Tail Dependence and Vines
Cooke 5/19/2015

CONTENTS

- Copula & Tail Dependence
- Aggregation Amplifies Dependence
- Amplifying Tail Dependence?
- How does Tail Dependence Arise?
- Vines

Copulae and Tail Dependence

Copula: \(C(u_1, u_2) = P(U_1 \leq u_1, U_2 \leq u_2); \ U_i \sim \text{Unif}(0,1). \)

\[
\partial_2 C(u_1, u_2) = \lim_{\delta \to 0} \left[P(U_1 \leq u_1, U_2 \leq u_2 + \delta) - P(U_1 \leq u_1, U_2 \leq u_2) \right] / \delta
\]

\[= P(U_1 \leq u_1, U_2 = u_2) = P(U_1 \leq u_1 | U_2 = u_2) \text{ (since } U_2 \text{ uniform).} \]

Lower Tail dependence: \(\lambda_1 = \lim_{q \to 0^+} \frac{C(u, u)}{u}. \)

NB for \(C(u_1, u_2) = 1 \) (independent),

\[
\lim_{q \to 0^+} \frac{C(u, u)}{u} = \frac{q^2}{q} \to 0. \text{ Upper TD defined similarly for } u^* = 1-u.
\]

L'Hôpital:

\[
\lim_{q \to 0^+} \frac{C(u, u)}{u} = \lim_{q \to 0^+} \frac{dC(u, u)}{du} = P(U_1 \leq u_1 | U_2 = u_2) + P(U_2 \leq u_2 | U_1 = u_1).
\]

C symmetric \(\Rightarrow \lambda_1 = 2 \lim_{q \to 0^+} P(U_1 \leq q | U_2 = q). \)

Normal Copula, Tail Independence

\[
2 \lim_{q \to 0^+} P(U_1 \leq q | U_2 = q) = 2 \lim_{x \to -\infty} P(X_1 \leq x | X_2 = x), X_i \sim N(0, 1).
\]

\[Y := (X_2 | X_1 = x) \sim N(\rho x, 1-\rho^2).\]

\[
P(Y \leq x) = \Phi((x-\rho x)/\sqrt{(1-\rho^2)}) = \Phi(x\sqrt{(1-\rho)}/\sqrt{(1+\rho)}) \to 0; |\rho| < 1.
\]

[NB \(\Phi(x\kappa)/\Phi(x) \sim \phi(x\kappa)/\phi(x) \to \infty \text{ as } x \to -\infty. \)]
Figure 1: Normal (left), Clayton (middle) and Gumbel (right) copula, correlation 0.8.

The following graph shows the probability that Y exceeds its u-th quantile given that X exceeds its u-th quantile, \(u = 0.5 \ldots 0.99 \), for correlation values \(r = 0.5 \) and \(r = 0.9 \).

![Normal Copula Exceedance Probabilities](image)

Figure 2: Conditional exceedance for the normal copula, correlation = 0.5 … 0.9.

We see that for rank correlation \(r = 0.5 \) (blue), the probability that Y exceeds its median given that X exceeds its median is about 0.6667. The probability that Y exceeds its 0.99 quantile given that X exceeds its 0.99 quantile is 0.13. For rank correlation \(r = 0.9 \), the same exceedance probabilities are 0.856 and 0.543. At some point the conditional exceedance probability dives down in a supra linear fashion. The behavior for upper and lower exceedance probabilities is the same, owing to the symmetry of the normal copula. Note that these exceedance probabilities do NOT depend on the distributions for X and Y, since the exceedances are couched in terms of percentiles.

A tail dependent copula will show very different behavior. The Gumbel copula is the most popular simple copula for capturing upper tail dependence. The conditional exceedance
The Gumbel copulae with correlation 0.8 is shown in Figure 1. $P(Y > u\text{-th quantile} \mid X > u\text{-th quantile})$ converges to a constant, which parameterizes the Gumbel family1.

The conditional exceedance probabilities for the Gumbel copula are shown in Figure 3, which should be compared with Figure 2. At the median (u = 0.5) the conditional probabilities are comparable to those in Figure 2. However, at the 99th percentiles, for $r=0.5$ and $r=0.9$ these are respectively 0.436 and 0.797 respectively.

\begin{align*}
P(Y \leq u\text{-quantile} \cap X \leq v\text{-quantile}) = \exp\{-((\ln(u))^\alpha + (\ln(v))^\alpha)^{1/\alpha}\}, \quad \alpha \geq 1,
\end{align*}

An elementary computation shows that \(\lim_{u \to 1} P(Y > u\text{-quantile} \mid X > u\text{-quantile}) = 2 - 2^{1/\alpha} \).

Figure 3 Conditional exceedance for the Gumbel copula, correlation = 0.5 … 0.9.

Figure 4 Conditional exceedance for Frank and Reverse Clayton, correlation = 0.5 … 0.9.

1 $P(Y \leq u\text{-quantile} \cap X \leq v\text{-quantile}) = \exp\{-((\ln(u))^\alpha + (\ln(v))^\alpha)^{1/\alpha}\}, \quad \alpha \geq 1$. An elementary computation shows that $\lim_{u \to 1} P(Y > u\text{-quantile} \mid X > u\text{-quantile}) = 2 - 2^{1/\alpha}$.
Delta = closing price – next day open price

last 2 years

Fit Joint with Regular Vine 15,000 samples
Student t survivor Gumbel complex

Aggregation Amplifies Dependence

Micro-correlations are correlations between variables at or beneath the limit of detection. The difficulty with micro-correlations is that they could so easily go undetected. One might not readily assume that fires in Australia and floods in California are correlated, for example, but El Niño events induce exactly this coupling. These tiny correlations are amplified by aggregation, undermining common diversification strategies.

The amplification under aggregation is illustrated by a very simple formula that should be on the first page of every insurance text book, but isn’t. Let X_1, X_N and $Y_1, \ldots Y_N$ be two sets of random variables with the same average variance σ^2 and average covariance C (within and between sets). The correlation of the sums of the X’s and the sum of the Y’s is easily found to be:

$$
\rho(\sum X_i, \sum Y_i) = \frac{N^2C}{N\sigma^2 + N(N-1)C}.
$$

This evidently goes to 1 as N grows, if C is non-zero and σ^2 is finite. If all variables are independent, then $C = 0$, and the above correlation is zero. The variance of $\sum X_i$ is always non-
negative; if the σ^2 and C are constant for sufficiently large N, it is easy to see that $C \geq 0$.

Amplifying Tail Dependence?

An important question is When is tail dependence amplified by aggregation? Simple simulations show that the answer depends on the copula and the margins. In the graphs below, variables are conditionally independent given a latent variable, to which they are all weakly coupled. For the rest, the little that is known is given below.

normal, normal copula 0.3 to Latent, sums of 20

![Graph 1](image1)

sums of 40

![Graph 2](image2)

normal, Gumbel copula 0.3 to Latent, sums of 20

![Graph 3](image3)

sums of 40

![Graph 4](image4)

Pareto(1), normal copula 0.3 to Latent sums of 20

![Graph 5](image5)

sums of 40
How does tail dependence arise?

1) Aggregating events
2) Aggregating events + damages
3) Scale mixtures

Under what conditions does UTD($S_1(N)$, $S_2(N)$) → 1?

Harry Joe's UTD condition:

$$P(U < u | V = 1) = 0, \quad \forall \ 0 < u < 1.$$

FRANK: No

Standard UTD copulae: YES

NORMAL: YES (!)
Table 5.1. Conditional probabilities \(\Pr(S_2 > N \zeta | S_1 > N \zeta) = \lambda_U(r, \zeta, N) \) with \(r = 0.9 \), \(\zeta = 0.7 \), Spearman \(\rho_S = \) rank correlation = 0.5; leading to parameters \(\theta = 1.54 \) for the Gumbel, \(\rho = 0.518 \) for the bivariate normal (BVN), \(\theta = 7.90 \) for the Frank copulae respectively. Limit behavior depends on the comparison sign of \(p_r(1) - \zeta \).

<table>
<thead>
<tr>
<th>(N)</th>
<th>Gumbel</th>
<th>BVN</th>
<th>Frank</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>0.604</td>
<td>0.264</td>
<td>0.144</td>
</tr>
<tr>
<td>20</td>
<td>0.687</td>
<td>0.411</td>
<td>0.067</td>
</tr>
<tr>
<td>30</td>
<td>0.733</td>
<td>0.528</td>
<td>0.034</td>
</tr>
<tr>
<td>40</td>
<td>0.763</td>
<td>0.620</td>
<td>0.019</td>
</tr>
<tr>
<td>50</td>
<td>0.785</td>
<td>0.695</td>
<td>0.010</td>
</tr>
<tr>
<td>60</td>
<td>0.801</td>
<td>0.755</td>
<td>0.006</td>
</tr>
<tr>
<td>70</td>
<td>0.815</td>
<td>0.804</td>
<td>0.003</td>
</tr>
<tr>
<td>80</td>
<td>0.826</td>
<td>0.845</td>
<td>0.002</td>
</tr>
<tr>
<td>90</td>
<td>0.835</td>
<td>0.877</td>
<td>0.001</td>
</tr>
<tr>
<td>100</td>
<td>0.843</td>
<td>0.903</td>
<td>0.001</td>
</tr>
</tbody>
</table>

256 vbls, correlation to Latent = 0.2
Sums of 125 disjunct FRANK
Aggregating events and damages

Figure 5.5. Percentile scatterplots of random aggregation of Florida county monthly flood losses. Left: two random aggregations of five counties; right: two random aggregations of 30 distinct counties.

Figure 5.8. A model for Florida monthly flood damages, exponential damages linked to a latent variable with the Gumbel copula.
Scale mixtures
Mixtures of exponentials: Consider exponentials conditionally independent given rate, with gamma mixing of rates. Marginal distributions are Pareto with parameter depending on shape of gamma. Sums are positive tail dependent:

Figure 5.11. Percentile scatterplots for sums of L_1 variables, with shape of Gamma mixing distribution = 3. Left: 2 L_1 variables, rank correlation = 0.21; center: sums of 10 such variables, rank correlation = 0.77; right: sums of 50 such variables, rank correlation = 0.94.
VINES

Markov trees:

Sampling: $X's \sim U[0,1]$, independent, $U's \sim U[0,1]$

\[
\begin{align*}
 x_1 &= u_1 \\
 x_2 &= F_{2|x_1}^{-1}(u_2) \\
 x_3 &= F_{3|x_2}^{-1}(u_3) \\
 x_4 &= F_{4|x_3}^{-1}(u_4) \\
 x_5 &= F_{5|x_3}^{-1}(u_5)
\end{align*}
\]

Regular Vine: System of Bivariate Constraints

Regular vine + (conditional) copula => sampling algorithm

Constraints on edges: $\Delta \mid \bigcap$

- $\Delta = $ doubleton
- Every pair occurs once as Δ
- Copulae can be chosen arbitrarily, typically indexed by (rank) correlation
- Setting $ij \mid K = $ independent \Rightarrow max. inf realization given rest
Non Regular Vine

X3 — x1 — x2
Theorem 3.2 Let D be the determinant of the n-dimensional correlation matrix ($D > 0$). For any partial correlation vine

$$ D = \prod_{e \in E(V)} (1 - \rho_{c_1,c_2;D_e}^2) $$

\[(4)\]

\textit{Why: where R is multiple correlation:}

$$ D = (1 - R^2_{1\{2..n\}})(1 - R^2_{2\{3..n\}})\ldots(1 - R^2_{n-1\{n\}}).$$

\textit{Where ρ is partial correlation:}

$$(1 - R^2_{1\{2..n\}}) = (1 - \rho^2_{12;3..n})(1 - \rho^2_{13;4..n})\ldots(1 - \rho^2_{1n})$$

The search for an optimal vine requires a method for enumerating and searching all vines. The number of regular vines grows very quickly. A closed formula for the number of regular vines on n elements was found in Morales Napoles et al.41 :

\textbf{Theorem 3.1.}

(1) For any regular vine on $n - 1$ elements, the number of regular n-dimensional vines which extend this vine is 2^{n-3}.

(2) There are $\binom{n}{2} \times (n - 2)! \times 2^{(n-2)(n-3)/2}$ labeled regular vines in total.

Note that the number of extensions of a regular vine does not depend on the vine itself.
Regular Vine + Conditional Copulae

Theorem [1] Let \mathcal{V} be a regular vine on n elements, for each edge $e \in E(\mathcal{V})$, let the conditional copula and copula density be $C_{e_1,e_2 \mid D_e}$, $c_{e_1,e_2 \mid D_e}$, let 1-D margins with cdf F_i and densities f_i be given. Then the vine-dependent distribution is uniquely determined and has density:

$$f_{1,\ldots,n} = f_1 \cdots f_n \prod_{e \in E(\mathcal{V})} c_{e_1,e_2 \mid D_e} (F_{e_1 \mid D_{e_1}}, F_{e_2 \mid D_{e_2}}).$$

Any joint density can be represented in this way, for any regular vine....conditional copula NOT constant

Compare Hammersley Clifford
Tail dependent copula often arise in fitting financial time series.

In the example below, N denotes the normal copula, F is the Frank copula, t is the T copula and G is the Gumbel copula.

Figure 12: The D-vine fitted to the Norwegian stock market data.
Ice Sheet Elicitation (16 experts)
Accumulation, Discharge, Runoff in Greenland, West Antarctica, East Antarctica

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>StdDev</th>
<th>94%</th>
<th>99%</th>
<th>99.5%</th>
</tr>
</thead>
<tbody>
<tr>
<td>EW sir indep</td>
<td>3.48E+02</td>
<td>3.45E+02</td>
<td>-1.22E+02</td>
<td>2.74E+02</td>
<td>9.91E+02</td>
</tr>
<tr>
<td>PW sir indep</td>
<td>2.57E+02</td>
<td>1.52E+02</td>
<td>2.33E+01</td>
<td>2.32E+02</td>
<td>5.83E+02</td>
</tr>
<tr>
<td>PW sir normal</td>
<td>2.49E+02</td>
<td>2.12E+02</td>
<td>-1.32E+00</td>
<td>2.04E+02</td>
<td>6.61E+02</td>
</tr>
<tr>
<td>PW sir taildep</td>
<td>2.54E+02</td>
<td>2.22E+02</td>
<td>7.50E+00</td>
<td>2.03E+02</td>
<td>6.96E+02</td>
</tr>
</tbody>
</table>
Appendix: some copula details

Tail Dependence

Clayton 0.8

\[
C_u(u, v) = \min\left\{ u^{-\alpha} + v^{-\alpha} - 1 \right\}^{\frac{1}{\alpha}}
\]

Gumble 0.8

\[
C_u(u, v) = \exp\left\{ -\left[\ln u^{\alpha} + \ln v^{\alpha} \right]^{\frac{1}{\alpha}} \right\}
\]

Mininf Copula (\(\rho=0.8\))

Frank’s copula: (\(\rho=0.8\))

\[
c(u, v; \theta) = 0 \left[1 - e^{-\theta} \right] e^{-(\theta u + v)} \left[1 - e^{-\theta u} \left(1 - e^{-\theta v} \right) \right]^{\frac{1}{\theta}}
\]

Normal copula: (\(\rho=0.8\))

\[
C(u, v) = \frac{1}{\sqrt{2\pi}} \exp\left\{ -\frac{(u-\rho v)^2}{2(1-\rho^2)} \right\}
\]

The T copula

The Student-t copula is an elliptical copula defined as:

\[
C_{\rho} = \int \int \frac{1}{2\pi (1-\rho^2)^{\frac{1}{2}} \left\{ 1 + \frac{x^2 - 2\rho xy + y^2}{1-\rho^2} \right\}^{\frac{n}{2}}}
\]

Diagonal Band Copula

\[
\rho = \beta \frac{1}{2} - \beta \frac{1}{2} + 1
\]

Elliptical Copula

\[
f_{\rho}(u, v) = \begin{cases}
\frac{1}{\pi \sqrt{1-\rho^2}} \left(u^2 - v^2 + 2uv
ight) & (u, v) \in \mathbf{B} \\
0 & (u, v) \notin \mathbf{B}
\end{cases}
\]

\[
\mathbf{B} = \left\{ (u, v) \mid \left| \frac{v - pu}{\sqrt{1-p^2}} \right| < \frac{1}{4} \right\}
\]

MI(\(B\)) = \(1 + \ln(2) + \ln(\pi \sqrt{1-\rho^2})\)
Which copula?

\[
\text{maximize} \quad - \sum_{i,j=1}^{n} p_{ij} \ln p_{ij}
\]
\[
\text{subject to} \quad \sum_{j=1}^{n} p_{ij} = \psi_{i} \quad \sum_{i=1}^{n} p_{ij} = \psi_{j}
\]
\[
\sum_{(x,x) \in \left(\left[\frac{x-U}{x-U} , \frac{x-U}{x-U} \right] \right)} = t
\]

(M. Fischer, VCH chap 2)

Fully Nested Archimedean Copulae

\[\text{Figure 2.1. FNA copula for } n = 5.\]

Simple result on Tail dependence for scale mixtures

Let X and Y be positive RVs with survivor function S, and conditionally independent given \(U \sim \text{unif}(0, 1) \), such that \(S(x|u) = S(x)^u \). Then:

\[P(X>x \mid Y>x) = \frac{(1/2) (S(x)^2 - 1)}{(S(x) - 1)}. \]

\[P \forall k>0: \]

\[\int \text{d}u \frac{S(x)^{ku}}{k \ln(S(x))} \bigg|_0^1 = S(x)^k - 1 / (k \ln(S(x))). \]

\[P(X>x \mid Y>x) = \int \text{d}u \frac{S(x)^{2u}}{\int \text{d}u S(x)^u}; \text{ substitute above expression.} \]
Remark, for any such X,Y, UTD(X,Y) = \(\frac{1}{2} \).

Recall definition: X is subexponential if for \(\{X_i\} \) iid copies of X;

\[
P(\sum_{i=1}^{n} X_i > x) / P(\sqrt{\sum_{i=1}^{n} X_i} > x) \rightarrow 1 \text{ as } x \rightarrow \infty.
\]

Trick: \(P(\sqrt{\sum_{i=1}^{n} X_i} > x) = 1-F(x)^n = (1-F(x)) \sum_{k=0}^{n-1} F(x)^k \sim nS(x) \) as \(x \rightarrow \infty \).

Proposition. Let \(\{X_i, Y_i\} \) be subexponential with survivor function S, and conditionally independent given \(U \sim \text{unif}(0,1) \);

\[S(x|u) = S(x)^u; \text{ let } \sum \text{ and } \sum' \text{ be sums of } n \text{ X's and } n \text{ Y's resp. Then UTD}(\sum, \sum') = \frac{1}{2}.\]

PF As above we get \(P(\sum > x \mid \sum' > x) = \frac{1}{2} \left(S_{\sum}(x)^2 - 1 \right) / \left(S_{\sum}(x) - 1 \right) \sim (x \rightarrow \infty) \)

\(\frac{1}{2} \left(n^2 S(x)^2 - 1 \right) / (n S(x) - 1) \rightarrow \frac{1}{2}. \)

References

Joe H., (1996), Families of m-variate distributions with given margins and \(m(m+1)/2 \) bivariate dependence parameters. In L. R"uschendorf, B. Schweizer and M. D. Taylor, editor, Distributions with Fixed Marginals and Related Topics, volume 28, pages 120–141. IMS Lecture Notes.