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ABSTRACT
This study evaluates five scoring rules, or measures of statistical accuracy, for assessing uncertainty estimates from expert

judgment studies and model forecasts. These rules— the Continuously Ranked Probability Score (CRPS), Kolmogorov‐Smirnov

(KS), Cramer‐von Mises (CvM), Anderson Darling (AD), and chi‐square test — were applied to 6864 expert uncertainty

estimates from 49 Classical Model (CM) studies. We compared their sensitivity to various biases and their ability to serve as

performance‐based weight for expert estimates. Additionally, the piecewise uniform and Metalog distribution were evaluated

for their representation of expert estimates because four of the five rules require interpolating the experts' estimates. Simulating

biased estimates reveals varying sensitivity of the considered test statistics to these biases. Expert weights derived using one

measure of statistical accuracy were evaluated with other measures to assess their performance. The main conclusions are (1)

CRPS overlooks important biases, while chi‐square and AD behave similarly, as do KS and CvM . (2) All measures except CRPS

agree that performance weighting is superior to equal weighting with respect to statistical accuracy. (3) Neither distributions

can effectively predict the position of a removed quantile estimate. These insights show the behavior of different scoring rules

for combining uncertainty estimates from expert or models, and extent the knowledge for best‐practices.

1 | Introduction

Uncertainties are both widespread and influential in many
fields, from climate modeling and economic forecasting to en-
gineering design and legal decisions. The ability to accurately
quantify uncertainties is important for informed decision‐
making, and it will often increase the value and usefulness to
the outcomes. However, constraints such as limited data
availability, problem complexity, or financial or even ethical
restrictions can limit possibilities to accurately quantify these
uncertainties. Expert judgment is a method to quantify uncer-
tainty for variables whose uncertainty is difficult to quantify
through other means. Expert judgment provides data in settings

where a statistical or physics‐based model would require as-
sumptions or an extrapolation. It can take informal forms, such
as asking an experienced person for their expectations. This
might be fine for noncritical issues but high‐stakes situations
demand a more structured approach, one that is replicable,
subject to review, and that could be assessed for potential
biases, ensuring reliability and integrity.

The classical model (CM) is such an approach, which for-
malizes the process of expert judgment elicitation in such a way
that the resulting uncertainty estimates can be treated as sci-
entific data. It combines expert estimates using weights that are
based on comparing uncertainty estimates to known outcomes
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of a number of check (or calibration/seed) questions. Colonna
et al. (2022) recently applied the method to combine COVID‐
forecasting models. They interpreted the different models as
experts and their forecasts as estimates. The Classical Model
was used to evaluate and combine these forecasting models, by
comparing them to the actual course of events. This shows the
value of CM outside the typical field of expert judgment.

First presented in (Roger M. Cooke 1991), the Classical
Model has been widely applied and data from these appli-
cations have been made available to researchers, first in
(Roger M. Cooke and Goossens 2008) and most recently in
(Roger M. Cooke et al. 2021). The latter reference also gives a
light exposition of the CM and introduces the expert judg-
ment data used in this study. A special issue of Reliability
Engineering and System Safety hosting the first publication
of expert data (Roger M. Cooke and Goossens 2008) also
contained contributions from many statisticians, risk analysts
and practitioners who raised issues regarding CM1. Some of
these issues, such as in‐sample validation and overconfidence
were amply addressed in the discussion papers of that special
issue. Other concerns, most notably out‐of‐sample validation,
persistence of performance and point value forecast per-
formance spawned a stream of research. Much of this is
summarized in (Roger M. Cooke et al. 2021) and in the ref-
erences therein.

The main characteristics of the CM are:

• The experts estimate uncertainty by assigning values to the
5th, (25th), 50th, (75th), and 95th percentiles of their sub-
jective probability distribution for each variable.

• The expert estimates are tested with calibration (aka seed)
questions from the experts' fields. Their performance is
measured in two dimensions. Statistical Accuracy and
Informativeness.

• Statistical accuracy (SA) compares the expert's distributions
with the actual values of the calibration questions. It is
measured assuming only that the realizations are inde-
pendent. From this it follows that the familiar chi‐square
goodness of fit statistic based on the interquantile realiza-
tions is asymptotically chi‐square under the hypothesis that
the expert is statistically accurate.

• Informativeness measures the degree to which a distri-
bution is concentrated. It is measured by fitting a con-
tinuous CDF to an expert's elicited quantiles that
minimizes the Shannon relative information of this fitted
distribution with respect to an analyst selected back-
ground measure while complying with the expert's
quantile assessments. When the background measure is
uniform, the fitted CDF is piecewise uniform (for more
information see (Roger M. Cooke et al. 2021). In this
study, we assume the background measure is uniform.
Combining information scores across variables again
invokes independence assumptions.

In the Classical Model, the product of statistical accuracy and
informativeness gives the (dimensionless) combined score,
which after normalization gives the experts' weights. These

weights are used to combine experts' distributions resulting in a
so‐called decision maker (DM). A subsequent option is to
include only experts with an SA above a cutoff level (typically
5%), or to optimize the decision maker. Optimization involves
consecutively excluding the expert with the lowest statistical
accuracy, until the (renormalized) weighted estimates of the
remaining experts form the decision maker with the highest
combined score. Optimization often reduces the number of
weighted experts. Cross validation research has shown that
performance weighting increases the decision makers' out‐of‐
sample informativeness without sacrificing statistical accuracy
(Colson and Cooke 2017). Recently, Roger M. Cooke et al.
(2021) demonstrated that randomly interchanging expert as-
sessments within a study does indeed significantly affect expert
performance (rejecting the so‐called Random Expert Hypothe-
sis). This highlights the value of performance weighting.

By design, SA dominates the CM performance‐based expert
weights. The informativeness score then modulates between
experts with similar SA scores. For this reason, the CM measure
of SA is ‘assumption lean’ and an interpolated continuous CDF
is used only for the measure of informativeness. Researchers
have drawn attention to two features of this design choice: (1)
the measure of statistical accuracy depends only on the inter-
quantile intervals in which realizations fall, and not on the
relative position within these intervals, and (2) the SA mea-
surement depends on a chi‐square (χ2) approximation which
for the typical number of calibration variables and elicited
quantiles is not very accurate (Roger M. Cooke 2014, see also
Figure 7).

An important aspect of a structured expert judgment exercise is
the understanding of the sensitivity of its results to the number
of experts and questions. The effort required to elicit informa-
tion from experts means that we are never fully certain of each
expert's statistical accuracy, underscoring the need for measures
of statistical accuracy that utilize the information provided by
the experts in the best way. In other words, we need to deter-
mine expert weights accurately based on a limited data set, such
that they reflect an expert's relative weight within a panel. To
this end, this study aims to explore three main questions: 1)
How do different goodness of fit tests, each with known
asymptotic or exact distributions, compare in evaluating expert
estimates? 2) How do two approaches of interpolating a con-
tinuous CDF compare in representing expert estimates? And,
finally 3) what do the findings of 1 and 2 mean for the best‐
practice of eliciting structured expert judgments?

Five goodness of fit tests are considered. In addition to the
standard χ2 test in the CM, we consider three test‐statistics that
are commonly used to compare samples to continuous distri-
butions, the Kolmogorov‐Smirnov (KS), Anderson‐Darling
(AD), and Cramer‐von Mises (CvM) test. Finally, we consider
the Continuous Ranked Probability Score (CRPS). Recent work
by Nane and Cooke (2024) uses theCRPS in CM. They present a
CRPS‐based score that assigns a scalar value to each assessment
cum realization. Under suitable transformation, these scores for
individual variables can be summed such that the exact distri-
bution of the sum is available in closed form. This yields a
measure of SA which appeals to an interpolated CDF but not to
an asymptotic distribution.
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All five tests except χ2 compare quantiles to continuous CDFs
and therefore require a distribution for transforming realiza-
tions to quantiles, using the expert estimates. For this we use
two classes of distributions. The first is the piecewise uniform
(PWU) distribution corresponding to the minimum information
assumption in the Classical Model. The second is the Metalo-
gistic, or Metalog, distribution (Keelin 2016). This recently
introduced distribution offers great shape‐flexibility, which
helps with fitting a probability distribution to the large variety
of expert quantile‐estimates. Low parameter probability distri-
butions often yield poor fits in these cases.

The five measures of statistical accuracy and two classes of
distribution are compared in a variety of analyses, based on
two different data sets. All analyses were done using Anduryl,
an open‐source Python‐module and graphical user interface
(Guus Rongen et al. 2020). Metalog calculations were con-
ducted using (Adamczewski 2023). We used 49 expert judg-
ment studies from the past decades, described in (Roger M.
Cooke et al. 2021), comprising 530 experts and 580 calibration
variables. Recently published structured expert judgment
studies, such as (G. Rongen et al. 2022) and (Ren et al. 2024),
were not considered because they have not yet been described
and compared in an overview study. Additional to the pub-
lished studies, we simulate expert estimates from distribu-
tions with a specific bias for a more clinical comparison. The
analyses show 1) the statistical accuracy results from each
score, 2) the ability of each measure of statistical accuracy to
detect different biases, and 3) how the weights from each
measure of statistical accuracy perform when used to create
a DM that is evaluated with another measure. Results are
presented for the PWU distribution and the Metalog distri-
bution. In a final analysis, we consider the case‐studies with 5
percentile estimates, removing 2 of these 5 percentiles, and
see how well both distributions are able to estimate the
position of the missing percentile.

2 | Methods

2.1 | Measures of Statistical Accuracy

To determine the statistical accuracy of an expert or forecast
based on a set of seed questions, the questions' realizations or
observations y are compared to the estimated distributions
F x( ), resulting in a set of quantiles. We test the hypothesis
whether these quantiles F (x) are drawn from a uniform
distributionU [0 − 1]. If so, the realizations appear to be drawn
from the expert distributions or forecasts, which can conse-
quently be considered accurate. The manner in which each
of the above introduced test‐statistics does this is explained
below.

2.1.1 | Kolmogorov‐Smirnov

The Kolmogorov‐Smirnov (KS) test compares two samples (two‐
sided test) or a sample with a distribution (one‐sided test) by using
the supremum distance (equation 1) between (empirical) cumula-
tive distribution functions (Kolmogorov 1933; Smirnoff 1939)

D F x F x= sup | ( ) − ( )|n
x

n (1)

In the context of the CM, a perfectly statistically accurate expert
is one for whom the quantiles of the realizations for the cali-
bration questions are uniformly distributed. An expert's statis-
tical accuracy is thus tested by comparing these quantiles to a
uniform distribution using the one‐sided KS‐test. The arrow in
Figure 1 illustrates the KS test‐statistic. In the KS test, the
largest difference tends to be found near the median. Conse-
quently, the statistic is relatively insensitive to deviations in the
tail, which, when applied to expert judgments, typically corre-
sponds with overconfidence.

For hypothesis testing, the KS distance is used to investigate
the probability that the sample comes from the tested dis-
tribution. For this, an exact distribution is approximated
using the method proposed by Simard and L'Ecuyer (2011).
In classical statistics, a probability lower than 0.05 (i.e.,
the significance level) leads to rejecting the hypothesis that
the data is independently sampled from the distribution of
interest.

2.1.2 | Cramer‐von Mises and Anderson‐Darling

The Cramer‐von Mises (CvM) statistic is the area between the
empirical CDF and target CDF (Cramér 1928; Von Mises 1928),
illustrated by the hatched area in Figure 1. In contrast to the
KS‐test, CvM considers the full distribution rather than the
distance at a single point.

FIGURE 1 | Illustration of KS, CvM , and AD test statistics for a

sample from a uniform distribution. The sample is plotted by their

ranks (the connected dots). The arrow indicates the Kolmogorov‐
Smirnov (KS) statistic, the hatched area Cramer‐von Mises (CvM), and

the filled area (a weighted version of the hatched area) the Anderson‐
Darling (AD) statistic.
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Just like KS , the CvM test‐statistics is relatively insensitive to
deviations in the tail. The Anderson Darling (AD) statistic,
based on CvM , compensates this by adding more weight to the
tails of the distribution (Anderson and Darling 1952). The
equation for both statistics is:

∞

∞n F x F x w x dF x( ( ) − ( )) ( ) ( ),n
−

2 (2)

where n is the sample size, F x( ) the hypothesized distribution
(uniform, in this study), and F x( )n is the empirical cumulative
distribution function (the expert's percentile points under the
assumed probability distribution). The weight w x( ) differs for
CvM and AD. In CvM , all realizations x have weight 1.0. For
AD, more weight is assigned to both tails of the distribution:

w x F x F x( ) = [ ( )(1 − ( ))] .−1 (3)

By assigning a large weight to the deviation of quantile points in
the tail, AD compensates CvM 's insensitivity to overconfidence.
This is shown by the filled area in Figure 1, which, compared to
the hatched area, has a larger distance to the diagonal at the
edges. Distributions from (Csörgő and Faraway 1996) are used
to convert the CvM test statistic to a p‐value. An approximation
of the distribution for the AD test statistic, for a uniform dis-
tribution, is given by (Marsaglia and Marsaglia 2004) and
(Grace and Wood 2012). Marsaglia and Marsaglia (2004) cover
the full range ∈ ∞a (0, ) (with a being the AD‐statistic), while
the approximation from (Grace and Wood 2012) is specified
only for ∈ ∞a [3, ). The latter is more accurate for high values
of a, which is why we apply (Marsaglia and Marsaglia 2004) for
∈a (0, 3), (Grace and Wood 2012) for ∈ ∞a (4, ), and linearly

interpolate between the two for ∈a [3, 4] to ensure a smooth
transition.

Another test‐statistic that is often used for normality testing is
Shapiro‐Wilk (Shapiro and Wilk 1965). This statistic tests
whether a sample is normally distributed with any mean and
variance. It does not test whether a sample is standard normal
distributed (i.e., N (0, 1)), so neither can it be used to test whether
a sample is uniformly distributed between 0 and 1. Therefore, it
was not used in this study.

2.1.3 | CRPS

The Continuously Ranked Probability score (CRPS) is a mea-
sure for comparing forecast or estimates to realizations
(Brown 1974). For a given (expert's) distribution F for a random
variable X and realization y, the CRPS is defined by

≥
∞

∞CRPS F y F x x( , ) = [ ( ) − 1 ] d .x y
−

{ }
2 (4)

In which 1 is the Heaviside step function. CRPS thus compares
a probabilistic forecast to a scalar realization, integrating the
squared difference between F x( ) and a step function at
the realization. This is illustrated in Figure 2 a. The CRPS tests
the agreement between y and F x( ) for a single variable on the

variable's scale. To be used in the classical model, the CRPS
needs to be derived for multiple realizations y to obtain a suf-
ficiently high degree of confidence in the statistical accuracy. To
compare different variables on the same scale instead of the
quantities' scales, a scale‐invariant CRPS is needed. This allows
combining the different estimates.

Nane and Cooke (2024) present a method for this. To assess an
expert's statistical accuracy, they test the hypothesis that

∼F x U( ) [0, 1]. For this, realization y is transformed to its
quantile v, using expert estimate F x( ) for variable x . With this
transformation, the score is no longer a function of F x( ) and y,
but of the standard uniform distribution FU and v. This trans-
formation is displayed in Figure 2 b. Through this, the trans-
formed CRPS score becomes scale invariant. Furthermore, if we
assume n independent variables, then the distribution of the
convoluted transformed CRPS score follows an exact rather
than an asymptotic distribution. The details of computing the
transformed CRPS score are found in (Nane and Cooke 2024).
Throughout the manuscript, we refer to this transformed CRPS
instead of the original CRPS score presented by (Brown 1974).

Note that while both CRPS and CvM integrate the difference
between an observed and estimated CDF, CRPS does this per
item individually and evaluates the resulting metric against a
distribution (a closed form convolution of the scores) based on
N items.CvM , on the other hand, combines the quantiles of all
observations into a single empirical CDF, and compare this to a
uniform distribution.

2.1.4 | Classical Model – Chi‐Square

The χ2‐based test statistic is the standard statistic used in the
Classical Model. The statistic evaluates observations based on
which quantile‐interval they are in, and not where in this
interval. This in contrary to the measures presented above,
which use the quantile‐position and therefore require an
assumed distribution.

χ2's statistical accuracy is calculated as follows: If k quantiles
are assessed, with n the number of calibration variables
assessed by an expert and ni the number of realizations falling

FIGURE 2 | Illustration of regular CRPS (a) and scale invariant

CRPS (b). The CRPS is calculated by summing the squared difference

between the CDF and step function, which is illustrated with the

crossed area.
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in the i‐th interquantile interval, then s ss = ( , …, )k1 +1 , where
s =i

n

n
i is the sample distribution for the expert. The vector

p pp = ( , …, )k1 +1 is the expected relative frequency of inter-
quantile realizations, thus if the 5%, 50%, 95% quantiles are
elicited, then p = (0.05, 0.45, 0.45, 0.05). Under the hypothesis
that the realizations are independently drawn from p, the
quantity nI2 (s|p) is asymptotically chi‐square (χ2) distributed
with k degrees of freedom, where I (s|p) is the Shannon relative
information of s with respect to p (Roger M. Cooke 1991). Using
this distribution, the p‐value, or probability that an expert is
statistically accurate, can be calculated through the ratio s to p.
This is illustrated in Figure 1 with the circled fractions. For
example, the first bin contains two observations where one (out
of twenty) is to be expected. This gives a fraction of
= =

s

p

2

1

0.10

0.05
1

1
. The p‐value resulting from the test is used as

statistical accuracy. Although this p‐value is calculated using
the χ2‐distribution, the scoring rule used in the Classical Model
is different from the commonly known χ2‐test.

2.2 | Metalog Distribution

The Metalogistic, or Metalog, distribution is a continuous uni-
variate probability distribution with high shape flexibility
introduced by Keelin (2016). It accommodates bounded, semi‐
bounded, and unbounded distributions. This makes it an
appealing choice for fitting empirical data (e.g., as a continuous
replacement for a histogram), but also for modeling expert es-
timates. The Metalog is a generalized form of the logistic dis-
tribution, achieved by substituting the mean and standard
deviation in the quantile function of the logistic distribution
using series expansion. In this study, the three and five term
functions M y( )3 and M y( )5 are used:

M y a a
y

y
a y

y

y

M y M y a y a y

( ) = + ln
1 −

+ ( − 0.5)ln
1 −

( ) = ( ) + ( − 0.5) + ( − 0.5)

3 1 2 3

5 3 4 5
2

(5)

Here, y denotes the cumulative probability and ai the constants.

Because the distribution is defined using its quantile function, a
unique vector of n size a can be fitted to any set of n percentiles.
This is a useful property for resembling experts' quantile esti-
mates without changing their estimates. However, the quantile
function M y( )n should be strictly increasing for all ∈y (0, 1).
This is not necessarily the case for all sets of n percentiles,
resulting in invalid or infeasible distributions with negative
probability density.

Figure 3 shows eight examples of Metalog distributions (smooth
grey curves) and piecewise uniform (PWU) distributions
(stepped black curves) fitted to either three‐percentile estimates
(a, b, c) or five‐percentile estimates (d, e, f, g, h). For three‐
percentile estimates, an infeasible a‐vector can be resolved by
imposing a lower or upper bound. This introduces a fourth
parameter, making the solution overdetermined. We address
this by selecting the bound such that it minimizes the maxi-
mum probability density, resulting in the least informative
distribution.

For five‐percentile estimates, many expert estimates (combinations
of five quantiles) lead to infeasible distributions. To be able to
process the results for case studies with five quantiles as well, the
infeasible estimates are split in two by the median, resulting in two
three‐quantile estimates (0.05, 0.25, 0.50, and 0.50, 0.75, 0.95). This
gives a step in density at the median, as shown by the solid line in
Figure 3h. Optionally, this can be resolved by imposing a bound on
the distribution with the lowest density at the median such as
shown by the dashed line. However, this is primarily an aesthetic
solution, which is why we chose not to do this. Note that the
Metalog distribution can also fit the quantile estimates with a fea-
sible (non‐negative) distribution, but this requires adding more
terms to the a‐vector than there are quantiles. Further details on the
fitting procedure can be found in Appendix B.

All tests except χ2 use quantile points of realizations for eval-
uating statistical accuracy, rather than the quantile intervals in
which the realizations fall. A fitted Metalog distribution pro-
vides these quantile points based on the expert estimates. In
Section 3.4 we examine whether the realization quantiles from
the Metalog are a better representation of expert estimates than
the realization quantiles generated by a PWU distribution.
Applying the Metalog also changes the calculation of informa-
tiveness in the CM since the default approach is based on the
piecewise uniform assumption. For further explanation on how
this calculation is performed for the Metalog, please refer to
Appendix B.

2.3 | Comparing Measures of Statistical Accuracy

The five test statistics detailed in Section 2.1 evaluate statistical
accuracy in different ways, leading to different test scores. The
sensitivity to biases is explored using the method presented in
Section 2.3.1. Section 2.3.2 explains how the statistical accuracy
from the different tests are compared given their difference in
values. Finally, the method for comparing the quantile esti-
mates from PWU and Metalog is outlined in Section 2.3.3.

2.3.1 | Scores' Sensitivity to Detect Biases

To assess the ability of the measures of statistical accuracy to
detect biases in experts' individual assessments, we introduce
criteria for location bias and underconfidence or over-
confidence. Location bias is defined as the absolute difference
between the fraction of realizations below the median estimate
and 0.5, or

 ( )x F

n

< (0.5)
− 0.5 ,

i
n

i e i=1 ,
−1

(6)

with n being the number of items, xi the realization for item i
and F (0.5)e i,

−1 expert e's median estimate for item i.

Overconfidence and underconfidence are quantified by the
number of realizations below and above the lowest and highest
estimated quantile, divided by the expected number. Let LQ and
UQ be the lower and upper quantile (typically 0.05 and 0.95, but
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0.10 and 0.90 in two of the 49 cases). The ratio of tail realiza-
tions is calculated with

 x F LQ x F UQ

n LQ UQ

( < ( )) + ( > ( ))

( + (1 − ))
.i

n
i e i i

n
i e i=1 , =1 , (7)

A value greater than 1.0 indicates overconfidence, a value less
than 1.0 indicates underconfidence.

2.3.2 | Comparing Measures of Statistical Accuracy
Through Decision Makers

As discussed in Section 2.1.4, the Classical Model (CM) relies on
the χ2 statistical accuracy in combination with the information

score to assign weights to each expert. These weights are then
used to aggregate experts' distributions into a decision maker
(DM) using the global weights algorithm with optimization
(GLopt) or without (GL). Whenever comparing global weights
in the analyses, the values of the weights are the normalized
product of statistical accuracy and informativeness. Within this,
the measures of statistical accuracy introduced in Section 2.1
serve as alternatives for the statistical accuracy term. Conse-
quently, different measures assign different weights to the
experts. Moreover, applying optimization can lead to DMs
composed of the estimates of different sets of experts. In
addition to the global weights, we consider the equal
weight DM (EQ) which assigns the same weight to every
expert. We did not consider using item weight, which
involves varying weights per item based on the expert's
informativeness for that item.

FIGURE 3 | 8 examples of Metalog distributions and piecewise uniform distributions fitted to 3‐percentile (a–c) and 5‐percentile (d–h) expert
estimates. The estimates are indicated with the vertical dashed lines.
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We are interested in comparing the effects of applying different
measures of SA within the CM on the decision maker's SA. For
this, we cannot simply compare the SA of the DM calculated
using each measure, because some measures give on average
higher scores than others. For example, KS and CvM are less
sensitive to overconfidence, a prevailing bias in CM studies, and
therefore give higher SA scores. This does not mean the experts
are actually statistically more accurate. To compare the mea-
sures, we consider the weights from each measure, evaluated
with each of the measures of SA. Both with and without opti-
mization, and for both the PWU and Metalog distribution. As
an example, we list the steps in comparing the KS and CRPS
weights according to the χ2 measure of SA:

1. First, experts' weights, as the normalized product of sta-
tistical accuracy and informativeness, are calculated based
on KS and CRPS measures of SA.

2. Decision makers distributions are obtained for each set of
those weights, which we will refer as DMKS and DMCRPS.

3. The χ2 measure of statistical accuracy is then calculated
for the DMKS and DMCRPS.

4. This is repeated for all 49 studies. Ranking these SAs gives
a 2 sets of 49 ranked SA scores.

5. Using the Mann‐Whitney rank sum test (Mann and
Whitney 1947), we test whether the DMKS and DMCRPS

ranks are statistically equivalent, or whether one is lower
(or higher) than the other according to the χ2 measure of
statistical accuracy.

We do this for all combinations of SA measures, such that each pair
of DMs is compared with respect to each of the five measures of SA.

2.3.3 | Determining the Metalog's and PWU's Ability to
Predict Missing Quantiles

The choice of the Metalog distribution to represent the
probability density between percentile estimates is rooted in
the hypothesis that it better aligns with the distribution
perceived by experts. This is due to its smooth curve without
abrupt changes in probability density at estimated percent-
iles. To test this hypothesis, we remove the second and
fourth percentile from the case‐studies involving five eli-
cited percentiles. The removed percentiles are then esti-
mated using both the PWU and Metalog distributions. By
comparing the difference between the estimated percentile
point and the removed value (e.g., F x(0.25) −−1

0.25 for
the 25th percentile) we can determine which distribution
more accurately predicts the location of the removed
percentiles.

3 | Results

We use expert data from 49 studies that have been previously
used and explained (Roger M. Cooke et al. 2021). The data
comprise 6864 individual expert assessments. The different
measures of statistical accuracy (SA) are calculated for the

global weights decision maker (DM) with and without optimi-
zation, and the equal weights DM. These results allow us to
compare SA across different measures of SA (Section 3.1), assess
their sensitivity to different biases (Section 3.2), cross compare
their performance (Section 3.3), and evaluate the ability of the
Metalog and PWU distributions to predict missing quantiles
(Section 3.4).

3.1 | Individual Experts' Measures of Statistical
Accuracy

The PWU and Metalog distribution's quantile estimates of the
realization, for the 6864 individual experts, are shown in
Figure 4. Overconfidence is signaled by the high number of
realizations in the tails. The quantile positions for realizations
outside the [0.05, 0.95] interval differ most between Metalog and
piecewise uniform (PWU). The standard (PWU) approach
requires an assumption on the probability density in the
[0.0, 0.05] and [0.95, 1.0] range as the 0.0 and 1.0 quantiles are
not elicited. These lower and upper bounds are usually placed
at the minimum and maximum of all experts' estimates and the
realization, extended by (typically) a 10% overshoot of this total
range. Since only one expert gives the lowest or highest esti-
mate, the estimates of the other experts end up being extended
by (much) more than 10%. This leads to the position of a real-
ization in the (often very wide) tails being relatively close to the
elicited outer quantiles (e.g., 0.05 and 0.95). The Metalog dis-
tribution does not require an assumption on the tails, except for
very skewed estimates. Therefore, the realizations are placed
based on the fitted distribution and experts are judged on their
own overconfidence. This tends to result in quantiles closer to
0.0 and 1.0.

Figure 5 shows the statistical accuracy (SA) for the five con-
sidered measures, for each of the 530 experts. Histograms of the
SA for each individual measure are displayed on the diagonal.
The first bin covers the first 5%, that is, the significance level
commonly used in simple hypothesis testing. For an expert with
SA less than 5%, the hypothesis that the expert is statistically
accurate would be rejected at the 5% level. The dashed lines in
the scatter plots also indicate this 5% significance level. The
scatter plots in the lower left triangle are obtained under the
PWU assumption, those in the upper right triangle under
the Metalog assumption. Many scatters are overlapping in the
< 0.05 corner, Figure A3 in Appendix A shows more clearly
how the measures compare in that range.

The scores χ2, CRPS, KS , CvM and AD, assign a significance
level above > 5% to 27%, 32%, 58%, 62%, and 46% of the experts
when assuming PWU, and 27%, 18%, 49%, 48%, and 17% for
Metalog. For all but χ2, assuming a Metalog distribution leads
to lower SAs relative to a PWU distribution. This is because
using PWU results in the realizations being at quantiles closer
to the 5th and 95th (as illustrated in Figure 4). χ2 relies on
quantile intervals, such that the choice of the distribution
interpolation these quantiles does not affect statistical accuracy.

The rank correlations between the different measures of SA are
high. However, when considering only experts with SA greater
than 0.05 for both measures, the correlation is generally low for
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all combinations except between KS, CvM , and AD. Under the
PWU assumption, CvM and KS are relatively similar to each
other and to AD. When assuming the Metalog distribution, AD
gives significantly lower scores than to KS andCvM . This is due
to the extra weight assigned to realizations in the tail (see
Figure 1). A high SA for AD does however still ensure high SA
with KS and CvM .

Figure A3 in Appendix A shows the same results plotted on a
logarithmic scale, demonstrating again that KS, CvM , and AD

are relatively similar measures of statistical accuracy. CRPS and
χ2 also show some resemblance due to their high sensitivity to
overconfidence. Moreover, KS and CvM are less likely to yield
very low (< 10−5) scores, while χ2 tends to give the lowest
scores. In terms of expert weights, the linear representation is
more relevant, as it will generally hardly matter for the DM
whether an expert gets a 10−3 or 10−10 score.

3.2 | Analysis of Sensitivity to Biases

We analyze the sensitivity of measures of statistical accuracy to
under‐ and overconfidence and location bias (i.e., over-
estimating or underestimating). The method for calculating the
biases was explained in Section 2.3.1. First, we examine the
results for individual expert assessments, as depicted in
Figure 6. CRPS is known to be location bias insensitive. How-
ever, the CRPS location‐bias scatter plot does not show a very
different pattern from the other measures, indicating that ex-
perts who score high with CRPS are not strongly location‐
biased. χ2,CRPS, and AD (under Metalog assumption) are most
sensitive to overconfidence, while KS , CvM , and AD (under
PWU assumption) are least sensitive to overconfidence. All
scores are sensitive to underconfidence, however CRPS actually
rewards it, which is further discussed in Section 4.1.

Another approach to assess the sensitivity of measures of sta-
tistical accuracy to biases is by sampling from known distri-
butions. We simulate four experts with different biases, 1) the
perfectly statistically accurate (no bias), 2) the overconfident, 3)
the underconfident, and 4) the location‐biased (overestimating)
expert.

The results of the simulation are shown in the Figure 7. The
four columns correspond to the four experts, with the top row
showing the beta‐distribution from which realization quantiles
are sampled. For each expert, 5 to 50 values are sampled from
the distribution. Repeating this process 10,000 times gives the
distribution of p‐values, indicated with the colored bands.

CRPS shows the highest sensitivity to overconfidence, followed
by χ2 and AD, and finally KS and CvM . For underconfidence, a
similar sensitivity pattern emerges, except that CRPS rewards
rather than penalizes underconfidence. An expert with location
bias gets the lowest p‐values from AD, KS , and CvM , followed
by χ2. In general, KS and CvM respond similar to biases and
AD and χ2 do as well. CRPS does not pick up location bias (as
explained by Nane and Cooke (2024)).

For the perfectly calibrated expert, all test statistics produce a
uniform distribution for the p‐value, which aligns with the
asymptotic or exact distribution. χ2 requires more realizations
to reach this uniform result because the χ2 distribution is an
asymptotic rather than an exact distribution of the χ2 test‐
statistic. For this reason, a p‐value equal to 1 is only possible
with a multiple of 20 calibration variables, when eliciting the
5th, 50th and 95th percentile. Note that this is of little conse-
quence for the Classical Model; using 10 variables was deemed
sufficient to select a statistically accurate expert over an over-
confident expert, and that the mean χ2 score for 10 experts
using the asymptotic distribution is not 0.50 but 0.40 (Roger M.
Cooke 2014, see Figure 7).

FIGURE 4 | Quantiles of realizations for 6864 individual expert quantile assessments with respect to the fitted piecewise uniform (white) and

Metalog (grey) distributions. The difference between (a) with 100 bins and (b) with 20 bins shows the effect of assuming PWU or Metalog on the tail

quantiles.
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The continuous measures use an assumed distribution for the
expert estimate to assign a realization to a quantile. The
uncertainty introduced by this assumption is illustrated in this
article through the differences between PWU and Metalog
results. One example of this is the difference between the
fractions< 5% in the histograms in Figure A2. These area equal
for χ2 but different for all other measures. This is a conse-
quence of the assumed distribution that the expert envisioned
for their estimate. The χ2 score does not have uncertainty
introduced by this.

3.3 | Comparison of Decision Maker Statistical
Accuracy

The previous sections presented results and sensitivities
for measures of SA individually. This section compares the
weights derived using the different measures and the resulting
statistical accuracy, following the procedure set out in Sec-
tion 2.3.2. Appendix A presents illustrations of the intermediate
steps that are followed in deriving the results presented in
this section.

FIGURE 5 | Statistical accuracy for the 530 experts based on their quantile assessments in 49 case studies, using the Metalog distribution (upper

right panels) and piecewise uniform (lower left panels). The dashed line represents the 5% significance level. The two numbers in the lower right of

each panel are the rank correlation between all experts (above), and the rank correlation between all experts with a greater than 0.05 SA in both tests

(below). Diagonal plots present the histogram of each measure's statistical accuracy for all 530 experts (i.e., the marginal distribution of each SA

measure). In each histogram, the percentage of experts with a > 5% significance level is reported.
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The measures of statistical accuracy are compared by calculat-
ing decision maker weights using each measure of SA (the
weight SA, recall that the weights are the normalized product of
SA and informativeness), and evaluating the DM's statistical
accuracy with, again, each of the measures of SA (the score SA).
This yields 49 values per combination of weight SA and score
SA, whose means are shown in Table 1. For most combinations,
the values on the diagonal are highest, which is where the same
measure of SA is used for weights and score. This difference is
larger for the GLopt DM than for the GL DM. Note that all SA
measures except CRPS have a “low opinion of equal weighting”
with χ2 having the lowest. CRPS DM's statistical accuracy is
actually slightly higher for equal weighting than for CRPS

weighting.

Table 2 displays the p‐values of the Mann‐Whitney test that
compares whether the ranks of SA (for which the means are
shown in Table 1) are significantly different from each other.
The top five rows compare the ranks under the piecewise uni-
form assumption and the global weights DM. The only signifi-
cant number is the 0.025 between CRPS (row) and CvM

(column). This suggests that the SA calculated with DM weights
from CvM evaluated with χ2 is significantly higher than the SA
calculated with DM weights from CRPS evaluated with χ2. Or,
( )P SA r>DM χ|CvM

2 is greater than ( )P SA r>DM χ|CRPS
2 for all r in

(0, 1). Table 2 compares the sets of ranks when evaluated with
χ2. Table A1 shows the same table but now with ranks com-
pared using each of the other four measures of statistical
accuracy.

Table 2 and Table A1 show that for the global weights DM
without optimization the differences are mostly not significant.
The exception are the weights from CRPS, which often score
significantly lower, especially when evaluated according to the
KS, CvM , or AD test. For the global weights DM with

optimization, the χ2 SA calculated with weights from every
measure other than χ2 itself, are significantly lower (see the
first column in Table 2, rows corresponding to GLopt). Simi-
larly, the CRPS SA calculated with global optimized weights
from the other measures is considered significantly lower as
well (see Table A1). And again, KS , CvM , and AD behave
similarly as a group; the SAs calculated with weights from χ2

and CRPS are significantly lower than the SAs calculated with
weights from the measures themselves, but the SA from weights
in between KS , CvM , and AD are not significantly lower (or
higher). For the Metalog distribution, AD's sensitivity to over-
confidence makes it behave more similar to χ2 and CRPS, and
less similar to KS and CvM .

Based on the comparison in this section, and the analyses from
Section 3.2, the measures of statistical accuracy can be divided
into three categories with similar response to specific char-
acteristics of expert assessments:

1. KS , CvM , and AD value quantiles close to their ranked
position.

2. χ2 values a proportional number of quantiles in bins.

3. CRPS values the median estimate close to the realization's
quantile.

Figure 5 showed that while the correlation between each of
these three categories is high, the correlation for the experts
that score SA > 0.05 in both test is mostly low. Using the global
weight algorithm gives enough spread in weight for the differ-
ences between KS , CvM , AD on one side, and χ2 on the other,
to be (mostly) not significant. This is because all four measures
give a high statistical accuracy to a close to uniform distribution
of quantiles between 0 and 1. However, CRPS responds to a
much different characteristic, which makes the difference

FIGURE 6 | Sensitivity of the measures of statistical accuracy to biases. The top row shows sensitivity to under‐ and overestimating experts

(location‐bias), calculated using Eq. 6. The bottom row shows under‐ and overconfidence, calculated using Eq. 7. Orange crosses indicate statistical

accuracy calculated for the Metalog, blue circles for the piecewise uniform distribution.
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between it and the other measures significant also under global
weights.

When applying optimization, the weight is further concentrated
onto a few experts. Referring again to Figure 5, if the weights
are assigned to one (or a few) of the experts with a high SA for
χ2, it may not result in a high SA for one of the other measures.
This is expressed by the significantly lower p‐values in Tables 2
and 3, when applying optimized weights from another measure
to the measure under evaluation itself. These lower p‐values are
to be expected because the different measures of SA assign high
scores to different characteristics in the expert estimates (hence

the spread in Figure A2.) Consequently, optimizing based on
one characteristic reduces the performance when compared to
a different uncorrelated characteristic.

This leaves the question why χ2 behaves differently from KS, CvM
and AD (i.e., why the correlation for SA > 0.05 in Figure 5 is low).
Although all reward a uniform interquantile distribution, this likely
results from evaluating quantiles on a continuous scale against
evaluating them in bins. When realizations are close to the elicited
quantile, a small difference in weight might cause a shift to another
interval, which can cause a large difference in χ2 SA score. Fur-
thermore, the distribution of quantiles within an interquantile

FIGURE 7 | Distribution of the DM's statistical accuracy for the different measures of statistical accuracy, resulting from drawing 10,000 samples

of 5 up to 50 realization quantiles with different biases and evaluating their statistical accuracy. The four (non‐)biases are: perfectly calibrated,

overconfident, underconfident, and location‐biased (overestimating).
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interval does not matter for χ2, while KS, CvM and AD reward
them being spread out. GL combines all experts so that the CDF has
gradient changes at the quantile values for each expert. For 10
experts there are 30 of these changes, which means the CDF looks
rather continuous and the effect of interpolating a continuous CDF
is attenuated. GLopt, on the other hand, typically weights only one
or two experts and hence has much fewer gradient changes. This
might amplify the distortions introduced by interpolating a con-
tinuous CDF. While this section explored some of the aspects that
cause the differences in behavior, the last word on this has not been
said.

Finally, the behavior of AD heavily depends on assuming the PWU
or Metalog distribution. AD penalizes quantiles close to 0.0 or 1.0
much more than quantiles close to 0.05 and 0.95 (refer to the
weight in equation 3). This means that assuming the Metalog dis-
tribution will make AD (much) more sensitive to overconfidence,
and therefore behave more similar to χ2 and CRPS than to KS

and CvM .

3.4 | Assessing Accuracy of Interpolated
Quantiles

Before the elicitation, an analyst chooses whether to elicit five
or three quantiles. This choice is made by the analyst for the

whole study, not per variable. Opting for three percentiles
lowers the elicitation burden, whereas five percentiles more
accurately represent the experts' distributions. A distribution
that would accurately describe the expert envisioned distribu-
tion, could potentially give the accuracy of more than three
percentiles, while eliciting only three. The reason for consid-
ering the Metalog distribution for interpolating between quan-
tiles, is the hypothesis that it more accurately describes the
distribution envisioned by experts. Unlike the PWU distribu-
tion, the Metalog distribution lacks discontinuities in proba-
bility density at estimated percentiles and, in its the three‐
percentile version, resembles a bell‐shaped curve that is com-
monly observed in natural samples. To test this hypothesis, we
consider the cases with five elicited percentiles, remove
the second and fourth quantile, and estimate their position
using both distributions (see Section 2.3.3).

The results are illustrated in Figure 8, which displays the difference
between distribution‐estimated percentiles and expert‐estimated
percentiles. Panel a shows this for F X( ) − 0.25q=0.25 , with F being
the CDF of Metalog or PWU and Xq=0.25 the expert estimate for the
25th percentile. The dashed line represents a perfect prediction by
the distribution. For the 25th percentile, values to the left indicate
that the distribution assigned a lower percentile to the experts' es-
timate. Conversely, values to the right indicate that the distribution
assigns a higher percentile than the experts.

TABLE 1 | Average DM statistical accuracy for the 49 case studies, calculated with weights from the measures of SA on the columns “SA (w.)”
and Equal weights “EQ”, and scored using the measures of SA on the rows “SA (sc.)”. The results for the GL and GLopt decision maker, as well as

the PWU and Metalog distribution are shown.

Dist. DM
SA (w.)

χ 2 CRPS KS CvM AD EQSA (sc.)

PWU GL χ2 0.40 0.36 0.43 0.46 0.42 0.32

CRPS 0.63 0.67 0.67 0.67 0.67 0.69

KS 0.52 0.41 0.57 0.55 0.54 0.39

CvM 0.51 0.40 0.56 0.57 0.55 0.38

AD 0.51 0.39 0.56 0.57 0.55 0.39

GLopt χ2 0.55 0.38 0.39 0.38 0.43 0.32

CRPS 0.50 0.62 0.35 0.36 0.42 0.69

KS 0.49 0.42 0.71 0.67 0.66 0.39

CvM 0.49 0.43 0.69 0.72 0.68 0.38

AD 0.49 0.44 0.63 0.66 0.65 0.39

Metalog GL χ2 0.39 0.33 0.46 0.44 0.37 0.32

CRPS 0.48 0.46 0.54 0.56 0.40 0.59

KS 0.51 0.43 0.58 0.58 0.46 0.40

CvM 0.50 0.43 0.59 0.60 0.45 0.39

AD 0.45 0.36 0.53 0.54 0.36 0.40

GLopt χ2 0.52 0.32 0.42 0.43 0.40 0.32

CRPS 0.34 0.46 0.27 0.31 0.33 0.59

KS 0.44 0.44 0.70 0.70 0.49 0.40

CvM 0.46 0.44 0.67 0.71 0.50 0.39

AD 0.34 0.36 0.39 0.47 0.41 0.40
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TABLE 2 | p values for the Mann‐Whitney rank‐sum test. A p values less than 0.05 (red) suggests that the ranks of the SAs calculated with the

measure of SA in the row is less than the ranks of the SAs calculated with the measure of SA in the column. The SA‐values are ranked according to

the 49 χ2 DM's SAs. Both the ranks using PWU and Metalog distribution, as well as using GL and GLopt decision maker, are compared.

Dist DM SA χ 2 CRPS KS CvM AD

PWU GL χ2 0.818 0.217 0.121 0.341

CRPS 0.184 0.055 0.025 0.101

KS 0.785 0.945 0.345 0.649

CvM 0.881 0.976 0.657 0.809

AD 0.661 0.900 0.353 0.193

GLopt χ2 1.000 0.998 0.999 0.987

CRPS 0.001 0.460 0.582 0.182

KS 0.002 0.542 0.602 0.230

CvM 0.001 0.421 0.400 0.157

AD 0.013 0.820 0.772 0.844

Metalog GL χ2 0.880 0.093 0.198 0.731

CRPS 0.121 0.009 0.027 0.275

KS 0.908 0.991 0.660 0.962

CvM 0.804 0.974 0.343 0.919

AD 0.272 0.727 0.039 0.082

GLopt χ2 0.999 0.959 0.963 0.981

CRPS 0.001 0.040 0.027 0.117

KS 0.042 0.961 0.409 0.662

CvM 0.038 0.974 0.594 0.702

AD 0.020 0.884 0.340 0.301

FIGURE 8 | Difference between the experts' estimated 25th percentile (a, c) and 75th percentile (b, d), and the positions according to the PWU

distribution (a, b) and Metalog distribution (c, d) fitted to the five‐percentile cases with the 25th and 75th percentile removed.
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Panels a and b show high bin values at 0.025. These values
correspond to cases where an expert assigned a value to the 25th

percentile precisely between the 5th and 50th percentiles' values.
This situation accounts for approximately 20% of expert esti-
mates. Filtering these estimates results in the black outlined
histogram. On average, PWU performs better than Metalog.
Nevertheless, both distributions show significant deviations
when estimating the missing percentiles. It seems that the dis-
tributions both lack predictive power for the missing percentiles.

Based on this analysis, the Metalog does not offer a better repre-
sentation of experts' estimates than PWU. The smooth and more
informative distribution is too precise (i.e., it concentrates proba-
bility density more than experts appear to do). Consequently, the
best approach to obtain a more accurate representation of experts'
probability density functions (PDFs) is to elicit more percentiles.

Note that adding percentiles does not seem to be needed for
increasing the decision maker's statistical accuracy. To assess
this, we compared the decision maker's SA with weight from
the 3‐percentile estimates (i.e., with removed percentiles) to the
decision makers constructed using weights from the
5‐percentile case. Weights were calculated using χ 2 and
the PWU distribution. The SAs for both decision makers were
then calculated based on 3‐percentile estimates (to ensure a fair
comparison). Over the 17 studies, the DM constructed with
weights from the 5‐percentile estimates scored on average 0.008
higher with a standard deviation of 0.09; a negligible difference.

4 | Discussion and Conclusions

This study set out to test five different measures of statistical
accuracy for scoring experts in an expert judgment study. The
results are applicable to evaluating and combining uncertainty
estimates in a broader context as well, such as in forecasting.
The newly evaluated test statistics — the Continuous Ranked
Probability Score (CRPS), Kolmogorov‐Smirnov (KS), Cramer‐
von Mises (CvM), and Anderson‐Darling (AD) — were assessed
as alternative to relative information based chi‐square test (χ2)
used in the Classical Model. Where χ2 interprets and scores the
estimates through discrete quantile intervals, the four

alternatives map realizations on a continuous CDF‐scale and
accordingly calculate the statistical accuracy based on a con-
tinuous distribution. This makes the assumed distribution that
connects the expert estimated percentiles relevant. In this
context, the Metalog distribution was explored as an alternative
to the piecewise uniform (PWU) assumption that is typically
employed to model the estimated probability density in the
Classical Model. The test statistics were assessed through 49

expert judgment studies from the last decades, and by sampling
estimates from distributions with a specific bias. The study's
findings are discussed in two parts: the performance of various
test statistics (Section 4.1) and the performance of the Metalog
distribution (Section 4.2). Finally, Section 4.3 discusses the
implications for SEJ practitioners.

4.1 | Performance of Different Test Statistics

Comparing the five measures of statistical accuracy revealed
varying sensitivity to different biases. χ2 is sensitive to over-
confidence, underconfidence and location bias. KS and CvM are
sensitive to location bias and underconfidence but less sensitive
to overconfidence. AD performs relatively similar to KS andCvM
when assuming a PWU distribution. The assumed over-
confidence related to the Metalog distribution however makes
the AD weights much stricter on overconfidence. Because of this,
AD behaves more similar to χ2 under the Metalog assumption.

The new scale‐invariantCRPS is sensitive to overconfidence but
insensitive to location bias and it rewards underconfidence. A
relationship between CRPS and underconfidence is illustrated
in Figure 9. The figure shows the relationship between the
average quantile distance to the median and the statistical
accuracy (panel a) or combined score (panel b).

This distance is calculated as  F x N| ( ) − 0.5|/i
N

i j i=1 , , in which Fi j,
is expert j's estimate for item i with realization xi. An unbiased,
uniform, quantile distribution would have an expected distance of
0.25. The figure shows that there is a strong relationship between
CRPS and distance to median. This is because 1) the scale‐
invariant CRPS compares a realization to a uniform distribution,
resulting in the minimal difference area while aligning the median

FIGURE 9 | Mean absolute difference between realization's quantile and median for CRPS. Plotted against statistical accuracy (a), and plotted

against combined score (b).
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estimate with the realization (see Figures 2), 2) The CRPS con-
siders every estimate individually, so the maximum score is
achieved when all are close to the median. This distinguishes it
from CvM and AD, where a uniform distribution of all quantiles
scores best. The relationship is weakened by considering the
combined score which including informativeness. Because the
lower informativeness of underconfident experts does not offset
the high statistical accuracy, underconfident experts still achieve
high combined scores. This means that a perfectly accurate expert
could achieve a higher statistical accuracy, and likely a higher
weight as well, when deliberately making underconfident esti-
mates. Therefore, using CRPS does not encourage experts to state
their true, unbiased, beliefs. This means the scale‐invariant CRPS
is not a proper scoring rule, as also pointed out by Bracher and
acknowledged in a footnote in (Nane and Cooke 2024).

Measures of statistical accuracy were compared by calculating
decision maker (DM) weights with one measure and evaluating
them against DMs from the other measures. The results show that
for global weights without optimization, the differences between SA
scores based on weights from different measures are mostly
insignificant. Except for CRPS, whose weights lead to significantly
lower SA when evaluated using other measures. Applying optimized
global weights further concentrates weights on experts with a high
SA in the specific test‐statistic, for which reason they perform worse
when applied to most other measures of statistical accuracy.

Under the PWU assumption, SAs calculated with DM‐weights
from AD are considered not statistically significantly different
when evaluated by KS and CvM (see Table A1). However, when
calculated under the Metalog distribution, the SA from AD

weights rank significantly lower when evaluated using KS and
CvM . The inverse is not the case, weights from KS and CvM do
not rank significantly different when evaluated by AD under
either PWU or Metalog. This indicates that penalizing over-
confidence (as AD does under Metalog) leads to significantly
lower SA, while being less strict on overconfidence (i.e., using KS
orCvM weights under Metalog) does not significantly reduce SA.

4.2 | Performance of the Metalog Distribution

The Metalog distribution (Keelin 2016) was explored as an
alternative to the piecewise uniform (PWU) distribution that is
commonly used in CM. CRPS, KS, CvM , and AD require the
realizations' quantile positions rather than intervals, and the
Metalog offers a flexible distribution for placing those. The most
significant differences between the Metalog and PWU are the
quantile positions for realizations that fall outside the
[0.05, 0.95] interval, as shown in Figure 4. Using the Metalog
means assuming a higher degree of overconfidence, yielding
worse results for measures of statistical accuracy that penalize
this. However, this issue is not intrinsic to the Metalog distri-
bution itself, but resides in the (overshoot) range that is
assumed for the PWU distribution.

The appealing feature of the Metalog is its smooth, bell‐shaped
curve, which may be more intuitive to experts (a ‘soft’ argument,
but nonetheless relevant in the field of expert judgment). Typically,
a naturally observed continuous variable does not exhibit steps in
probability density at (estimated) percentiles, as the PWU examples

in 3 show. Assuming a bell‐shaped curve increases probability
density closer to the median while reducing it toward the tails (see
Figure 3 a). Paradoxically, when removing the second and fourth
percentile from the five‐percentile cases and estimating their re-
moved position, the Metalog distribution mostly overestimates the
probability density within the 25th to 75th percentile interval. This
implies that, in these case studies, experts more often estimated a
platykurtic (negative kurtosis, thin‐tailed) than a leptokurtic
(positive kurtosis, fat‐tailed) distribution. The PWU distribution also
underperformed in this experiment, highlighting that the best
approach for an analyst to obtain an accurate representation of the
full distribution is to assess more percentiles.

Fitting a Metalog distribution to all expert estimates in the 49
case‐studies proved challenging. While the Metalog distribution
offers high shape flexibility, it could not accommodate highly
skewed three‐percentile estimates without imposing bounds.
Additionally, many five‐percentile estimates could not be fitted
without dividing the distribution into two three‐percentile
Metalog distribution parts (such as shown in Figure 3g).

4.3 | Final Remarks

The comparisons between the different measures and distri-
butions provide insight into their behavior, but also into the CM
in general. Therefore, we reflect on the result in the context of
implications to the practitioners, discussing whether to use
performance weighting and optimization, and which distribu-
tion and measure of SA to use.

Should you use performance weighting? This study shows that
all measures except CRPS agree that performance weighting is
superior to equal weighting with respect to statistical accuracy. Note
that is based on ‘in‐sample’ comparisons. Colson and Cooke (2017)
show that in out‐of‐sample comparisons performance weighting
increased informativeness without sacrificing accuracy. Therefore,
we recommend using performance weighting despite the additional
effort involved in collecting and eliciting seed questions.

Which distribution to use, PWU orMetalog? Neither the PWU
nor Metalog distribution did a good job of predicting missing
quantile assessments. The Metalog has the advantage over PWU
that no overshoot assumption is needed to construct a distribution
from the estimated percentiles. However, using the Metalog gave
issues with consistently fitting the distribution to expert estimates.
In our view, the minimal assumptions in the PWU distribution
result in wide applicability and ease of use, and therefore should be
the standard approach in the CM. However, this does not mean that
an analyst could not decide otherwise; in some applications (e.g.,
when using gradient‐based sampling) a smooth Metalog distribu-
tion might be preferable over a stepped PDF.

Which measure of SA should you use? All five investigated
measures of statistical accuracy have different effects on the
resulting combined estimate (DM), such as the number of ex-
perts included with significant weight, the sensitivity to differ-
ent biases, and the assumptions required for calculating the
weights. When assuming a piecewise uniform distribution, KS,
CvM , and AD behave similarly, but different from χ2, which
again behaves differently toCRPS. When assuming the Metalog,
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the higher degree of assumed overconfidence makes AD behave
more similar to χ2 and CRPS, and less to KS and CvM .

Based on our findings, we would advise not to use CRPS, as it
performs worse than the others and encourages underconfidence.
If the goal is to increase the number of experts with a significant
weight, KS and CvM are both options. However, AD was deve-
loped as a ‘better’ version of CvM , by being more sensitive to
observations in the tails of the distributions. Within the CM, this
means a better ability to pick up on the overconfidence bias. This
leaves the AD and χ2 tests. χ2 does not use quantile positions, so
it does not need an assumed distribution. The effect of assuming a
distribution is significant; it makes the AD score behave either like
χ2 (with Metalog) or like KS andCvM (with PWU). An advantage
of the AD test might be that it evaluates the positions of each
realization, that is, it compares the realizations to a uniform dis-
tribution, rather than in four bins. However, whether this provides
a significant advantage over χ2 is unclear from this study, and
should be subject of further research. Until then, we advice to use
the χ2 as the default option in the Classical Model.

Should you use optimization in CM? Non‐optimized weights
derived with one of KS , CvM , or AD and evaluated with χ2 or
vice versa, do not provide significantly worse DMs. However,
when optimization is used they do perform significantly worse
when evaluated with the other. This is to be expected, as opti-
mization concentrates weight on experts or forecasts that score
high according to the chosen measure of SA, and different
measures of SA do not assign high weights to the same experts
or forecasts (see Figure A2.) However, this considers only the
statistical accuracy, and weights in the CM are assigned based
on the combination of SA and informativeness. The purpose of
optimization in the Classical Model is to increase the inform-
ativeness of the DM without decreasing its SA.

In many cases (e.g., Bamber et al. 2019) the difference between the
optimized DM and the DM with a 5% SA cutoff are very small and
preference is given to the added robustness of weighting more
experts above a very small improvement in DM performance. It is
not uncommon in such situations to give in on the optimum to
gain robustness, as one is always balancing multiple objectives.

Ultimately, the choice of using optimization ties back to the
confidence in the chosen measure of SA. Further research on
the differences between the different measures, in particular χ2

and AD, including the information score, could provide more
insight into this. We recommend redoing some of the original
analyses on the Classical Model with different measures of SA
and in particular AD, the best performing of the alternative
scoring rules. Until that has provided more conclusive results,
having various options of distributions as well as different
measures of statistical accuracy provides analysts with flexibil-
ity to tailor the approach to their specific study. These options
are available through the open‐source Anduryl software, as
detailed in ‘code and availability’ below.
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Appendix A
Background on comparison between measures of statistical
accuracy

The procedure for cross‐comparing the test statistics was explained in
Section 2.3.2, and the results were presented in Section 3.3. This

appendix section gives additional explanation and illustrations on the
intermediate steps.

When applying the different measures of statistical accuracy to the 49
studies, some measures give higher statistical accuracy (on average) than
others. Comparing the obtained statistical accuracies is therefore not
unbiased. To overcome this, empirical distributions were derived for each
measure (recall step 4 in the list in Section 2.3.2). These empirical distri-
butions are shown in Figure A1. Each panel contains five curves, of which
each is constructed by calculating the decision maker in the 49 studies and
ranking the resulting SA. For example, the orange CRPS distribution was
constructed by calculating the CRPS statistical accuracy for all experts and
combining that with the informativeness to derive weights. These weights
were combined into a decision maker, for which the CRPS SA was cal-
culated. This gives one of the 49 markers in the empirical distribution.
Repeating this for all cases using the global weight DM with and without
optimization, and the piecewise uniform and Metalog distribution, results
in the five distributions in each of the four panels of Figure A1.

The empirical distributions of each method's DM‐scores are primarily
used for comparing statistical accuracy. However, they also show that:

1. Measures of statistical accuracy that are less sensitive to over-
confidence (i.e., KS, CvM ) tend to return higher SA scores
for DM, especially under the Metalog assumption. This is because
overconfidence is a prevailing bias in expert judgment studies.

2. Optimization results in higher DM SA. Note that this is not nec-
essarily the primary goal of optimization, which typically results in
increased informativeness while not decreasing the SA.

3. Assuming the Metalog distribution gives lower scores than
assuming PWU for AD and CvM , due to the measures' sensitivity
to overconfidence. χ2 is sensitive to overconfidence as well, but
unaffected by the choice of distribution because it utilizes inter-
quantile intervals. At the same time, it profits from the higher

FIGURE A1 | Empirical distributions of the decision makers' statistical accuracies in the 49 case‐studies. (a) and (b) for piecewise uniform

distribution, (c) and (d) for the Metalog; (a) and (c) for the global weights DM without optimization, and (b) and (d) with optimization.
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informativeness of the Metalog distribution (the same reason why
KS and CvM score higher with Metalog as well.)

Using the empirical distributions, a χ2 SA calculated with DM weights
from, for example, the CRPS, can be compared to the χ2

SA calculated with DM weights from χ2 itself. Doing this for all
49 cases results in a set of ranks per measure of SA. Figure A2 displays
these ranks for SA calculated with weights from each measure of SA
and evaluated using each measure of SA. For example:

• Figure A2 a., first box plot from the left, shows the χ2 SA calcu-
lated with global DM χ2 weights, and compared to the empirical
distribution of DM χ2 SA. This is in fact comparing the χ2 ranks to
the χ2 ranks itself, resulting in a uniform distribution.

• Figure A2 a., second box plot from the left, shows the χ2 SA cal-
culated with global DMCRPS weights, and compared to the em-
pirical distribution of DM χ2 SA. The ranks for DMCRPS are on
average slightly lower.

• Figure A2 f., second box plot from the left, shows the χ2 SA cal-
culated with global DMCRPS optimized weights, and compared to
the empirical distribution of optimized DM χ2 SA. Now the CRPS
weights give substantially lower statistical accuracy.

Whether substantially lower is also significantly lower is tested using the
MannWhitney test. The resulting p‐values of those tests, for the DMweights
evaluated using χ2, were presented in Table 2. The first five rows in the table

FIGURE A2 | Comparison of all measures of statistical accuracy. DMs composed using each measures' weight (each box plot) are compared to

the empirical distribution of every measure (each column). The comparison is done with and without optimization, and for the PWU and Metalog

distribution. Each box indicates the 25th to 75th percentile range, with the horizontal line being the median. The fliers indicate the 5th and 95th

percentile, and the cross is positioned at the mean.
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correspond to Figure A2a. It shows the probability (p‐value) that each of the
samples is lower than the other sample. For example, the statistically sig-
nificant p‐value of 0.025 for DM DM<CRPS CvM is represented by the CvM
(red) box plot showing higher values than the CRPS (orange) box plot.
Figure A2 f, k, and p correspond to the remaining rows in Table 2.

The p‐values of the rank comparison evaluated for the other measures
of statistical accuracy are shown in Table A1. These correspond to the
remaining panels in Figure A2.

Finally, Figure A3 is equal to Figure 5 but on a logarithmic scale. This
shows the behavior of the measures to experts that score a very low
statistical accuracy.

Appendix B
Metalog distribution

1. Information score for the Metalog distribution

In the Classical Model, the information score compares the probability
density distribution fe i, for item i elicited from expert e, to a back-
ground density gi. This background density is uniform across the
intrinsic range L U[ *, *]. This range is defined for each item by
collecting all experts' estimates and the realization. The minimum
and maximum of this set form the lower bound L and upper
bound U . An overshoot k (typically 0.1) is than added to obtain
L U L k U L U k U L[ *, *] = [ − ( − )/100, + ( − )/100]. Typically, the 5th,

FIGURE A3 | Statistical accuracies for the 530 experts based on their quantile assessments in 49 case studies, using the Metalog distribution

(upper right panel) and piecewise uniform (lower left panels). Similar to Figure 5 but on a logarithmic scale. The axes are limited to 10−12, not

showing SA values below this limit. The two numbers in the lower left of each panel are the rank correlation between all experts, and the rank

correlation between all experts with a greater than 0.05 SA in both test. Diagonal plots present the histogram of each measure's statistical accuracy for

all 530 experts (i.e., the marginal of each scatter plot). In each histogram, the percentage of experts with a > 5% significance level is reported.
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50th, and 95th percentiles are elicited. This creates a probability vector
with 4 quantile intervals, p = (0.05, 0.45, 0.45, 0.05). When assuming
the piecewise uniform distribution, the expert density f e i( , ) is com-
posed of a uniform distribution between each subsequent pair of
values in the vector X : L x x x U( *, , , , *)0.05 0.50 0.95 . The information score
is calculated by comparing the interquantile range to the bin size pi:

⋅

















I e i U L p
p

x x
( , ) = log( * − *) + log

−
PWU

i
i

i

i i=1

4

+1

(8)

If an expert would estimate values for the three percentiles that result in
a uniform distribution on L U[ *, *] the information score would be zero.
Any deviation from this results in an information score above zero.

When assuming the Metalog distribution, the interquantile probability
is not uniformly distributed. The information score is therefore calcu-
lated by integrating the expert density f e i( , ) over the range L U[ *, *]:

⋅

















I e i U L p x
p x

dx
dx( , ) = log( * − *) + ( ) log

( )
ML

x L

U

= *

*

(9)

In which p x( ) is the uniform background probability density in the
range L U[ *, *]. However, the unbounded version of the Metalog ranges
from ∞− to ∞ and is thus not limited to L U[ *, *]. Using the infinity
range would lead to a probability density of zero for the background
probability and an infinite informativeness for the expert. Therefore,
only the range L U[ *, *] is considered for calculating the informative-
ness. Because of the need for limits on the background probability
density, a choice for the overshoot is still required when using the
Metalog to interpolate expert percentile estimates.

2. Method for fitting a distribution to varying percentiles

Not all three‐percentile or five‐percentile expert estimates result in
feasible Metalog distributions (i.e., f x( ) > 0 for all x , with f x( ) being
the PDF of x). For symmetric three‐percentiles cases, the constraints for
a feasible Metalog are given by a > 02 and a a| |/ < 1.667113 2 . For an
unbounded Metalog distribution with a 5th percentile value of 10, and a
95th percentile value of 90, the median should be in between 20 and 80.
If this is not the case, a feasible distribution can be achieved be
imposing a lower or upper bound such that the constraints are met. This
leads to highly skewed distributions, with one bound and one very thick
tail. For the 3‐percentile case, the steps in fitting a Metalog distribu-
tion are:

1. Check whether the linear least squares fitted a‐vector is feasible.

2. If not, determine whether the expert estimate is left or right
skewed. Find the lower and upper limit of the of the lower bound
(left skewed) or upper bound (left skewed) that meets the con-
straints (i.e., a > 02 and a a| |/ < 1.667113 2 ).

3. Iterate towards the bound that results in the distribution with the
lowest maximum probability density (i.e., the least informative
distribution).

For the five‐percentile case it is more difficult to obtain a feasible fit.
This is partly due to many expert estimates being more or less uniform
in between the 5th and 95th percentile, such as shown in Figure 3e. For
nonsymmetric cases this often leads to not finding a feasible solution
using a 5‐term a‐vector. Figure 3h. is an example of this. In some cases,
a solution is to impose a bound on one side just like for the skewed
three‐percentile cases. However, this does not work in all cases.
Another solution is to use two three‐percentile Metalog distribution,
one representing the 5th, 25 h and 50th percentiles, and one repre-
senting the 50th, 75th and 95th percentiles. This leads to a discontinuity
in probability density at the median, which can be removed by imposing

bounds on one (or both) of the 3‐percentile Metalog parts (e.g., adding
an upper bound to the left part in Figure 3g). We chose not to do this as
it is only an aesthetic solution, which affects the tail probabilities and
tends to create spikes in the probability density functions. The steps for
fitting a five‐percentile Metalog are therefore:

1. Check whether the linear least squares fitted a‐vector is feasible.

2. If not, find two feasible three‐percentile Metalog distributions
(following the steps above).

3. Optionally, remove the discontinuity in probability density at the
median, by iteratively shifting the lower or upper bound of the
right or left distribution (whichever has the lowest probability
density at the median) until the gap is removed.
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