we should quantify our uncertainty over 

which natural variation is really the case, perform an uncertainty analysis and output a set of possible 'natural 

variations' (and we should do the same for all other contaminants and all other surfaces),  

(iii)  We are not sure which of the above situations is true. Then if we really must distinguish subjective from 

objective uncertainty, we should quantify our uncertainty in each possibility, and perform both analyses.   

 

Case (i) conforms to current practice, but this is more a matter of convenience than conviction.   

 

Mathematically, of course, there is no need to distinguish "objective" and "subjective" uncertainties. Indeed, there is 

ultimately one aggregated uncertainty measure. We can represent this measure as an integral over sets of conditional 

measures, where we conditionalize on possible values of some uncertain quantity. This is what we do in separating 

"objective" and "subjective" uncertainties: conditional on the values of all subjectively uncertain quantities, the 

remaining uncertainty is (by definition) objective. The question is, why do we separate some 'objective' uncertainties 

and not others? In fact, this decision is taken by the code developers and not by the uncertainty analyst, since the 

code developers decide which natural variations to incorporate in the code output. The uncertainty analyst is not 

empowered to alter the code on which the uncertainty analysis performed. The role of the uncertainty analyst is 

define clearly the various uncertainties and indicate which might be reduced by various means.  The decision makers 

may also wish to see which of the input variables contribute most to the uncertainty of various endpoints, and which 

variables involve correlated uncertainties. Techniques for defining "importance" in the context of an uncertainty 

analysis are developing rapidly. The reader is referred to a forthcoming book (Saltelli, appearing) and a special issue 

of Computer Physics Communications (1999) devoted to these subjects. 
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 3 STRUCTURED EXPERT JUDGMENT   
 

Expert judgment has always played a large role in science and engineering. Increasingly, expert judgment is 

recognized as just another type of scientific data, and methods are developed for treating it as such. This section 

gives a brief overview of methods for utilizing expert judgment in a structured manner. For more complete 

summaries see (Hogarth 1987, Granger Morgan and Henrion 1990, Cooke, 1991).  

 

In this section, the subject is broken down according to the form in which expert judgment is cast. A final sub-section 

addresses conditionalization and dependence. In all cases, the judgments of more than one expert are elicited. The 

questions of measuring performance of experts and combining their judgments are addressed more fully in 

succeeding sections. Mathematical terms used in this section are defined in Appendix IV.   

 

3.1 Point values  
 

In earlier methods, most notably the Delphi method (Helmer 1966), experts are asked to guess the values of 

unknown quantities. Their answers are single point estimates. When these unknown values become known through 

observation, the observed values can be compared with the estimates.  There are several reasons why this type of 

assessment is no longer widespread. 

 

First, any comparison of observed values and estimates must make use of some scale on which the values are 

measured, and the method of comparison must inherit the properties of the scale. For example, percentages are 

measured on an absolute scale between 0 and 100; mass is measured on a ratio scale (values are invariant up to 

multiplication by a positive constant), wealth is often referred to an interval scale (values are invariant up to a 

positive constant and a choice of zero). In other cases values are fixed only as regards rank order (an ordinal scale); a 

series of values may contain the same information as the series of logarithms of values, etc. To be meaningful, the 

measurement of discrepancy between observed and estimated values must have the same invariance properties as the 

relevant scales on which the values are measured. The meaning of "close" and "far away" is scale dependent. This 

makes in very difficult to combine scores for variables measured on different scales.  

 

A second disadvantage with point estimates is that they give no indication of uncertainty. Expert judgment is 

typically applied when there is substantial uncertainty regarding the true values. In such cases it is essential to have 

some picture of the uncertainty in the assessments.  

 

A third disadvantage is that methods for processing and combining judgments are typically derived from methods for 

processing and combining actual physical measurements. This has the effect of treating expert assessments as if they 

were physical measurements in the normal sense, which they are not. On the positive side, point estimates are easy to 

obtain and can be gathered quickly. These types of assessments will therefore always have a place in the realm of the 

quick and dirty. For psychometric evaluations of Delphi methods see (Brockhoff 1966) and (Gustafson et al 1973), 

and see (Cooke 1991) for a review.   

 

3.2 Paired comparisons  
 

In the paired comparison method, experts are asked to rank alternatives pairwise according to some criterion like 

preference, beauty, feasibility, etc. If 20 items are involved in total, 190 comparisons must be made; each item is 

compared with the 19 others. Since each item is compared with all the other items, there is a great deal of 

redundancy in the judgment data. Various processing methods are proposed for distilling a rank order from the 

pairwise comparison data. According to the method chosen and the availability of some measured values, the data 

can be further reduced to an interval or even a ratio scale. Paired comparisons were originally introduced for 

studying psychological responses (Thurstone 1927), and have been applied to consumer research (Bradley 1953), to 

the assessment of human error probabilities (Comer et al 1984), and to the assessment of failure probabilities 

(Goossens et al 1989). For a mathematical review see (David 1963). As with point value assessments, the method of 

paired comparisons yields no assessment of uncertainty. Methods for evaluating the degree of expert agreement and 

consistency are available.   

 

 

 

 

3.3 Discrete event probabilities   
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An uncertain event is one which either occurs or does not occur, though we don't know which. The archetypical 

example is "rain tomorrow". Experts are asked to assess the probability of occurrence of uncertain events. The 

assessment takes the form of a single point value in the [0,1] interval, for each uncertain event.  The assessment of 

discrete event probabilities must be distinguished from the assessment of limit relative frequencies of occurrence in a 

potentially infinite class of experiments (the so-called reference class). The variable "limit relative frequency of rain 

in days for which the average temperature is 20 degrees Celsius" is not a discrete event. This is not something which 

either occurs or does not occur; rather this variable can take any value in [0,1], and under suitable assumptions the 

value of this variable can be measured approximately by observing large finite populations. If we replace "limit 

relative frequency of occurrence" by "probability", then careless formulations can easily introduce confusion. 

Confusion is avoided by carefully specifying the reference class whenever discrete event probabilities are not 

intended.   

 

Methods for processing expert assessments of discrete event probabilities are similar in concept to methods for 

processing assessments of distributions of random variables. For an early review of methods and experiments see 

(Kahneman et al 1982); for a discussion of performance evaluation see (Cooke 1991).   

 

3.4 Distributions of continuous uncertain quantities   
 

For applications in uncertainty analysis, we are mostly concerned with random variables taking values in some 

continuous range. Strictly speaking (see Appendix III) the notion of a random variable is defined with respect to a 

probability space in which a probability measure is specified, hence the term "random variable" entails a distribution. 

We therefore prefer the term "uncertain quantity". An uncertain quantity assumes a unique real value, but we are 

uncertain as to what this value is. Our uncertainty is described by a subjective probability distribution.  

 

We are concerned with cases in which the uncertain quantity can assume values in a continuous range. An expert is 

confronted with an uncertain quantity, say X, and is asked to specify information about his subjective distribution 

over the possible values of X. The assessment may take a number of different forms. The expert may specify his 

cumulative distribution function, or his density or mass function (whichever is appropriate). Alternatively, the analyst 

may require only partial information about the distribution. This partial information might be the mean and standard 

deviation, or it might be several quantiles of his distribution. For r in [0,1], the r-r-th quantile is the smallest number 

xr such that the expert's probability for the event {X < x} is equal to r. The 50% quantile is the median of the 

distribution. Typically, only the 5%, 50% and 95% quantiles are requested, and distributions are fitted to the elicited 

quantiles.  This is treated further in section 4.2 and Appendix III. 

 

3.5 Conditionalization and dependence   

When expert judgment is cast in the form of distributions of uncertain quantities, the issues of conditionalization and 

dependence are important. When uncertainty is quantified in an uncertainty analysis, it is always uncertainty 

conditional on something. It is essential to make clear the background information conditional on which the 

uncertainty is to be assessed. This is the role of the "case structure" (see Part II). Failure to specify background 

information can lead experts to conditionalize their uncertainties in different ways and can introduce unnecessary 

"noise" into the assessment process. The background information will not specify values of all relevant variables. 

Obviously relevant but unspecified variables should be identified, though an exhaustive list of relevant variables is 

seldom possible. Uncertainty caused by unknown values of unspecified variables must be "folded into" the 

uncertainty of the target variables. This is an essential task of the experts in developing their assessments. Variables 

whose values are not specified in the background information can cause dependencies in the uncertainties of target 

variables. Dependence in uncertainty analysis is an active issue and methods for dealing with dependence are still 

very much under development. Suffice to say here, that the analyst must pre-identify groups of variables between 

which significant dependence may be expected, and must query experts about dependencies in their subjective 

distributions for these variables. Methods for doing this are discussed in Part II. 
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 4 PERFORMANCE MEASURES   
 

The measures of performance discussed here apply to discrete events and uncertain quantities. They are designed to 

be objective and (largely) scale invariant, so that performance on different sets of variables measured on different 

scales can be compared. Moreover, performance measures should be conservative in the sense that they tie in closely 

with familiar notions for measuring performance in other areas. These methods are developed in (Cooke et al 1988, 

Cooke 1991) and applied in a wide variety of studies, including recent EU-USNRC uncertainty study of accident 

consequence codes (Harper et al 1994). They require that experts assess variables whose values become known to 

the experts post hoc. These variables are termed "performance variables" or "calibration variables" or "seed 

variables", and they form a distinguishing feature of the present methods.   

 

The variables of interest for an uncertainty analysis are typically not of such a nature that their true values become 

known within the time frame of the study. In this case additional variables must be introduced. The identification of 

appropriate seed variables is a major task of the uncertainty analyst. Seed variables may sometimes have the same 

physical dimensions as the variables of interest. This arises when the variables of interest are not practically 

measurable for reasons of scale, e.g. great distances, long times, high temperatures; whereas measurements can be 

performed at other scales. In this case, unpublished measurements or experiments can be used as seed variables. 

When such seed variables are not available, variables can be chosen which "draw on the relevant expertise" yet do 

not have the same dimensions as the variables of interest. As a loose criterion, a seed variable should be a variable 

for which the expert may be expected to make an educated guess, even if it does not fall directly within the field of 

the study at hand. Seed variables should be chosen so as to avoid dependencies so far as possible. The number of 

seed variables for assessments of uncertain quantities with continuous ranges is typically between 10 and 30.  

 

The purpose of performance is twofold. First, verifying good performance of the experts and of the combination of 

experts' judgments enhances the credibility of the study and helps build rational consensus. Second, performance 

measures can be used to construct performance based combinations of expert judgments. The latter subject is treated 

in the following section.  To facilitate discussion, we assume that experts have assessed 5%, 50% and 95% quantiles 

for a number of seed variables.  

 

Performance is measured in two dimensions, namely calibration and informativeness. Performance is discussed from 

the viewpoint of a decision maker who will use the experts' assessments in his decision problem. Details on these 

notions are found in Appendix IV, a qualitative discussion is given below.   

 

4.1 Calibration   
 

Calibration measures statistical likelihood, very loosely characterized as "correspondence with reality". In scoring 

calibration, each expert is regarded as a statistical hypothesis, namely:    

 

 The realizations of the seed variables may be regarded as independent  samples from a distribution corresponding 

to the expert's quantile assessments.   

 

The "distribution corresponding to the expert's quantile assessments" is the distribution which says, in effect, that the 

probability of a realization falling in an inter-quantile range is just the difference of the corresponding quantiles. 

Thus, the probability that a realization falls between the 50% quantile and the 5% quantile is 45%. The decision 

maker wants experts for whom the corresponding statistical hypothesis is well supported by the data gleaned from 

the seed variables.  This is sometimes expressed as 'the decision maker wants probabilistic assessments which 

correspond to reality'.  

 

We may sketch the matter very crudely as follows. If an expert gives 90% confidence bands for a large number of 

variables, then we might expect that only 10% of the variables will actually fall outside his bands. If the expert has 

assessed 20 variables for which the realizations are known post hoc, then 3 or 4 of the 20 variables falling outside 

these bands would be no cause for alarm, as this can be interpreted as sampling fluctuations. The above hypothesis 

would still be reasonably supported by the data. If 10 of the 20 variables fell outside the bands, we should be 

worried, as it is difficult to believe that so many outliers should result from fluctuations; we should rather suspect 

that the expert chooses his bands too narrowly. Statistical likelihood measures the degree to which data support the 

corresponding statistical hypothesis. More precisely:    
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 A calibration score of 0.01 for an expert based on 20 realizations means that there is a 1/100 chance of seeing a 

discrepancy between observed and predicted frequencies as great or greater than that observed for this expert on 

these 20 realizations.  

 

The calibration score is always between zero and one, and higher scores are better. As is evident from the above, the 

proper interpretation of a calibration score requires knowledge of the number of realizations on which it is based, 

and scores based on different numbers of realizations cannot be compared directly. The can be compared by 

rescaling the 'effective number' of seed variables.  

 

Calibration is a fairly "fast" function; that is, on the basis of say 10 realizations we can easily distinguish four or 

more orders of magnitude in calibration. Empirical scientists are frequently puzzled by this on first acquaintance, so 

it is worthwhile to offer a brief explanation.  

 

Suppose we toss a coin ten times and observe six heads. Expert Nr. 1 has assessed the probability of heads on each 

toss as 1/10. The statistical likelihood of the corresponding statistical hypothesis is the probability of observing six or 

more heads on ten tosses, if the probability per toss is 1/10/ This likelihood is about 0.0001. Expert Nr. 2 has 

assessed the probability of heads per toss as 1/2. His statistical likelihood is about 0.38.  

 

The speed of the calibration function entails that adding or deleting a realization can have a noticeable impact on the 

calibration score of the experts. The performance based decision makers discussed in the next section depend on the 

ratio of expert calibration scores, and this is considerably less sensitive. Experience with many data sets supports the 

following rule of thumb: If there are 20 realizations, then some of these when removed individually may change the 

calibration score of an expert (or the decision maker) by a factor 2. This typically has a small impact on the actual 

distributions of the performance based decision maker. However, an analysis of robustness against removal of seed 

variables should always be carried out.   

 

4.2 Informativeness   
 

To measure informativeness, a background measure is assigned to each query variable. Probability densities are 

associated with the assessments of each expert for each query variable in such a way that (i) the densities agree with 

the expert's quantile assessments, and (ii) the densities are minimally informative with respect to the background 

measure, given the quantile constraints (Kullback 1959). The background measures are typically either uniform or 

loguniform. For these background measures, it is necessary to choose an "intrinsic range", i.e. to truncate the range 

of possible values. The resulting information scores can be shown to be very robust against the choice of the intrinsic 

range (Cooke 1991). In practice, the intrinsic range is chosen by the "10% overshoot rule": the smallest interval 

containing all quantile assessments is extended by 10% above and below. Information scores on different sets of 

variables can be compared only if the background measures and intrinsic ranges agree setwise.  

 

Informativeness is scored per variable per expert by computing the relative information of the expert's density for 

that variable with respect to the background measure. Overall informativeness per expert is the average of the 

information scores over all variables. This average is proportional to the relative information in the expert's joint 

distribution over all variables under the assumption that the variables are independent. Information scores are always 

positive, and other things being equal, experts with high information scores are preferred.  The information score is a 

positive number with increasing values indicating greater information relative to the background measure. Since the 

intrinsic range depends on the expert assessments, this range can change as experts are added or deleted, and this can 

exert a small influence on the information scores of the remaining experts.  

 

Information is a "slow" function; that is, large changes in the quantile assessments produce only modest changes in 

the information score. On a data set with 20 realizations and five experts, calibration scores typically vary over four 

orders of magnitude, but information scores seldom vary by more than a factor 3. In the performance based 

combinations discussed below, this feature prevents a poor calibration performance being compensated by a very 

high information score. Information serves to modulate between experts who are more or less equally well calibrated.   

 

 

 

 

4.3 Expert Performance 
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It is natural to ask how experts perform, and whether the uncertainty of an expert in matters relating to his/her 

expertise is better, in the sense of calibration and information, than the uncertainty of non-experts. 

 

There is not an abundance of literature on this issue. However one psychometric experiment compared “experienced 

experts” (teachers at a technical training institution) with “inexperienced experts” (students at said institution) on two 

types of items, namely technical items and general knowledge items. On technical items the experienced experts 

performed significantly better than the inexperienced experts,  with regard to both calibration and information. On 

the general knowledge items there was no significant difference in either regard. 

 

An extended study of weather forecasting in The Netherlands (Murphy and Daan, 1982, 1984) was reanalyzed in 

(Roeleven et al 1991). Experts predicted precipitation, visibility and wind speed for 5 six hour periods into the 

future, over a period of  six years. Not surprisingly, it emerged that experts’ distributions were less informative as the 

variables predicted were further into the future; although the loss of information was not great. Somewhat less 

obvious was the result that experts’ distributions were much better calibrated for variables up to 12 hours in the 

future, than for variables further into the future. The experts’ scientific modeling tools are of course better for near 

future variables. This suggests that that the experts’ scientific expertise contributes to producing well calibrated 

assessments.  

 

A study of Dutch project managers assessing the probability that project proposals (Bhola et al 1991) showed that 

younger experts were better probability assessors than their older colleagues, though other explanatory variables than 

experience may play a decisive role. Projects in The Netherlands are more predictable than projects abroad, and 

younger project leaders have proportionally more projects in The Netherlands. 
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 5. COMBINATIONS OF EXPERT JUDGMENT   
 

Decision makers want to take, and want to be perceived to take, decisions in a rational manner. The question is, how 

can this be accomplished in the face of large uncertainties? Indeed, the very presence of uncertainty poses a threat to 

rational consensus. Decision makers will necessarily base their actions on the judgments of experts. The experts, 

however, will not agree among themselves, as otherwise we would not speak of large uncertainties. Any given 

expert's viewpoint will be favorable to the interests of some stakeholders, and hostile to the interests of others. If a 

decision maker bases his/her actions on the views of one single expert, then (s)he is invariably open to charges of 

partiality toward the interests favored by this viewpoint.  

 

An appeal to 'impartial' or 'disinterested' experts will fail for two reasons. First, experts have interests; they have jobs, 

mortgages and professional reputations. Second, even if expert interests could  somehow be quarantined, even then 

the experts would disagree. Expert disagreement is not explained by diverging interests, and consensus cannot be 

reached by shielding the decision process from expert interests. If rational consensus requires expert agreement, then 

rational consensus is simply not possible in the face of uncertainty. 

 

If rational consensus under uncertainty is to be achieved, then evidently the views of a diverse set of experts must be 

taken into account. The question is how? Simply choosing a maximally feasible pool of experts and combining their 

views by some method of equal representation might achieve a form of political consensus among the experts 

involved, but will not achieve rational consensus. If expert viewpoints are related to the institutions at which the 

experts are employed, then numerical representation of viewpoints in the pool may be, and/or may be perceived to be 

influenced by the size of the interests funding the institutes.  

 

Rational consensus is attainable in the face of large uncertainties if stakeholders commit in advance to the method by 

which expert views are selected and combined. Once committed to the method of selection and combination, a 

stakeholder cannot rationally reject the results post hoc without breaking his prior commitment. Such rejection would 

incur an additional burden of proof: explain why the method itself is not sufficient for rational consensus and why the 

prior commitment to the method should not have been made. 

 

Rational consensus imposes certain constraints which a method of combining expert judgments must satisfy. These 

constraints are expressed as principles and constitute necessary conditions for rational consensus. If a method of 

combination violated one of these principles, then a rational stakeholder would have sufficient grounds for 

withholding prior commitment.  

 

5.1 Principles for Rational Consensus 
 

The principles forming the basis of the performance based methods are (Goossens et al 1989, Cooke 1991):     

 

 Scrutability/accountability: all data, including experts' names and assessments, and all processing tools are open 

to peer review and results must be reproducible by competent reviewers.    

 Fairness: experts are not pre-judged.    

 Neutrality: methods of elicitation and processing must not bias results.    

 Empirical control: quantitative assessments are subjected to empirical quality controls.   

 

 

When expert judgments are cast in the form of probability distributions, these distributions must be combined, for 

each assessed variable, to yield distributions for a "decision maker". Many mathematical functions for this purpose 

have been proposed and studied. This subject is not reviewed here. Suffice to say that strong arguments can be given 

for restricting attention to "linear pooling", that is taking weighted averages of the experts' distributions, where the 

weights are non-negative and sum to one (French, 1985). The problem of combining experts' distributions is then 

reduced to the problem of determining the weights.   

 

A variety of methods have been used in practice. The simplest method, which is always preferred in the absence of 

something better, is to take all weights to be equal. While equal weight combinations have an obvious appeal, they 

also have drawbacks. One expert whose distributions differ strongly from the rest can have a large impact on the 

resulting decision maker. This is a drawback if this expert's assessments cannot be defended on the basis of 

performance. As more and more experts are brought into the study, the equal weight decision maker can tend to 

become quite diffuse.  
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In cases where performance has been measured by the methods sketched above, a general conclusion is that 

performance based decision makers outperform the equal weight decision maker. The difference is sometimes 

marginal, often mild, but sometimes severe (Goossens et al. 1998). We discuss briefly the principles of performance 

based combinations of expert judgments. Details can be found in Appendix IV.  

 

5.2 Proper scoring rules 
 

In developing combinations of expert judgments, the principle of neutrality is of particular interest. This principle 

says that the method of combination must not bias the assessments. Put differently, the method of combination 

should not reward experts from giving an assessment at variance with their true opinion.  Implementing the principle 

of neutrality leads naturally to the theory of strictly proper scoring rules. In the simplest case, a scoring rule is a 

function assigning a real number to an assessed distribution plus a realization. A scoring rule is strictly proper if, 

whatever an assessors true distribution, his maximal expected score (computed before the realization is known) is 

obtained when his assessment coincides with his true distribution.  

 

The idea is best explained by considering a popular improper scoring rule. Suppose an uncertain quantity X can 

assume one of three possible values {1,2,3}. Let P = (p1, p2, p3) be an assessor's true probability distribution for 

outcomes 1,2,3. A scoring rule is a function R(P,i) where i is the realized value.  

 

Consider the so-called direct rule:     

 

R(P,i) = pi;  

 

When the expert believes P, yet reports distribution Q as his assessment, his expected score is     

 

EP(R(Q,X) = q1p1 + q2p2 + q3p3.  

 

If he decides to choose Q so as to maximize his expected score, what should he choose? Suppose p1 > p2; p1 > p3; 

then it is easy to see that expected score is maximized by choosing q1 = 1, q2 = q3 = 0.  

 

R is strictly proper if for all P, the expected score EP(R(Q,X) is maximized if and only if Q = P. This type of scoring 

rule is a function of a single assessment plus realization. In combining expert judgments we must assign scores to 

sets of assessments and sets of realizations, and we are interested in the long run behavior of scoring rules as the 

number of variables gets large. This complicates matters considerably. Suffice to say that the product of the 

calibration and information scores introduced above is a strictly proper scoring rule in an appropriate long run sense.  

 

5.3 Combinations  

 
Experts give their uncertainty assessments on query variables in the form of, say,  5%, 50% and 95% quantiles. An 

important step is the combination of all experts assessments into one combined uncertainty assessment on each query 

variable. All combination schemes considered here are examples of "linear pooling"; that is the combined 

distributions are weighted sums of the individual experts' distributions, with non-negative weights adding to one. 

Different combination schemes are distinguished by the method according to which the weights are assigned to 

densities. These schemes are designated "decision makers". Three decision makers are described briefly below.  

 

Equal weight decision maker  

 

The equal weight decision maker results by assigning equal weight to each density. If N experts have assessed a 

given set of variables, the weights for each density are 1/N; hence for variable i in this set the decision maker's 

density is given by:  

 

feqdm,i = (1/N) j=1…N fj,i                

 

where fj,i is the density associated with expert j's assessment for variable i.  

 

Global weight decision maker  
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The global weight decision maker uses performance based weights which are determined, per expert, by the 

normalized product of expert's calibration score and his(her) overall information score, and by an optimization 

routine described below. The calibration score is determined per expert by his(her) assessments of the seed variables. 

The overall information score is the (relative) information in the expert's joint distribution. For expert j, the same 

weight is used for all variables assessed. Hence, for variable i the global weight decision maker's density is:  

 

fgwdm,i = j=1…N wj fj,i ; j=1…N wj = 1. 

 

These weights satisfy a "proper scoring rule" constraint. That is, under suitable assumptions, an expert achieves 

his(her) maximal expected weight, in the long run, by and only by stating quantiles which correspond to his(her) true 

beliefs.  

 

Item weight decision maker  

 

As with global weights, item weights are performance based weights which satisfy a proper scoring rule constraint, 

and are based on calibration and informativeness, with an optimization routine described below. Whereas global 

weights use an overall measure of informativeness, item weights are determined per expert and per variable as the 

product of calibration and information for the given item.This enables an expert to up- or down-weight him(her)self 

for each variable by choosing a more or less informative distribution for that variable. Roughly speaking, more 

informative distributions are gotten by choosing quantiles which are closer together whereas less informative 

distributions result when the quantiles are farther apart. For the item weight decision maker, the weights depend on 

the expert and on the item. Hence, the item weight decision maker's density for variable i is: 

 

fiwdm,i = j=1…N wj,i fj,i ;  j=1…N wj,i = 1. 

 

 

Optimization 
 

The proper scoring rule constraint entails that an expert should be unweighted if his/her calibration score falls below 

a certain minimum,  > 0. The value of  is determined by optimization. That is, for each possible value of  a 

certain number of experts will be unweighted, and the weights of the remaining experts will be normalized to sum to 

unity. For each value of  a decision maker dm  is computed. Dm  is scored with respect to calibration and 

information, and the "virtual weight" of dm  is computed, this is the weight which this dm would receive if he were 

added as a 'virtual expert'. The value of  for which the virtual weight of dm  is greatest is chosen as the cut-off 

value for determining the unweighted expert. For more details see Appendix IV. 

 

The appeal to first principles, even to secondary and tertiary principles, cannot lead to a unique mathematical model 

for combining expert judgment. Ad hoc choices must still be made. One example of such a choice is the selection of 

the intrinsic range discussed above. Another such choice relates to the parameters "size" and "power" in selecting 

statistical tests, see Appendix IV.  
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6. Dependence 
 

 

It has long been known that ignoring dependencies between uncertainties (Apostolakis and Kaplan 1981) can cause 

significant errors in uncertainty analysis. New techniques for estimating and analyzing dependencies in uncertainty 

analysis have been developed in the course of the Joint EU-NRCaccident consequence uncertainty analysis. These 

are described here. For the mathematics of dependence modeling see Cooke (1995) and the references therein. Post-

processing (Kraan and Cooke 1996) also represents a way of assessing dependencies, but this not discussed here. We 

discuss how to elicit dependencies from experts, how to combine them, and how to analyse dependencies in the 

output of an uncertainty analysis.  

 

6.1 Lumpy and smooth elicitation strategies 
 

The best source of information about dependencies is often the experts themselves. The most thorough approach 

would be to elicit directly the experts' joint distributions. The practical drawbacks to this approach have forced 

analysts to look for other dependence elicitation strategies. One obvious strategy is to ask experts directly to assess a 

(rank) correlation coefficient. Even trained statisticians have difficulty with this type of assessment task (Gokhale 

and Press 1982).  

 

Two approaches have been found to work satisfactorily in practice. The choice between these depends on whether 

the dependence is lumpy or smooth. Consider uncertain quantities X and Y. If Y has the effect of switching various 

processes on or off which influence X, then the dependence of X on Y is called lumpy. In this case the best strategy 

is to elicit conditional distributions for X given the switching values of Y, and to elicit the probabilities for Y 

(Krzykacz and Hofer 1988). This might arise, for example, if corrosion rates for under ground pipes are known to 

depend on soil type, where the soil type itself is uncertain. In other cases the dependence may be smooth. For 

example, uncertainties in the biological half lives of cesium in dairy cows and beef cattle are likely to be smoothly 

dependent.  

  

Within the joint EU-NRC study a strategy has been employed for eliciting smooth dependencies from experts. When 

the analyst suspects a potential smooth dependence between (continuous) variables X and Y, experts first assess their 

marginal distributions for X and Y. They are then asked:  

 

Suppose Y were observed in a given case and its value were found to lie above y50, the median value for Y; what is 

your probability that, in this same case, X would also lie above x50 , the median value for X?  

 

Experts quickly became comfortable with this assessment technique and provided answers which were meaningful to 

them and to the project staff. If Fx and Fy are the (continuous inevitable) cumulative distribution functions (cdf's) of 

X and Y respectively, the experts thus assess  

 

P50(X,Y) =  P(Fx(X) > 0.50 | Fy(Y) > 0.50).  

 

Consider all joint distributions for having marginals, Fx, Fy, having minimum information relative to the distribution 

with independent marginals Fx , Fy, and having rank correlation rnk(X,Y), rnk   

[-1, 1]. For each such minimum information distribution there is a unique value for P50(X,Y), and conversely, each 

value of P50(X,Y)  [0,1] is associated with a unique minimum information distribution with a rank correlation  [-

1,1].  

 

More generally, for each rnk  [-1, 1], and each r  (0,1) we may associate the number  

 

H(rnk, r) = P(Fx (X) > r | Fy(Y) > r);  

 

where the probability P is taken from the minimum information distribution with marginals Fx, Fy, and rank 

correlation rnk. 

 

Holding rnk fixed, we get a functions of r, r  [0,1]. These functions have been computed with the uncertainty 

analysis package UNICORN (Cooke 1995). The results for rnk = -0.90, -0.80, …0.90 are shown in Figure 1.  
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When there is a single expert having assessed P50(X,Y), then we simply use the minimum information joint 

distribution with rank correlation rnk solving: 

 

H(rnk, 0.50) = P(Fx(X) > 0.50 | Fy(Y) > 0.50) 

 

 

from Figure 1.  

 

When several experts are combined via linear pooling, a complication arises. Since the medians for X and Y will not 

be the same for all experts, the conditional probabilities P50(X,Y) cannot be combined via the linear pooling. 

However, the marginal distributions can be pooled, resulting in cdfs Fx,DM and Fy,DM for X and Y for the Decision 

Maker (DM). Let x* and y* denote the medians for DM's distribution for X and Y. With each expert we associate a 

minimum information joint distribution; for each such distribution we can compute the conditional probabilities 

P(X>x*|Y>y*). Since these conditional probabilities are defined over the same events for all experts, they can be 

combined via the linear pool. This yields a value for p50 for DM, for which we can find the corresponding rank 

correlation.  

  

A simple graphical method for doing this can be given if for each experts the numbers Fx(x*) and Fy(y*) are not too 

different. In this case we associate with each expert a number re = (Fx(x*)+Fy(y*))/2. We then use this value of re 

together with the value of rnke determined from the experts response p50 to read the value of P(X>x*|Y>y*) from 

Figure 1. The steps are summarized as follows.  

 

1) For each expert e query P50,e(X,Y) = P(Fx(X) > 0.50 |Fy(Y) > 0.50) 

2) For each expert e, find rnke which solves H(rnke, 0.50) = P50,e(X,Y) (using Fig. 1) 

3) Take linear pooling of experts' marginals, find DM’s medians x*, y* 

4) For each expert find re = (Fy(y*)+Fx(x*))/2, and Pr,e, using rnke from Fig. 1 

5) Using linear pooling, define PDM  =  j=1…N wj Pr,e  =  PDM(Fx,DM(X) > x* | Fy,DM(Y) > y*) 

6) Find rnk from Figure 1 which solves H(rnk, 0.50) = PDM(X,Y) (using Fig. 1) 
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Figure 1. pr  for minimum information distributions with rank correlation constraints. 
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6.2 Analyzing dependence in output with cobweb plots 
 

The problem of understanding and communicating information about dependencies in the results of an uncertainty 

analysis is inverse, as it were, to the problem of eliciting dependencies. If the dependencies are smooth then familiar 

regression, rank regression and partial rank correlation measures can convey useful information about how the 

uncertainty in output variables depends on uncertainty in input variables. Unfortunately, such measures may easily 

miss important information. Using only such measures, one never knows whether something is being missed.  

  

For this reason a graphical tool, called cobweb plotting has been developed to study dependence. To form a cobweb 

plot, selected variables are represented as parallel vertical lines on which the variables' percentiles have been 

marked. Each sample from an uncertainty analysis is mapped as a jagged line intersecting the vertical lines at the 

percentile points realized in that sample. The result of plotting a few hundred samples suggest a cobweb, and 

contains all the information in the empirical joint distribution of the variables quantile functions. To study and 

extract information from a cobweb plot, the user can filter all lines passing through selected intervals on the vertical 

lines. This is equivalent to conditionalizing the joint distribution on percentile intervals of the variables.  

 

Figure 2 shows an unconditional cobweb for variables dispersion and deposition variables for stability class E. The 

left most variable is dry deposition velocity. The next four variables are dispersion coefficients from the power laws: 

 

y(x) = ayx
by

 ; 

 

z(x) = azx
bz

 . 

 

 

The remaining variables are ground concentrations at various down wind distances. “|x,y” indicates the ground 

concentration at down wind distance x and cross wind distance y from the centerline. 

 

From Figure 2 we can see that the concentrations tend overall to be rather strongly correlated with each other. 

However, this overall pattern need not hold if we look at very high or low concentrations at specific distances. Figure 

3 shows the lowest 5% of the concentrations at half a kilometer from the source at the centerline. 
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Figure 2, Unconditional cobweb plot, ground concentrations, stability class E 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Cobweb plot ground concentrations, conditional on lower 5% of concentrations at centerline, ½ km 

downwind. 
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PART II: PROCEDURES 
 

 

1. INTRODUCTION  
 

Part II of this Procedures Guide provides the details of the protocol for a full expert judgment exercise. This protocol 

is based in large measure on experience gained within the joint EU-USNRC research effort, and reflects 

contributions from both the European and US experience (Hora and Iman 1988). Of course, the method itself is 

applicable outside the nuclear sector. In the general field of risk analysis the following studies performed by or in 

collaboration with the T.U. Delft have also contributed to the experience base for structured expert judgment.    

 

 Crane Risk (DSM in collaboration with TU Delft, Akkermans 1989)  

 Space Debris (TU Delft for the European Space Agency, Meima 1990)  

 Safety Analysis Composite Materials (European Space Agency in collaboration with TU Delft, Offerman 1990)  

 Groundwater Transport (DSM chemical plant in collaboration with TU Delft, Claessens, 1990)  

 Dose Response Relations for Hazardous Substances (TU Delft for Dutch Ministry of Environment, Goossens et 

al 1992)  

 Water Pollution (TU Delft for Dutch Min. of Environment, VROM 1994)   

 Failure of Moveable Water Barriers (Dutch Ministery of Water Management in collaboration with TU Delft, van 

Elst 1997)  

 Safety Factors for Airline Pilots (Aspinall and Associates for British Air, Aspinall 1996)  

 Expert Judgment at Montserrat (Aspinall and Associates for governor Montserrat, Aspinall 1996)  

 Expert Judgment for Serviceability Limit States (Ter Haar et al 1998).  

 Expert Judgment for Uncertainty Analysis of Inundation Probability (in Dutch) (Frijters et al 1999).  

 

For a review of recent applications and references to literature, see (Goossens et al 1998).   

 

This protocol is broken into three sections, Preparation for elicitation, Elicitation and Post Elicitation. Material for 

training is collected in Appendix V. In the EU-NRC joint project, the uncertainty analysis of probabilistic accident 

consequence codes was broken down into the following sub models. For each individual sub model the following 

steps were followed.     

 

Preparation for Elicitation: 

(1) Definition of case structure     

(2) Identification of target variables    

(3) Identification of query variables    

(4) Identification of performance variables    

(5) Identification of experts    

(6) Selection of experts    

(7) Definition of elicitation format document    

(8) Dry run exercise    

(9) Expert training session    

 

Elicitation 

(10) Expert elicitation session    

 

Post-Elicitation 

(11) Combination of expert assessments    

(12) Discrepancy and robustness analysis    

(13) Feed back     

(14) Post-processing analyses    

(15) Documentation   

 

Steps (1) to (7) may contain several iterations prior to proceeding with step (8). Each step will be discussed 

separately.  
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2. PREPARATION FOR ELICITATION 
 

Expert judgment is used to obtain results from experiments and/or measurements, which are physically possible, but 

not performable in practice. Such experiments are ‘out of scale’ financially, morally, or physically in terms of time, 

energy, distance, etc. they may be compared to thought experiments in physics. Since these experiments cannot in 

fact be performed, experts are uncertain about the outcomes, and this uncertainty is quantified in a formal expert 

judgment exercise. Preparation for elicitation is really nothing more than carefully designing these hypothetical 

experiments, so as to obtain the information that we require.  

 

2.1. Definition of case structure   
 

Defining the case structure for an expert judgment study involves studying the physical/biological/environmental 

models for whose quantification expert judgment is to be employed. The parameters in the models have of course 

been assigned values, but these values may be uncertain. The activity of the analyst in this phase may be described as 

answering the following questions: 

 

Which values are uncertain? 
 

The first job of the analyst is to retrieve the basis for the assignment of values to parameters, and to determine which 

values are uncertain. If the model documentation is not sufficient for this purpose, the model builders and source 

material must be consulted.  

 

Can the uncertainty be quantified by historical and/or measurement data? 

 
If historical and/or measurement is available to quantify uncertainty, then of course this should be preferred to expert 

judgment. Such data must be compiled under conditions which agree with the assumptions which the model builders 

have made. For example, accident consequence codes use parameters to describe plume spread under given 

atmospheric stability conditions. If measurement data is to be employed to quantify these parameters, the 

measurements must use the same stability classification scheme. 
 

When the analyst concludes that sufficient historical and/or measurement data is not available for quantifying 

uncertainty, he is justified in applying expert judgment to this end. 

 

Which (hypothetical) measurements would be used to quantify the parameters? 
 

If a parameter is uncertain, and if the uncertainty cannot be quantified by data, then the analyst must ask how the 

values would be determined if suitable measurements could be preformed. These experiments will be hypothetical, 

i.e. they cannot be preformed in practice, but they must be physically possible. Again, care must be taken to insure 

that the hypothetical measurement conditions agree with the assumptions of the models in question.  

 

The results of this activity should be written up in a case structure document. This document is distributed to the 

experts in the expert training (see paragraph 2.9) 

 

2.2. Identification of target variables  

 

Once the case structure of a specific model is defined, the target variables over which uncertainty distributions are 

required must be identified. Target variables are those parameters of the model in question which satisfy three 

criteria: 

 

1. The values of the parameters are uncertain. 

2. The uncertainty cannot be quantified with historical and/or measurement data. 

3. The uncertainty is expected to have a significant impact on the uncertainty of one or more endpoints of the 

model. 

 

The third criterion is applied when the number of variables satisfying the first two criteria is very large and exceeds 

the resources of the study. A formal method for implementing the third criterion is not available. In the joint EU-

USNRC study, variables were selected on the basis of past experience and computing resources. In deciding to apply 
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expert judgment to assess the uncertainty concerning target variables, it is incumbent upon the analyst to document 

the available historical data and indicate his reasons for not using this data. Even when existing historical data is not 

used, it is important to document this data as a type of check for the results of expert assessments.  

 

2.3. Identifying query variables  

 

Variables which will be presented to the experts in the elicitation and for which they will quantify their uncertainty 

are termed query variables. We assume that the target variables to be quantified via structured expert judgment have 

been identified. The question is how to obtain uncertainty distributions over these variables. In defining the variables 

about which experts will be asked, two golden rules apply:     

 

1. Ask for values of observable or potentially observable quantities.     

2. Formulate questions in a manner consistent with the way in which an expert represents the relevant information 

in his knowledge base.  

 

If a target variable satisfies the above two rules, then experts can be asked directly to quantify their uncertainty with 

regard to this variable. In this case the target variable is a query variable. If a target variable does not satisfy these 

requirements, then experts cannot be asked directly about this variable, and other variable(s) must be found which do 

satisfy these requirements and from which the required information can be extracted. We can best illustrate with 

some examples. 

 

Deposition velocities:  

In some cases the model parameters correspond to physically measurable quantities with which the experts are 

familiar. For example, deposition velocities to various surfaces under various conditions are directly measurable. The 

measured values are known to depend on a large number of physical parameters which cannot all be measured or 

controlled on any given experiment. Moreover, the functional form of the dependence is not known. Hence, if a 

controlled experiment is repeated many times, different values will be found reflecting different values of 

uncontrolled and unknown physical parameters. If a measurement set-up is described to an expert, (s)he can express 

his/her uncertainty via a subjective distribution over possible outcomes of the measurement. In such cases the experts 

are questioned directly about uncertainty with respect to model parameters.  

 

In other cases experts cannot be questioned about model parameters as illustrated in the following two examples.  

 

Dispersion coefficients:  

Lateral plume spread y is modeled as a power law function of downwind distance x from the source of a release: 

 

y(x) = ayx
by  

 

where the dispersion coefficients ay and by depend on the stability of the atmosphere at the time of the release. The 

above equation is not derived from underlying physical laws; rather, the coefficients are fit to data from tracer 

experiments. For the uncertainty analysis, we require distributions on ay and by which, when pushed through the 

above equation, will yield the uncertainty on y for each down wind distance x. ay and by are target variables. 

Although the experts have experience with measured values of y under various conditions, it is unrealistic to expect 

them to be able to quantify their uncertainty in terms of the target variables ay and by. Indeed, the dimension of ay 

must be [meters
1-by

]. In this case we define query variables y(xi); for down wind distances x1,...xn, and elicit 

uncertainty distributions on these. The problem then arises how to translate these elicited distributions into 

distributions on the target variables ay and by. This type of problem is called probabilistic inversion, and is discussed 

in the paragraph on post-processing. 

 

Transfer coefficients.  

The migration of radioactive material through various depths of soil is modeled using a so-called box model, shown 

below.  
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Figure 4. Box model for soil transfer 

 

 

 

The target variables in this case are the transfer coefficients kij, representing the proportion of material moved from 

box i to box j in a small time interval. The model in determines a set of first order differential equations which, under 

appropriate initial conditions, fully specifies the movement of material between the boxes.  

 

The transfer coefficients in this model cannot be measured directly and therefore cannot be query variables. Query 

variables were chosen to be the times Ti at which half of an initial mass starting in box 1 at time 0 has passed beyond 

box i. From this information, a distribution on the transfer coefficients must be determined.  

 

We see that in the second two examples above, the target variables cannot be query variables. The uncertainty 

analyst must choose query variables and must design methods for translating distributions over query variables into 

distributions on the target variables. It is essential to develop and test an appropriate post-processing technique 

before  finalizing the choice of query variables (see paragraph 4.4). 

 

Elicitation format for query variables 
 

We assume that the query variables concern results of hypothetical experiments which take values in an effectively 

continuous range. For example, our query variable might be  

 

 The root mean square difference in time integrated concentration in the crosswind direction, at 10 km downwind 

from a unit airborne release. 

 

The experts’ uncertainty distributions may be represented by a number of quantiles; we assume that the 5%, 50% and 

95% quantiles are elicited (see section 3.4 of Part I).  

 

The elicitation will generally be cast as a hypothetical experiment.  In describing this experiment it is important to 

identify the physical factors which may influence the outcome of the experiment.  Each relevant physical factor will 

fall into one of two classes: 

 

1. The case structure assumptions. 

2. The uncertainty set. 

 

Some relevant factors will have their values stipulated by the assumptions of the study, as reflected in the case 

structure. Thus models using  simple straight line Gaussian dispersion models assume simple terrain.  Further the 

models will read certain physical factors from the environment. In the above example, these might be the time of 

year, time of day, release height, degree of insolation,  average  hourly wind speed and average hourly wind 

direction. Hence these factors are assumed known and form part of the case structure assumptions. 

 

Other factors may influence the outcome of the hypothetical experiment, but their values are not stipulated by the 

case structure. These factors belong to the uncertainty set. The experts should be made aware that these factors are 

uncertain, and should fold this uncertainty into their distributions on the outcome of the hypothetical experiment. 

Thus, the model may assume a simple classification of atmospheric stability involving the percentage of the sky 

covered by clouds. The case structure may then contain the assumption “insolation is 5/8” meaning that 5/8 of the 

sky is covered by cloulds. An expert may remark:  

 

“yes, but are they high or low cloulds?   that makes a big difference in the solar energy reaching the ground.”  

 

To such a question the analyst must answer  

 

“This factor belongs to the uncertainty set for this experiment, and your uncertainty should take account of different 

effects of high versus low clouds, together with the probability of high versus low clouds”. 

 

A general format for elicitation may then be given as follows: 

k43 
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Figure 5. Format for eliciting continuous varibles 

 

 

Eliciting uncertainty on probabilities 
 

Many models contain parameters which are probabilities, and which are also uncertain. In reasoning about 

‘uncertainty of probabilities’ or ‘uncertainty of uncertainty’ conceptual muddles easily arise. It is therefore useful to 

treat this case separately. 

 

A probability may be interpreted either as a limiting relative frequency, or as a degree of belief. In either case, a 

probability is not directly observable. Hence, the analyst should not ask ‘ What is your uncertainty on the probability 

of event X’; for a number of reasons:   

 

1. It is ambiguous whether “probability” is to be interpreted objectively or subjectively. 

2. If “probability“ is interpreted subjectively, i.e. as degree of belief, then it is not meaningful to quantify 

uncertainty, as uncertainty concerns potential observations. 

3. If “probability” is interpreted objectively, then it must be interpreted as limiting relative frequency, and the 

physical dimensions of frequency must be specified. 

 

Probability is dimensionless. However probability may sometimes be interpreted as limiting relative frequency, and 

frequency has the dimensions: [#/units] (i.e. # per hour, per cycle, per mission, etc).  

 

We can quantify uncertainty in relative frequency in large populations. To do this we basically follow the rules set 

forth above (see also Cooke and Jager, 1998, Frijters, 1999). First we specify a large virtual population; this might 

be the population of all pumps. Then we specify an experimental sub population selected randomly but so as to 

satisfy the case structure assumptions. For example, we select 1,000,000 pumps which are motor driven and with a 

given power rating. We now ask, how many of these pumps fail before 1,000 hours of continuous service. Operating 

environment, maintenance regime, ambient air temperature, for example, may belong to the uncertainty set. 

 

The general format for “uncertainty over the probability of characteristic C” may be given as follows: 

 

Conditional on 

 

< values of factors in the case structure assumptions > 

 

Please give the 5%, 50% and 95% quantiles of your uncertainty in 

 

< Hypothetical experiment > 

 

taking into account that values of 

 

< uncertainty set > 

 

are unknown. 
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Figure 6. format for eliciting uncertainty on probabilities 

 

Choosing N large, the distribution over K/N obtained in this way may be interpreted as  the expert’s uncertainty in 

the probability of C under the conditions specified in the case structure. 

 

The output of the query variable identification activity is a list of query variables together which a schematically 

filled in elicitation format.  The above formats are filled in telegraph style for each variable. 

 

Dependencies 
 

At this stage, the query variable elicitation formats are checked for overlapping uncertainty sets. If two query 

variables depend on the values of the same physical factor, and if the value of this physical factor is not specified in 

the case structure, then this creates a probabilistic dependence between these two query variables. 

 

The analyst should note all pairs of query variables where the effect of common factors in their respective 

uncertainty sets may give rise to significant dependencies. These should be checked with substantive experts to 

arrive at a final list of dependencies.  

 

A format for eliciting dependencies may be taken from Part I, paragraph 6.1. 

 

 

2.4. Identification of seed variables  
 

Empirical control is built in the elicitation procedure by asking experts to assess calibration or seed variables. Seed 

variables are variables whose values are or will be known to the analyst within the frame of the exercise but not to 

the expert. Seed variables are important for assessing the performance of the combined experts' assessments. Seed 

variables also form an important part of the feedback to experts, helping them to gauge their subjective sense of 

uncertainty against quantitative measures of performance.   

 

It is impossible to give an effective procedure for generating meaningful seed variables. If the analyst undertakes to 

generate his own seed variables, he must exercise a certain amount of creativity, perhaps supported the experts 

themselves. General guidelines and tips will be provided here.   

 

 

Classification 

 

Conditional on 

 

< N items satisfying in the case structure assumptions > 

 

Please give the 5%, 50% and 95% quantiles of your 

uncertainty on 

 

< number K of items exhibiting characteristic C > 

 

taking into account that values of 

 

< uncertainty set > 

 

are unknown. 
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Seed variables falling squarely within the experts' field of expertise are called domain variables. In addition to 

domain variables, it is permissible to use variables from fields which are adjacent to the experts' proper field. These 

are called adjacent variables. Adjacent variables are those about which the expert should be able to give an educated 

guess. It will often arise that a given seed variable is a domain variable for one expert and an adjacent variable for 

another expert.  

 

In the literature one sometimes encounters the use of general knowledge variables in an expert judgment context 

("what is the population of Wroclaw, Poland"). For such variables an educated guess from the expert could not be 

expected, and the use of general knowledge variables is not recommended. Psychometric experiments indicate that 

experts are not better than general public on general knowledge items (Cooke et al 1988).  

 

Seed variables may also be distinguished according to whether they concern predictions or retrodictions. For 

predictions the true value does not exist at the time the question is answered, whereas for retrodictions, the true value 

exists at the time the question is answered, but is not known to the expert.  

 

In general, domain predictions are the most meaningful, in terms of proximity to the items of interest, and are also 

the hardest to generate. Adjacent retrodictions are easier to generate, but are less closely related to the items of 

interest.  Combining these notions we arrive at the following table with a crude evaluation: 

 

 

 PREDICTIONS RETRODICTIONS 

Domain +++ ++ 

Adjacent ++ + 

Table 1. Classification of seed variables, crude evaluation 

 

The use of adjacent retrodictions is sanctioned by the supposition that performance on such variables correlates with 

performance on the items of interest. There is no direct proof of this supposition at present, but it has been found that 

"experience" positively correlates with performance on adjacent retrodictions, and does not correlate with 

performance on general knowledge variables (see Cooke et al. 1988). Generally, the field of interest has a relatively 

small community of experts who tend to be familiar with current experiments. It is therefore not opportune to 

identify the source of the data during the elicitation; however, the name and institute of the experimenter are 

important for post hoc review.  

 

Practical issues 
 

Practical issues regarding the seed variables are:  

 

1. The seed variables should sufficiently cover the case structures for elicitation. Particularly, when one expert 

panel should tackle different sub fields, seed variables must be provided for all sub fields.  

 

2. For each sub field at least ten seed variables are needed, preferably more. Distinct seed variables may be drawn 

from the same experiment, but there should be sufficient alternative experiments to provide independence 

among the seed variables data.  

 

3. Seed variables may be, but need not be identified as such in the elicitation. 

 

4. If possible, the analyst should be unaware of the values of the seed variables during the elicitation. 

 

 

 

 

 

 

2.5. Identification of experts   
 

The term "expert" is not defined by any quantitative measure of resident knowledge. Rather "expert for a given 

subject" is used here to designate a person whose present or past field contains the subject in question, and who is 
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regarded by others as being one of the more knowledgeable about the subject. Such persons are sometimes 

designated in the literature as "domain" or "substantive" experts, to distinguish them from "normative experts", i.e. 

experts in statistics and subjective probability. Identifying experts for a given subject therefore means identifying 

persons whose work terrain contains the subject and whom others regard as knowledgeable. The procedure for 

identifying the set of experts for a given subject is known as the Round Robin:    

 

1. Some names of potential experts are generated within the organization responsible for the study (if the 

organization could not do this, they could not perform the study in the first place). These persons are    

approached and asked:   

- what is your background and knowledge base with regard to the subject?   

- which other persons are knowledgeable with regard to the subject?    

2. The persons named in the first round are approached with the same two questions.    

3. Step 2 is iterated until (a) no new names appear, of (b) it is judged that a sufficiently diverse set of experts is 

obtained.  

 

The knowledge base describes the type of information on which the experts' assessments would be based. This may 

be either     

 articles in journals or technical reports    

 experimental or observational data    

 computer modeling.  

 

After the set of experts is identified, a choice is made which experts to use in the study. In general, the largest 

number of experts consistent with the level of available resources should be used. In any event at least four experts 

for a given subject should be chosen. The choice should made so as to diversify the knowledge bases and institutions 

of employment. The experts' time commitment to the study must be assessed and budgeted. This may include time 

spent researching the questions and composing a written rationale for his assessments.  

 

2.6 Selection of experts  
 

After the set of experts has been identified, a choice is made which experts to use in the study. In general, the largest 

number of experts consistent with the level of resources should be used. In any event, at least four experts for a given 

subject should be chosen. A panel of eight experts is to be recommended as a rule of thumb. The choice should be 

made so as to diversify the knowledge bases and institutions of employment. At least two experts should be from 

outside the institution performing the study, in cases internal expertise is at stake only. The following general 

selection criteria are used:     

 

 reputation in the field of interest    

 experimental experience in the field of interest    

 number and quality of publications in the field of interest    

 diversity in background    

 awards received    

 balance of views    

 interest in  and availability for the project 

 

The nature and the broadness of a panel may require experts with very broad experience for which only a few are 

available (generalists). Panels may need a diversity of in-depth expertise; a mix of generalists and specialists. The 

requirement for the specialists is that they cover the whole panel's field sufficiently. For instance, in a panel on health 

effects, specialists may be required on the various organs of a human body, whereby only a few generalists have 

experience in the whole field of health effects. The following selection procedure for experts is recommended:  

 

1. All potential experts named during the expert identification phase will be contacted (by mail and later by 

personal contact) to find out whether they are interested and whether they consider themselves a potential expert 

for that particular panel. During personal contacts potential experts are also asked to name other potential 

experts.   

2. Potential experts send in a CV (curriculum vitae) indicating their expertise and availability for that specified 

panel.   
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3. All CV's will be reviewed by a nomination committee consisting of one to three persons from the project staff 

and one or two additional persons with thorough expertise in the field of interest not being involved as a 

potential expert themselves.  

 

 

When the list of candidate experts is determined, these are contacted and invited to participate in the study. It is 

essential to clarify the conditions of participation, including: 

 

1. Type of assessment task 

2. Remuneration 

3. Distribution of study results 

4. Use of the experts name 

5. Feedback of expert judgment data 

 

Use of Experts’ Names 
 

Every expert is very jealous of his/her name and professional reputation. It is essential to clarify how the names will 

be used. The following procedure, developed over a number of years, seeks to satisfy the demands of openness and 

objectivity in science, as well as demands of freedom from conflict of interest, harassment and legal liability which 

may legitimately be raised by the experts themselves. If indeed expert judgment is scientific data, then it must be 

open to peer review. On the other hand, the expert’s affiliation and professional activities may create a conflict of 

interest if his/her name is associated with the actual assessments. If told that his name would be published with his 

assessments, an expert in toxicology working at a pharmaceutical company might well say, “if you want the company 

viewpoint, ask the president of the company”. 

 

The proposed procedure is the following: 

 

1. Expert names and affiliations are published in the study. 

2. All information, including expert names and assessments, is available for competent peer review, but is not 

available for unrestricted distribution. 

3. Individual assessments are available for unrestricted distribution, assessments are not associated with names but 

identified as  “expert 1, 2,3,…”  etc. 

4. Expert rationales are available for unrestricted distribution. 

5. Each individual expert receives feedback on his/her own performance assessment. 

6. Any further published use of the expert’s name requires the expert’s approval. 

 

 

2.7 Preparation of elicitation document  
 

When the case structure is finalized, the target and query variables identified, the potential dependencies identified 

and the seed variables defined, the elicitation document can be prepared.   

 

For the query variables, the schematic elicitation formats from paragraph 2.3 must be fleshed out. For seed variables, 

a similar type of question format must be prepared. In the case of seed variables, however, the case structure 

assumptions need not necessarily agree with the case structure as defined in paragraph 2.1. Needless to say, the 

factors assumed to be known in the elicitation of seed variables must be consistent with the conditions under which 

the actual measurement/experiment is performed.  

 

The elicitation document should also contain any generally known data, tables, graphs etc. which the expert might 

like to consult. This is partly for convenience, but it often helps in clarifying the questions.  

 

The elicitation document will be taken into the elicitation, and perhaps sent to the experts in advance. Therefore, it 

should be intelligible without the analyst’s explanations. The following format for the elicitation document is 

recommended: 

 

1. Brief statement of the purpose of the study 

2. Statement of the conditions for participation  

3. Brief description of subjective probability assessment, including illustrations of quantiles etc. 



 32 

4. Brief  explanation of the performance measures 

5. Elicitation questions for query variables (including seed variables) 

6. Elicitation questions for dependencies. 

7. Graphs, tables, and other common reference material. 

 

The conditions for participation include the issues raised in paragraph 2,6; time, remuneration, feedback and use of 

experts’ name. 

 

 2.8. Dry run exercise  
 

The dry run exercise aims at finding out whether the case structure document and the elicitation format document are 

unambiguously outlined and whether they capture all relevant information and questions. One or two persons 

experienced in the field of interest should be asked to provide comments on both documents.  The dry run experts 

are asked to study the documents and comment on the following during the dry run session:     

 

 is the case structure document clear    

 are the questions clearly formulated    

 is the additional information provided with each question appreciated    

 is the time required to complete the elicitation too long or too short.  

 

The dry run experts should preferably come from outside the selected panel members. If that is difficult to achieve 

expert panel members may be asked to do the dry run.  After the dry run exercise the case structure document and the 

elicitation format document will be finalized and sent to the experts of the panel.  

 

2.9. Expert training session  
 

The experts are requested to provide subjective assessments on the query variables. They will represent their 

subjective assessments in terms of quantile points (e.g., 5%, 50% and 95%). Most experts are unfamiliar with 

quantifying their degree of belief in terms of quantiles. For that reason a training session is recommended with all 

experts present. Such a meeting is also useful to discuss the case structures. The training session organized in the 

Joint EU USNRC study typically lasted two days. Examples of training material are included in Appendix V. A 

general outline of the topics of the session are listed below:  

 

1. introduction to the project and the expert panel performed by the project leader (typical duration: 30 to 45 

minutes)  

2. probabilistic training presentation performed by a project staff member with a scientific background in 

subjective probability theory (typical duration: two hours)  

3. overview of the code(s) or models for which the exercise is done performed by a project staff member who is or 

was involved in the code or model development (typical duration: a half to one hour)  

4. introduction to the panel's field of interest referring to the case structure document and elicitation format 

document performed by a project staff member who has a scientific background and experience in the field of 

interest, and who is or was preferably involved in the code or model development (typical duration: one to one 

and a half hour)  

5. probabilistic training exercise by the experts supervised the project staff member who performed the 

probabilistic training presentation. For this purpose questions from available experiments may be used.  As the 

experts will be asked to fill in the training exercise format on-the-spot, the experiment may be in principle 

known to the experts; the questions should not require extensive computing. 

6. issues related to uncertainties in the field of interest performed and supervised by a project staff member 

preferably the person who presented the introduction to the panel's field of interest; in this part ample time for 

discussion with the experts must be planned (typical duration: one to two hours) . 

7. introduction to the processing of the experts' assessments and the performance measures by a project staff 

member with expertise in the field of probability theory and the computer programs used (typical duration: one 

hour)  

8. introduction to the issue of dependencies among uncertainties of the query variables by a project staff member 

with a scientific background in probability theory (typical duration: one hour)  

9. assessment of training exercise by the project staff member who performed the probabilistic training 

presentation and exercise (typical duration: half an hour)  
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10. explanation of the elicitation procedure and what is expected from the experts; in particular,  the experts need to 

writing is required for the rationales (typical duration: half an hour to one hour)   

11. during the whole training session sufficient time must be taken for discussions with the experts on any relevant 

matter.  

 

3 ELICITATION 
 

3.1. Expert elicitation session  
 

With each expert an individual elicitation session must be held in which all results will be reviewed and discussed. In 

the session a normative and a substantive analysts will be present. The normative analyst is a project staff member 

who is experienced with subjective probabilities and has experience in expert elicitation; this person leads the 

session. The substantive analyst is a project staff member who has experience in the field of interest and who has 

preferably contributed to the case structure and elicitation format documents. The duration of the elicitation session 

should not exceed four hours. Nominal duration is two to three hours.  

 

3.2 Expert rationales 
 

The expert rationales form a very valuable element in an expert judgment study, and may also constitute a 

considerable burden for the experts. If the elicitation requires expert to consult sources, do some modeling,  do some 

calculations, run some codes, then it may not be much additional work to write this up in readable form.  

 

The experts should be encouraged to bring their written rationales, at least in draft form, to the elicitation. Not only 

will this facilitate the clarification of substantive issues, but it helps to meet deadlines. 

 

 

 

4. POST-ELICITATION 
 

4.1 Combination of experts assessments  
 

The combination of expert judgments is discussed amply in Part I. We assume that a convenient software tool (for 

example EXCALIBR,  Cooke and Solomatine 1992) (for explanations of technical terms, see Appendix IV). A 

typical output is shown below. 

 

We see the scores of 8 experts, and of the performance based (in this case the item weight) and equal weight decision 

maker (dm). Note that the performance based dm is better calibrated and more informative than the equal weight dm, 

and the individual experts. The optimal significance level (the parameter  in paragraph 5.3 of Part I) is 0.20. 

Experts with calibration score less than 0.20 are unweighted. For other experts their “unnormalized weight” is the 

product of their calibration score and their information score for seed variables. The normalized weights are blank, 

as the acutal weights for the item weight dm vary from item to item.  Note that the unnormalized weight of the 

performance based dm is higher than that of any expert, whereas the unnormalized weight of the equal weight dm is 

lower than that of expert number 4.  

 

The last column shows “weight with dm”; this is the weight which each expert would receive if the dm had been 

added as an extra expert. Note that both dm’s would attract more weight than the original experts. 

 

Output from other modules is provided in Appendix 1. 
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Table 2. Expert scores for dispersion 

 

A few practical remarks may be worth while. 

 The decision whether to use the equal weight decision maker, the global weight decision maker or the item 

weight decision maker may be motivated by the performance of these decision makers, but may depend on other 

factors as well. 

 It is a truism in statistical hypothesis testing that all hypotheses can be rejected with sufficient data. In the same 

vein, all experts will eventually receive low calibration scores if the number of seed variables is large enough. 

Calibration power adjusts the effective number of seed variables, as a percentage of the total number. Values 

less than one may be used to counteract very low group scores resulting from a very large number of seed 

variables, or to compare different expert panels by equalizing the effective number of seed variables. 

 The choice of parameters in the calculation, such as intrinsic range, background measure, and calibration power, 

should be made on the basis best judgment, and must not be done to influence the scores of the decision makers. 

Indeed, lowering the calibration power is equivalent to lowering the effective number of seed variables, and this 

will always produce higher calibration scores.  

 If the equal weight decision maker is used, it is nonetheless important to verify the performance.  

 

4.2. Discrepancy and Robustness analysis   
 

After the expert data has been collected and analyzed, a number of questions must be addressed. These may be 

grouped under the headings discrepancy analysis and robustness analysis.  

 

Discrepancy analysis 
 

One would like to know how much the experts agree among themselves. The best way to examine this is through the 

use of “range graphs”.  The following figure shows the range graphs for a few items from the soil panel: 
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Figure 7: Range graphs for Soil panel. 

 

The “[“’s denote the 5% quantiles, “]”’s denote the 95% quantiles, and “#” denotes the medians. The four experts 

assessments are shown, and the dm is shown as a double line. When a realization is available, it is shown beneath the 

dm’s assessment, and numerical information is provided. 

 

We may note that the experts disagree in their median assessments. On Items 2,3 there is little overlap in their 

uncertainty ranges. This means that the experts consider the assessments of other experts as improbable. On item 5 

there is a great difference in the uncertainty ranges.  

 

It is of the nature of expert judgment that there should be differences. An expert judgment study cannot have the goal 

to alter or reduce expert uncertainties; rather the goal is to form a clear picture of these uncertainties, and to 

communicate that picture accurately. 

 

An overall indication of mutual agreement is obtained by computing the average relative information for eqch expert, 

with respect to the equal weight decision maker. These overall indications are useful in robustness analysis. 

 

Robustness analysis 
 

Robustness analysis is concerned with the questions, to what degree do the decision maker’s distributions depend on 

the particular choice of experts and seed variables?  

 

The procedure for addressing these questions is straightforward. For robustness on experts, experts are excluded 

from the analysis one at a time, and the resulting decision maker is re-calculated. The relative information of these 

‘perturbed decision makers’ may be compared to the overall agreement among the experts themselves. If the 

perturbed decision makers resemble the orginal decision maker more than the experts agree with each other, then we 

may conclude that the results are robust against choice of experts. 

 

For robustness on items the same procedure is followed. Seed variables are excluded one at a time and the decision 

maker is recalculated. If the perturbed decision makers resemble the orginal decision maker more than the experts 

agree with each other, then we may conclude that the results are robust against choice of seed variables.  

 

Examples of robustness analysis are included in Appendix I. 

 

 

4.3 Feedback  
 

The experts must have access to     

 their assessments    

 their calibration and information scores    

 their weighing factors    

 passages in which their name is used.  

 whether the expert shows a tendency toward over- or underconfidence     

 whether the expert shows a tendency to over- or underestimate.  

 

Barring exceptional circumstances it is strongly recommended to make the final report available to the experts. This 

may strengthen their insight into the nature and purpose of expert judgment data. 

  

4.4. Post-processing analysis   
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Post-processing is required in case target variables are not suitable as query variables. In this case, other query 

variables are chosen, which can be expressed as functions of the target variables (see paragraph 2.3). The decision 

maker’s uncertainty distributions over the query variables must be ‘pulled back’ so as to yield a distribution over the 

target variables. The pull-back distribution on the target variables must have the property that, when pushed through 

onto the query variables, we retrieve as nearly as possible the original distribution from the combined expert 

assessments. This is a problem in probabilistic inversion, and such problems are mathematically hard. 

 

A  simple solution suitable for  models was proposed in (Cooke, 1994 A) which, however does not always return 

good results in more complex situations. More advanced techniques are described in  (Kraan, and Cooke 1996) and  

(Jones et al, appearing as EUR 18827). This is an area which is currentldy under active development. 

 

4.5 Documentation  
 
Finally, the results must be documented in a report. No specific guidelines are given for this, as the level of reporting 

will depend on requirements of the problem owners. 
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APPENDIX I  
 

Summary Results of the EC-USNRC Uncertainty Study 

 
The performance measures and performance based weighting of Part I were applied in the eight expert panels shown 

in Table 1. The experts for each panel are internationally recognized in their fields, and were selected according to 

the method described in Part II. The seed variables for the Late Health Effects panel are defined in terms of the 

follow-up of the Nagasaki and Hiroshima survivors, to be published in 2001. Hence the values of these variables are 

not available at present. For the other panels seed variables were queried. Table 1 shows the performance based 

combination and the equal weight combination for the other seven panels. For each panel, Table 1 shows the 

calibration score (1 is maximal, 0 is minimal), the mean information score (0 is minimal), and the 'virtual weight'. 

Virtual weight is the weight that the combination would receive if added to the expert panel as an additional virtual 

expert. A virtual weight of one half or more indicates that the combination would receive more weight than the real 

experts cumulatively. 

 
-------------------------------------------------------- 

CASE         WEIGHTING ¦Calibr.¦Mean    Number ¦virtual¦ 

                       ¦       ¦inform     seed¦weight ¦ 

-----------------------+-------+-------+-------+-------+ 

DISPERSION     Perform ¦0.90000¦  1.024¦     23¦0.80545¦ 

               Equal   ¦0.15000¦  0.811¦     23¦0.33166¦ 

DRY DEPOSITION Perform ¦0.52000¦  1.435¦     14¦0.50000¦   

               Equal   ¦0.00100¦  1.103¦     14¦0.00168¦   

WET DEPOSITION Perform ¦0.25000¦  1.117¦     19¦0.93348¦      

               Equal   ¦0.00100¦  0.793¦     19¦0.07627¦      

ANIMAL         Perform ¦0.75000¦  2.697¦      8¦0.50000¦    

               Equal   ¦0.55000¦  1.778¦      8¦0.19204¦    

SOIL/PLANT     Perform ¦0.00010¦  1.024¦     31¦0.13369¦      

               Equal   ¦0.00010¦  0.973¦     31¦0.12779¦  

INTERNAL DOSE  Perform ¦0.85000¦  0.796¦     55¦0.52825¦     

               Equal   ¦0.11000¦  0.560¦     55¦0.09217¦     

EARLY HEALTH   Perform ¦0.23000¦  0.216¦     15¦0.98749¦    

               Equal   ¦0.07000¦  0.165¦     15¦0.94834¦    

LATE HEALTH    Equal   ¦*******¦  0.280¦      0¦      0¦     

Table 1 Performance based and equal weight combinations 

 

 

Apart from the SOIL/PLANT case, the performance based combination performs well; the calibration scores are not 

alarmingly low, and the virtual weight is high. The equal weight combination sometimes returns good calibration and 

high virtual weight, but these scores are lower than those of the performance based combination. In the case of 

SOIL/PLANT, we must conclude that the evidence gathered from the seed variables does not establish the desired 

confidence in the results.
1
 In DISPERSION, ANIMAL and INTERNAL DOSE, the results of equal weighting are 

not dramatically inferior to the performance based combination. In such cases, a decision maker giving priority to 

political rather than rational consensus might apply equal weight combination without raising questions of 

performance. In the other cases the evidence for degraded performance in the equal weight combination, in our 

opinion, is strong. Table 2 shows the individual expert scores for the results in Table 1. 

 
 

 

 

                                                           
1
 Although it might be argued that 31 seed variables constitutes a rather sever test of calibration, reducing the 

effective number of seed variables to 10 still yields poor performance (calibration scores 0.04 and 0.01 for the 

performance based and equal weight combinations respectively). In general, the number of effective seed variables is 

equal to the minimum number assessed by some expert. Hence the effective number in INTERNAL DOSIMETRY is 

28 and in ANIMAL is 6. Experts are scored on the basis of the effective number of seed variables; lowering this 

number is comparable to lowering the power of a statistical test. Thus we cannot directly compare calibration scores 

of different panels without first setting the effective number of seed variables equal. 
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Table 2. Expert scores 
 

The mean information of the performance based combination is usually slightly lower than that of the least 

informative experts, and the calibration score is typically substantially higher. This reflects the dominance of 

calibration over information in this weighting scheme. The equal weight combination has wider confidence bands 

still, and the calibration is typically lower than the best calibrated experts. Inspecting the data in Table 2, we see that 

the performance based combination for DRY DEPOSITION and ANIMAL, actually coincides with one of the 

experts. In other words, performance is optimized by assigning weight one to a single expert. This naturally raises 

the question of robustness with regard to expert choice. How much would the results differ if this one expert 

happened not to be available? One way to address this question is to repeat the analyses, leaving this expert out. If 

the differences between the original and the 'perturbed' combination are smaller than the differences among the 

experts themselves and if the performance is still acceptable, then there is no strong indication that the results are 

unrobust against choice of experts. Table 3 shows the results of these comparisons. Experts are excluded one at a 

time and the performance based combination is recalculated. Columns 2 and 3 show the mean information and 

calibration of the 'perturbed' combination. The differences of the experts among themselves are reflected in the last 

column, which shows the relative information of each expert with respect to the equal weight combination. 

 

Table 3. Robustness on experts 

 

We see from Table 3, that the robustness on experts for ANIMAL is satisfactory, whereas for DRY DEPOSITION  

it is marginal. Lack of robustness is always a danger when performance is optimized. The equal weight combination 

is almost always more robust, but the price of course is lower performance.  

DISPERSION                DRY DEPOSITION WET DEPOSITION   ANIMAL

Expt Cal    Mean # Expt Cal Mean  # Expt Cal Mean    #  Exprt Calibr.    Mean    #

                      Inf   seed                     Inf    seed                        Inf    seed                           Inf    seed

1     0.0001 2.078 23 1    0.0001 1.953 14  1     0.0001 2.638   19   1    0.00100   2.658    8

2     0.0001    1.594 23   2    0.5200 1.435 14  2     0.0100 1.979   19    2    0.00100   2.730    8

3     0.0010    1.504 23  3    0.0010 1.702 14   3     0.0010 1.009   19    3    0.09000   1.689    8

4     0.1300    1.286 23   4    0.0010 1.732 14   4     0.0001 1.028   19    4    0.75000   2.697    8

5     0.0300    1.092 23   5    0.0001 1.792 14   5     0.0010 1.565   19    5    0.01000   2.835    6

6     0.0050    1.590 23  6    0.0010 2.234 14   6     0.0001 1.946   19    6    0.64000   2.888    8

7     0.0100    1.508 23   7    0.0010 1.695 14   7     0.0001 1.252   19    7    0.02000   2.821    7

8     0.0200    1.840 23  8    0.0005 1.985 14   Prf  0.2500 1.117   19   Prf  0.75000   2.697    8

Prf  0.9000    1.024 23   Prf  0.52001.435 14   Eq  0.0010 0.793   19   Eq  0.55000   1.778    8

Eq   0.1500    0.811 23  Eq  0.0010 1.103 14

SOIL/PLANT                    INT. DOSIMETRY       EARLY HEALTH       LATE HEATH

Expt Cal    Mean    #    Expt Cal Mean  #   Expt Cal    Mean    #         Expt Cal Mean    #

                      Inf   seed                      Inf     seed                Inf.    seed                     Inf      seed

1    0.0001 2.376    31 1   0.0010 1.671 39   1 0.0001 0.834     15 1    ***** 0.440     0

2    0.0001 1.309    31 2     0.7300 0.822 55   2 0.0001 1.375     15   2    *****  1.379     0

3    0.0001 1.346    31  3    0.0001 2.003 50   3 0.0001 1.008     15   3    *****  1.024     0

4    0.0001 1.607    31  4     0.0001 2.366 39   4 0.0001 0.966     15   4    *****  0.507     0

Prf 0.0001 1.024    31    5     0.0001 1.205 39   5 0.0001 1.115     15   5    *****  0.836     0

Eq 0.0001 0.973    31    6     0.0050 0.838 28   6 0.0001 0.573     15   6    *****  0.599     0

                                            Prf  0.8500 0.796 55   7 0.0001 0.410     15   7    *****  0.616     0

                                            Eq  0.1100 0.560 55   Prf 0.2300 0.216    15    8    *****  0.988     0

                                                                                      Eq 0.0700 0.165     15   Eq  *****  0.280  0

ROBUSTNESS ON EXPERTS: ANIMAL               ROBUSTNESS ON EXPERTS: DRY DEPOSITION

Expert      Mean       Calibration   Rel.Inf      Rel.Inf Expert     Mean         Calibration   Rel.Inf      Rel.Inf

Excluded  Inf.                                Original   Eq.Wgt Excluded  Inf                                 Original   Eq.Wgt

None        2.697       0.750              0                           None    1.435         0.520               0

1              2.697       0.75000           0          1.084     1           1.435         0.52000           0               0.852

2              2.697       0.75000           0           0.987     2           1.245         0.05000      0.858             0.420

3              2.045       0.75000           0           0.374     3           1.435         0.52000           0               0.555

4              2.695       0.64000       0.569        0.719     4           1.435         0.52000           0               0.608

5              2.697       0.70000           0           0.835     5           1.435         0.52000           0               0.651

6              2.690       0.75000           0           0.818     6           1.446         0.52000           0               1.137

7              2.697       0.75000           0           0.988     7           1.431         0.52000           0               0.618

                                                                                      8           1.435         0.52000           0               0.860
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Finally, Table 4 compares cancer risks at various cites of the EU-USNRC study with those of other studies, for high 

dose, high dose-rate. These results are obtained from the LATE HEALTH panel and hence reflect the equal weight 

combination. 
 

 EC-USNRC (+90% 

confidence)2 

BIER V3 ICRP 604 UNSCEAR5 COSYMA
6 

BONE 0.035 (<0.001, 0.88) - - - 0.01 

COLON 0.98 (0.011, 3.35) - 3.24 0.6 2.24 

BREAST 0.78 (0.11, 3..78) 0.35 0.97 1.0 0.80 

LEUKEMIA 0.91 (0.026, 2.33) 0.95 0.95 1.1 0.52 

LIVER 0.086 <0.001, 2.02) - - 1.2 - 

LUNG 2.76 (0.59, 8.77) 1.70 2.92 2.50 0.90 

PANCREAS 0.17 (<0.001, 1.26) - - - - 

SKIN 0.039 (<0.001, 0.37) - 0.03 - 0.01 

STOMACH 0.30 (<0.001, 4.01) - 0.51 1.4 - 

THYROID 0.059 (,0.001, 0.71) - - - 0.17 

ALL OTHER 2.60 (<0.001, 10.8) - - - - 

ALL CANCERS 10.2 (3.47, 28.5) 7.90 12.05 12.0 5.02 

Table 4. Comparison of elicited high dose and high dose-rate lifetime low LET cancer risks for a general EU/US 

population with those derived from other sources (10
-2

Gy
-1

) 

 

Although the median values of the EC-USNRC study generally agree with the values from the other studies in Table 

4, the 90% central confidence intervals are sometimes significantly wider than the spread of values from these 

studies. Indeed, the spread of assessments in the last four columns of table 4 is not an assessment of uncertainty. 

Conclusions  

 

We collect a number of conclusions regarding the use of structured expert judgment. 

1. Experts' subjective uncertainties may be used to advance rational consensus in the face of large uncertainties, in 

so far as the necessary conditions for rational consensus are satisfied. 

2. Empirical control of experts' subjective uncertainties is possible. 

3. Experts' performance as subjective probability assessors is not uniform, there are significant differences in 

performance.  

4. Experts as a group may show poor performance. 

5. A structured combination of expert judgment may show satisfactory performance, even though the experts 

individually perform poorly. 

6. The performance based combination generally outperforms the equal weight combination. 

7. The combination of experts' subjective probabilities, according to the schemes discussed here, generally has 

wider 90% central confidence intervals than the experts individually; particularly in the case of the equal weight 

combination. 

We note that poor performance as a subjective probability assessor does not indicate a lack of substantive expert 

knowledge. Rather, it indicates unfamiliarity with quantifying subjective uncertainty in terms of subjective 

probability distributions. Experts were provided with training in subjective probability assessment, but of course 

their formal training does not (yet) prepare them for such tasks.  

 

 

Finally we include the actual output for the expert panels. 

 


















                                                           
2
 Radiation exposure-induced deaths (REID) for joint current EU-US population. 

3
 BIER V calculates excess cancer deaths for current US population 

4
 ICRP calculates REID average of risks for current UK and US populations. 

5
 UNSCEAR calculates REID for current Japanese population. 

6
 REID 
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Table 5. Expert scores for all panels. 
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APPENDIX II: 

REPORTS PUBLISHED AS A RESULT OF THE JOINT ec/usnrc 

PROJECT ON UNCERTAINTY ANALYSIS OF PROBABILISTIC 

ACCIDENT CONSEQUENCE CODES (under the Third EC-Framework 

Programme) 
 

 

 

1 F.T. Harper, L.H.J. Goossens, R.M. Cooke, S.C. Hora, M.L. Young, J. Päsler-Sauer, L.A. Miller, B. Kraan, C. 

Lui, M.D. McKay, J.C. Helton and J.A. Jones 

 Probabilistic accident consequence uncertainty study: Dispersion and deposition uncertainty assessment 

 Prepared for U.S. Nuclear Regulatory Commission and Commission of European Communities 

 NUREG/CR-6244, EUR 15855 EN, SAND94-1453 

 Washington/USA, and Brussels-Luxembourg, November 1994, published January 1995 

 Volume I: Main report 

 Volume II: Appendices A and B 

 Volume III: Appendices C, D, E, F, G, H 

 

2 R.M. Cooke, L.H.J. Goossens and B.C.P. Kraan 

 Methods for CEC\USNRC accident consequence uncertainty analysis of dispersion and deposition - 

Performance based aggregating of expert judgements and PARFUM method for capturing modeling 

uncertainty 

 Prepared for the Commission of European Communities, EUR 15856, Brussels-Luxembourg, June 1994, 

published 1995 

 

3 J. Brown, L.H.J. Goossens, F.T. Harper, B.C.P. Kraan, F.E. Haskin, M.L. Abbott, R.M. Cooke, M.L. Young, 

J.A. Jones S.C. Hora, A. Rood and J. Randall 

 Probabilistic accident consequence uncertainty study: Food chain uncertainty assessment 

 Prepared for U.S. Nuclear Regulatory Commission and Commission of European Communities 

 NUREG/CR-6523, EUR 16771, SAND97-0335 

 Washington/USA, and Brussels-Luxembourg, March 1997, published June 1997 

 Volume 1: Main report 

 Volume 2: Appendices  

 

4 L.H.J. Goossens, J. Boardman, F.T. Harper, B.C.P. Kraan, R.M. Cooke, M.L. Young, J.A. Jones and S.C. 

Hora 

 Probabilistic accident consequence uncertainty study: Uncertainty assessment for deposited material 

and external doses  

 Prepared for U.S. Nuclear Regulatory Commission and Commission of European Communities 

 NUREG/CR-6526, EUR 16772, SAND97-2323 

 Washington/USA, and Brussels-Luxembourg, September 1997, published December 1997 

 Volume 1: Main report 

 Volume 2: Appendices  

 

5 F.E. Haskin, F.T. Harper, L.H.J. Goossens, B.C.P. Kraan, J.B. Grupa and J. Randall 

 Probabilistic accident consequence uncertainty study: Early health effects uncertainty assessment 

 Prepared for U.S. Nuclear Regulatory Commission and Commission of European Communities 

 NUREG/CR-6545, EUR 16775, SAND97-2689 

 Washington/USA, and Brussels-Luxembourg, November 1997, published December 1997 

 Volume 1: Main report 

 Volume 2: Appendices  

 

6 M. Little, C.M. Muirhead, L.H.J. Goossens, F.T. Harper, B.C.P. Kraan, R.M. Cooke and S.C. Hora 

 Probabilistic accident consequence uncertainty study: Late health effects uncertainty assessment 
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 Prepared for U.S. Nuclear Regulatory Commission and Commission of European Communities 

 NUREG/CR-6555, EUR 16774, SAND97-2322 

 Washington/USA, and Brussels-Luxembourg, September 1997, published December 1997 

 Volume 1: Main report 

 Volume 2: Appendices  

 

7 L.H.J. Goossens, J.D. Harrison, F.T. Harper, B.C.P. Kraan, R.M. Cooke and S.C. Hora 

 Probabilistic accident consequence uncertainty study: Uncertainty assessment for internal dosimetry 

 Prepared for U.S. Nuclear Regulatory Commission and Commission of European Communities 

 NUREG/CR-6571, EUR 16773, SAND98-0119 

 Washington/USA, and Brussels-Luxembourg, February 1998, published April 1998 

 Volume 1: Main report 

 Volume 2: Appendices  

 

 

ADDITIONAL STUDY AS A RESULT OF THE JOINT STUDY 

 

8 L.H.J. Goossens, R.M. Cooke and B.C.P. Kraan 

 Evaluation of weighting schemes for expert judgement studies 

 Final report prepared under contract Grant No. Sub 94-FIS-040 for the Commission of European Communities, 

Directorate-General for Science, Reserach and Development, XII-F-6 

 Delft University of Technology, Delft/NL, December 1996, 75 p. 

 

REPORTS TO BE PUBLISHED ON THE PROJECT UNCERTAINTY ANALYSIS OF THE 

PROBABILISTIC ACCIDENT CONSEQUENCE CODE COSYMA USING EXPERT JUDGEMENT (under 

the Fourth EC-Framewok Programme) 

 

1: R.M. Cooke, L.H.J. Goossens, B.C.P. Kraan 

 Probabilistic Accident Consequence Uncertainty Assessment 

 Procedures Guide Using Expert Judgement 

 To be published as EUR 18820 (This document). 

 

2: L.H.J. Goossens, J.A. Jones, J. Ehrhardt, B.C.P. Kraan 

 Probabilistic Accident Consequence Uncertainty Assessment  

 Countermeasures Uncertainty Assessment 

 To be published as EUR 18821 

 

3 J.A. Jones, J. Ehrhardt, F. Fischer, I. Hasemann, L.H.J. Goossens, B.C.P. Kraan, R.M. Cooke 

 Probabilistic Accident Consequence Uncertainty Assessment Using COSYMA  

 Uncertainty from the Atmospheric Dispersion and Deposition Module 

 To be published as EUR 18822 

 

4 J.A. Jones, J. Brown, F. Fischer, I. Hasemann, L.H.J. Goossens, B.C.P. Kraan, R.M. Cooke 

 Probabilistic Accident Consequence Uncertainty Assessment Using COSYMA 

 Uncertainty from the Food Chain Module 

 To be published as EUR 18823 

 

5 J.A. Jones, F. Fischer, I. Hasemann, L.H.J. Goossens, B.C.P. Kraan, R.M. Cooke 

 Probabilistic Accident Consequence Uncertainty Assessment Using COSYMA 

 Uncertainty from the Health Effects Module 

 To be published as EUR 18824 

 

6  J.A. Jones, F. Fischer, I. Hasemann, L.H.J. Goossens, B.C.P. Kraan, R.M. Cooke 

 Probabilistic Accident Consequence Uncertainty Assessment Using COSYMA  

 Uncertainty from the Dose Module 

 To be published as EUR 18825 

 

7 J.A. Jones, J. Ehrhardt, L.H.J. Goossens, F. Fischer, I. Hasemann, B.C.P. Kraan, R.M. Cooke 

 Probabilistic Accident Consequence Uncertainty Assessment Using COSYMA 
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 Uncertainty from the Complete System 

 To be published as EUR 18826 

 

8 J.A. Jones, B.C.P. Kraan, R.M. Cooke, L.H.J. Goossens, F. Fischer, I. Hasemann 

 Probabilistic Accident Consequence Uncertainty Assessment Using COSYMA 

 Methodology and Processing Techniques 

 To be published as EUR 18827 
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