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Copulae and Tail Dependence 
Copula: C(u1, u2) = P(U1  u1, U2  u2);  Ui ~ Unif(0,1). 

 

2C(u1, u2) =  lim O [ P(U1  u1, U2  u2 + ) - P(U1  u1, U2  u2) ] / 

 

 = P(U1  u1, U2 = u2)  = P(U1  u1 | U2 = u2)  (since U2 uniform). 

 

Lower Tail dependence:  l =  lim q  0+  C(u, u)/u.   

 

NB for C(u1, u2) = 1 (independent),  

lim q  0+  C(u, u)/u = q
2
/q  0.  Upper TD  defined similarly for u* = 1-u. 

 

L'Hôpital:  

lim q  0+ C(u, u)/u = lim q  0+  dC(u, u)/du = P(U1  u1 | U2 = u2) + P(U2  u2 | U1 = u1). 

 

C symmetric ⇒ 1 =  2 lim q  0+   P(U1  q | U2 = q). 

 

Normal Copula, Tail Independence 

 

2 lim q  0+   P(U1  q | U2 = q) = 2 lim x  -   P(X1  x | X2 = x), Xi ~ N(0, 1).    

 

Y := (X2 | X1 = x) ~ N(x, 1-
2
).   

 

P(Y  x) = ((x-x)/(1-
2
)) = (x(1-)/(1+))  0; || < 1.  

[NB (x)/(x) ~ (x)/(x)   as x  -. ] 
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Figure 1: Normal (left) , Clayton (middle) and Gumbel (right) copula, correlation 0.8. 

 

The following graph shows the probability that Y exceeds its u-th quantile given that X exceeds 

its u-th quantile, u = 0.5 ... 0.99, for correlation values r = 0.5 and r = 0.9.  

 

 
Figure 2: Conditional exceedance for the normal copula, correlation = 0.5 … 0.9. 

 

We see that for rank correlation r = 0.5 (blue), the probability that Y exceeds its median given 

that X exceeds its median is about 0.6667. The probability that Y exceeds its 0.99 quantile given 

that X exceeds its 0.99 quantile is 0.13. For rank correlation r = 0.9, the same exceedance 

probabilities are 0.856 and 0.543.  At some point the conditional exceedance probability dives 

down in a supra linear fashion. The behavior for upper and lower exceedance probabilities is the 

same, owing to the symmetry of the normal copula. Note that these exceedance probabilities do 

NOT depend on the distributions for X and Y, since the exceedances are couched in terms of 

percentiles.  

 

A tail dependent copula will show very different behavior. The Gumbel copula is the most 

popular simple copula for capturing upper tail dependence. The conditional exceedance  

 

All limiting 
exceedance 
probabilities are zero 
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The Gumbel copulae with correlation 0.8 is shown in Figure 1. P(Y > u-th quantile | X > u-th 

quantile) converges to a constant, which parameterizes the Gumbel family
1
. 

 

The conditional exceedance probabilities for the Gumbel copula are shown in Figure 3, which 

should be compared with Figure 2. At the median (u = 0.5) the conditional probabilities are 

comparable to those in Figure 2. However, at the 99
th
 percentiles, for r=0.5 and r=0.9 these are 

respectively 0.436 and 0.797 respectively.  

 

 
Figure 3 Conditional exceedance for the Gumbel copula, correlation = 0.5 … 0.9. 

 

 
Figure 4 Conditional exceedance for Frank and Reverse Clayton, correlation = 0.5 … 0.9. 

                                                        
1 P(Y u-quantile  X  v-quantile) = exp{-((-ln(u)) + (-ln(v)))1/}, where  1 . An elementary computation shows that lim u1 P(Y > 

u-quantile | X > u-quantile) = 2 - 21/.  

 

Limiting value = 0.603 

Limiting value = 0.432 

Limiting value = 0.80 
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Delta = closing price – next day open price
last 2 years

Fit  Joint with Regular Vine 15,000 samples
Student t                                                 survivor Gumbel complex

 

 

Aggregation Amplifies Dependence 

Micro-correlations are correlations between variables at or beneath the limit of detection. 

The difficulty with micro-correlations is that they could so easily go undetected. One might not 

readily assume that fires in Australia and floods in California are correlated, for example, but El 

Niño events induce exactly this coupling. These tiny correlations are amplified by aggregation, 

undermining common diversification strategies.  

The amplification under aggregation is illustrated by a very simple formula that should be 

on the first page of every insurance text book, but isn’t. Let X1,...XN and Y1, …YN be two sets of 

random variables with the same average variance 
2
 and average covariance C (within and 

between sets). The correlation of the sums of the X’s and the sum of the Y’s is easily found to be: 

             
   

            
 .           

This evidently goes to 1 as N grows, if C is non-zero and 
2
 is finite. If all variables are 

independent, then C = 0, and the above correlation is zero. The variance of Xi is always non-
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negative; if the σ
2 
and C are constant for sufficiently large N, it is easy to see that C  0. 

 

 

Amplifying Tail Dependence? 

 
 An important question is When is tail dependence amplified by aggregation? Simple simulations 

show that the answer depends on the copula and the margins. In the graphs below, variables are 

are conditionally independent given a latent variable, to which they are all weakly coupled. For 

the rest,  the little that is known is given below. 

 

normal, normal copula 0.3 to Latent, sums of 20   sums of 40   

                                
 

normal, Gumbel copula 0.3 to Latent, sums of 20    sums of 40 

                          
 

Pareto(1), normal copula 0.3 to Latent sums of 20   sums of 40 
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Pareto(1), Gumbel copula 0.3 to Latent sums of 20   sums of 40 

                         
 

How does tail dependence arise? 
 

1) Aggregating events 

2) Aggregating events + damages 

3) Scale mixtures 

 

Aggregating events 
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256 vbls, correlation to Latent = 0.2
Sums of 125 disjunct FRANK
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Aggregating events and damages 
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Scale mixtures 

Mixtures of exponentials: Consider exponentials conditionally independent given rate,  with 

gamma mixing of rates.  Marginal distributions are Pareto with parameter depending on shape of 

gamma. Sums are positive tail dependent: 
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VINES 

 
Markov trees: 

1 2 3 5

4

Sampling:  X’s ~ U[0,1], 

independent, U’s ~ U[0,1]
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Regular Vine + Conditional Copulae

Theorem [1] Let V be a regular vine on n elements, for 
each edge e E(V), let the conditional copula and 
copula density be Ce1,e2 | De, ce1,e2 | De, let 1-D margins 
with cdf Fi and densities fi be given. Then the vine-
dependent distribution is uniquely determined and 
has density:

f1,…n = f1…fn e  E(V ) ce1,e2 | De (Fe1 | De, Fe2 | De).

Any joint density can be represented in this way, for any 
regular vine….conditional copula NOT constant

Compare Hammersley Clifford
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Tail dependent copula often arise in fitting 

financial time series.  

 
In the example below, N dentoes the normal copula, F is the Frank copula, t is the T copula and 

G is the Gumbel copula. 
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Ice Sheet Elicitation (16 experts)
Accumulation, Discharge, Runoff in

Greenland, West Antarctica, East Antarctica
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Appendix: some copula 

details 
Tail Dependence

Clayton 0.8 Gumble 0.8

Frank’s copula: (ρ=0.8)
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Normal copula: (ρ=0.8)

MinInf Copula (ρ=0.8)

 
 

 
 

Diagonal Band Copula

0 1

1



12 23 
density of diagonal band copula with correlation

=0.8

generalized diagonal band (Bajorski; 01)

MI(f) = -ln(2|1-β| |β|)

Elliptical Copula
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Which copula?

 

n
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(M. Fischer, VCH chap 2)
Fully Nested Archemidian Copulae

 
 

Simple result on Tail dependence for scale mixures 

 

Let X and Y be positive RVs with survivor function S, and conditionally independent given U ~ 

unif(0, 1), such that S(x|u) = S(x)
u
.  Then: 

 

P(X>x | Y>x) = (1/2) (S(x)
2
 – 1) / (S(x) – 1). 

 

PF  ∀k>0: 

 

 

 du S(x)
ku

 = S(x)
ku

/( k ln(S(x)) )   |0
1
 = S(x)

k
 – 1 / (k ln(S(x)) ).    

 

 

 

 P(X>x | Y>x) =  du S(x)
2u

 /   du S(x)
u
;   substitute above expression. 
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Remark,  for any such X,Y, UTD(X,Y) = ½ . 

 

 

Recall definition: X is subexponential if for {Xi} iid copies of X;   

 

P(∑i=1…n Xi > x) / P({X1…Xn} > x)  ⟶ 1 as x ⟶ ∞. 

 

 

Trick: P({X1…Xn} > x) = 1-F(x)
n
 = (1-F(x)) ∑k=0…n-1 F(x)

k
  ~  nS(x) as x ⟶ ∞. 

 

Proposition. Let {Xi, Yi} be subexponential with survivor function S, and conditionally 

independent given U ~ unif(0, 1);  S(x|u) = S(x)
u
;   let ∑ and ∑’ be sums of n X’s and n Y’s resp. 

Then UTD(∑, ∑’) = ½. 

 

PF  As above we get P(∑ > x |  ∑’ > x) = ½ (S∑(x)
2
 – 1) / (S∑(x) – 1) ~ (x ⟶ ∞) 

 

½ (n
2
S(x)

2
 – 1) / ( nS(x) – 1) ⟶ ½.  

 

References  

   
Aas K. and Berg D., (2009), Models for construction of multivariate dependence — a comparison study, European J. Finance, 15:639–659.  

Aas K., Czado C., Frigessi A. and Bakken H., (2009), Pair-copula constructions of multiple dependence. Insurance: Mathematics and Economics, 

44(2):182–198.  

Acar  . F.,  enest  . and  e lehov   . (2012). Beyond simplified pair-copula constructions. Journal of Multivariate Analysis, 110, 74-90  

Bedford T.J. and Cooke R.M., (2001), Probability density decomposition for conditionally dependent random variables modeled by vines. Annals 

of Mathematics and Arti_cial Intelligence, 32:245–268.  

Bedford T.J. and Cooke R.M., (2002), Vines — a new graphical model for dependent random variables. Ann. of Stat., 30(4):1031–1068.  

Besag J., (1974), Spatial interaction and the statistical analysis of lattice systems. J. Royal. Stat. Soc. B, 34:192–236.  

Biller B.(2009), Copula-based multivariate input models for stochastic simulation Operations Research, 57:878–892.  

Brechmann, E.C. and Schepsmeier, U. (2013) . Modeling dependence with c- and d-vine copulas: The R package CDVine.  Journal of Statistical 

Software, 52(3):1–27.  

Chollete L., Heinen A. and Valdesogo A., (2009), Modeling international financial returns with a multivariate regime switching copula, Journal 

of Financial Econometrics, 2009, Vol. 7, No. 4, 437–480.  

Cooke R.M., (1997), Markov and entropy properties of tree and vinesdependent variables. In Proceedings of the ASA Section of Bayesian 

Statistical Science.  

Cooke, R.M., Kurowicka, D. and Wilson, K. (2015) Sampling, conditionalizing, counting, merging, searching regular vines, Journal of 

Multivariate Analysis, ISSN 0047-259X, http://dx.doi.org/10.1016/j.jmva.2015.02.001  

Cooke, Roger M., Joe, H. and Aas, K. (2010) Vines Arise, in Kurowicka and Joe (eds) Dependence Modeling: Handbook on Vine Copulae, 

World Scientific, Singapore, 978-981-4299-87-9, 981-4299-87-1, pp43-84.  

Czado C., Min A., Baumann T. and Dakovic R., (2009), Pair-copula constructions for modeling exchange rate dependence. Technical report, 

Technische Universit¨at M¨unchen.  

Czado, C.,   Brechmann, E.C.,  Gruber, L. (2013) Selection of Vine Copulas, Copulae in Mathematical and Quantitative Finance Lecture Notes in 

Statistics Volume 213, 2013, pp 17-37.  

Disman,  J.F.,  E.C., Brechmann, C., Czado and D., Kurowicka, (2013) Selecting and estimating regular vine  

           copulae and application to financial returns, Computational Statistics and Data Analysis 59, 52-69.  

Fischer M., K¨ock C., Schl¨uter S. and Weigert F., (2009), Multivariate copula models at work. Quantitative Finance, 9(7): 839–854.  

Hobaek Haff,I.,  Aas, K.  and Frigessi, A..(2010)  On the simplified pair-copula construction - simply useful or too simplistic? Journal of 

Multivariate Analysis, 101:1296–1310.  

Jaworski, P. Durante,F., Härdle, W.K., (2012) Copulae in Mathematical and Quantitative Finance: Proceedings of the workshop held in Cracaw, 

July 10-11, 2012, Lecture Notes in Statistics 213, Springer .  

Joe H., (1993), Multivariate dependence measures and data analysis. Comp. Stat. and Data Analysis, 16:279–297.  

Joe H., (1994), Multivariate extreme-value distributions with applications in environmental data. The Canadian Journal of Statistics, 22:47–64.  

Joe H., (1996), Families of m-variate distributions with given margins andm(m�1)=2 bivariate dependence parameters. In L. R¨uschendorf, B. 

Schweizer and M. D. Taylor, editor, Distributions with Fixed Marginals and Related Topics, volume 28, pages 120–141. IMS Lecture Notes.  

Joe H., (1997), Multivariate Models and Dependence Concepts. Chapman & Hall, London.  

Joe H., (2005), Generating random correlation matrices based on partial correlations. J. of Multivariate Analysis, 97:2177–2189.  

Joe H., (2006), Range of correlation matrices for dependent random variables with given  marginal distributions. In N. Balakrishnan, E. Castillo 

and J. M. Sarabia, editor, Advances in Distribution Theory,  

Order Statistics and Inference, in honor of Barry Arnold, pages 125–142. Birkhauser, Boston.  

Joe H., Li H. and Nikoloulopoulos A.K., (2010), Tail dependence functions and vine copulas. J. of Multivariate Analysis, 101: 252–270.  

http://dx.doi.org/10.1016/j.jmva.2012.02.001
http://link.springer.com/search?facet-creator=%22Claudia+Czado%22
http://link.springer.com/search?facet-creator=%22Eike+Christian+Brechmann%22
http://link.springer.com/search?facet-creator=%22Lutz+Gruber%22
http://link.springer.com/book/10.1007/978-3-642-35407-6
http://link.springer.com/book/10.1007/978-3-642-35407-6
http://link.springer.com/bookseries/694
http://link.springer.com/bookseries/694


19 
 

Joe, H (2014) Dependence modeling with Copulas, Chapman Hall, CRC, isbn 978-1-4665-8322-1  

Kurowicka and Joe (eds) (2010) Dependence Modeling: Handbook on Vine Copulae, World Scientific, Singapore, 978-981-4299-87-9, 981-

4299-87-1, pp43-84.  

Kurowicka D. and Cooke R.M., (2003), A parametrization of positive definite matrices in terms of partial correlation vines. Linear Algebra and 

its Applications, 372:225–251.  

Kurowicka D. and Cooke R.M., (2006), Uncertainty Analysis with High Dimensional Dependence Modelling. Wiley.  

Kurowicka D. and Cooke R.M., (2006a), Completion problem with partial correlation vines. Linear Algebra and Its Applications, 418(1):188–

200.  

Kurowicka D. and Cooke R.M., (2007), Sampling algorithms for generating  joint uniform distributions using the vine-copula method. 

Computational Statistics and Data Analysis, 51:2889–2906.  

Kurowicka D., Cooke R.M. and Callies U., (2007), Vines inference. Brazilian Journal of Probability and Statistics.  

Kurowicka D., (2010) Vine truncations. In: Dependence Modelling: Vine Copulea Handbook  ( D.Kurowicka and H. Joe eds.), World Scientific.  

Kurowicka D., (2014) Joint density of correlations in correlation matrix with chordal sparsity patterns,  Journal of             Multivariate Analysis, 

129, 160-170.  

Lewandowski D., (2008), High Dimensional Dependence. Copulae, Sensitivity, Sampling. PhD thesis, Delft Institute of Applied Mathematics, 

Delft University of Technology.  

Lewandowski D., Kurowicka D. and Joe H., (2009), Generating random correlation  matrices based on vines and extended onion method, J. Mult. 

Anal.,100:1989–2001.  

Low, R.K.Y.,  Alcock, J., Robert Faff, R. , Brailsford, T.,  (2013) Canonical vine copulas in the context of modern portfolio management: Are 

they worth it?  Journal of Banking & Finance 37 (2013) 3085–3099  

Nelsen R.B., (2006), An Introduction to Copulas, 2nd ed. Springer, New York.  

R Core Team.( 2014.) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria,  

Schepsmeier, U., Stoeber, J., Brechmann, E.C. and Graeler, B. .(2014) Vine Copula:Statistical inference of vine copulas, R package version 1.3.  

Schirmacher D. and Schirmacher E., (2008), Multivariate dependence modeling using pair-copulas. Technical report, Presented at The 2008 

ERM Symposium, Chicago.  

Stoeber,J.  Joe, H.  and Czado, C.(2013) Simplified pair copula constructions, limitations and extensions. Journal of Multivariate Analysis, 

119:101 – 118.  

 

 

 

 

 

 

 

 

 

 

 

 

 


