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Abstract-New techniques in uncertainty analysis are illustrated with simplified examples from 

recent applications of interest for safety science. The applications are: BLEVE (boiling Bquid 

expanding vapor explosions) models, satellite life distributions, dispersion coefficients and 

modeling contamination in food chains. The examples illustrate the importance of carefully 

modeling dependence in uncertainties. They also illustrate new uses of conditional Monte Carlo 

sampling. 0 1997 Elsevier Science Ltd. 

1. Introduction 

The last few years have seen many new developments in the field of uncertainty analysis. 

Decision makers are increasingly demanding some defensible representation of uncertainty 

surrounding the output of complicated mathematical models. Scientists in turn are putting 

more effort into the modeling and propagation of uncertainty. To illustrate the effect of these 

developments Fig. 1 shows two representations of uncertainty in peak (center line) concentra- 

tion as a function of down wind distance, following an airborne release of toxic material. The 

KfK picture is representative of uncertainty analyses done informally with in-house exprts 

(Fischer et al., 1990). The CEC \NRC picture is based on formal expert judgment methods 

and more rigorous uncertainty modeling (Cooke et al., 1994). 

From a mathematical perspective uncertainty analysis is concerned with determining the 

uncertainty in the output of a mathematical model, relative to an assessment of the uncertainty 

of the model’s input. The model may be a simple algebraic sum or a complicated set of 

equations and numerical procedures. It is only essential that the model is written as a 

mathematical function of some vector of arguments: 

Model: M( X,, . . . , X,). 

The variables X,, . . . , X, are assumed to take real values, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAM is a function returning a real 

vector. In practice we may be able to write down a mathematical model describing a given 

’ Originally published in SRD Association Members Conference 1994 “Corporate Responsibil- 

ity and Regulation” 5/6-10-94, Warrington, UK. 
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Fig. 1. KfK and CECNRC predictions for centerline concentration. 

problem, but may be unable to obtain a numerical answer because we don’t know the values 

of the arguments. In such situations we must assess the uncertainty in the input variables 

X 1,. . . , X,. In uncertainty analysis the variables X,, . . . , X, are considered as random 

variables. The joint probability distribution of X,, . . . , X, describes the uncertainty over the 

input of the model M. In uncertainty analysis this joint distribution is pushed through the 

model M to yield an uncertainty distribution on the model’s output. 

This paper provides an introduction to uncertainty analysis by stepping through some 

examples chosen from real studies performed at the Department of Mathematics, Delft 

University of Technology. They are intended to illustrate new issues and techniques of 

uncertainty analysis, including dependence modeling, the use of latent variables, post- 

processing and conditional sampling. These cases were all analysed with the PC system 

UNICORN (UNcertainty analysis with CORrelatioNs) developed at the Delft University of 

Technology (Cooke, 1995). 

2. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAExamples of uncertainty analysis 

The first example is a rather straightforward application of uncertainty analysis of a type of 

explosion model used in citing and licensing decisions. In second example uncertainty analysis 
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with dependence is used to evaluate the reliability of a satellite system where traditional 

methods (without uncertainty analysis) would not work. The third and fourth examples deal 

with ‘post-processing’ experts’ uncertainty assessments to transfer uncertainty from an 

observable domain onto the parameter space of some model. 

2. I. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAEffects C$ a BLEVE 

A BLEVE (Boiling Liquid Expanding Vapor Explosion) results when a pressurized 

propane storage tank bursts. A fireball forms, rises to a certain height and bums. The main risk 

contributor from a BLEVE is the heat radiated in the first 20 s. The Dutch government uses 

the following formula to compute the heat radiation at ground distance x from the storage 

tank, received during 20 s from the center of the fireball: 

4(x) = 

50000T(r)6,P%4*20 

4rrr2t 
(Wm2)3 

where P = pressure of propane prior to release ( lo6 Pascal); M = mass of propane (kg); 

t = bum time = /3, MP2 (s); 7(r) = transmissivity of radiated heat through air, = min{ 1, 

1.385 - 0.135 log(rPw)}; Pw = humidity of air (Pascal); D = diameter of fireball = (Ye Ma2 

(m); h = height of fireball = yD (m); r = (x2 + h2)l12. 

A reference accident was chosen using M = lo6 kg, P = 840000 Pa. Values for the other 

constants can be retrieved from the literature. However, the spread of published values is 

rather large. The Dutch consulting firm AVIV performed an uncertainty analysis on the 

BLEVE model; TU Delft provided comments on the AVIV study. The numbers shown in 

Table 1 were taken from AVIV (1986) (see also Meeuwissen and Cooke, 1989). 

q(x) is the main risk indicator in licensing decisions; first degree bums appear at q = 113 

kJ/m2. Fig. 2 shows q(x) for x = 1000 to 2000 m for the reference accident. Three curves 

are shown, corresponding to the nominal, most optimistic and most pessimistic values for the 

parameters in q(x). The spread is quite large. For x = 1000 m, the most optimistic value is 

about 100 kJ/m, the nominal value is 200 kJ/m and the most pessimistic value is 3600 

kJ/m. 

Figure 2 does not provide a realistic representation of the uncertainty in the BLEVE model, 

as it is quite unlikely that all uncertain parameter values would take their most optimistic or 

most pessimistic values. 

Table 1 

Values for constants in BLEVE model 

aI @2 PI P2 

Fay, Lewis 6.36 0.333 2.57 0.167 

Hardee 6.24 0.33 1.11 0.167 

Hasegawa, Sato (1) 5.28 0.211 1.099 0.097 

Hasegawa, Sato (2) 5.25 0.314 1.07 0.181 

Gayle, Branford 6.14 0.325 0.41 0.34 

Moorhouse 5.33 0.327 0.923 0.303 

Roberts 5.8 0.333 0.45 0.333 

TN0 1983 6.48 0.325 0.852 0.26 
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Fig. 2. Optimistic, nominal and pessimistic scenarios. 

AVIV developed a response surface linearized approximation to q(x) and assigned 

distributions based on published values to the parameters ol, p,, y, 6, and Pw. Other 

parameters were held constant at their nominal values. Sampling independently from these 

distributions a distribution for q(x) was generated. The exponents (~z and & were treated as 

constants. Although Table 1 exhibits a spread of values for these exponents, it would be 

unreasonable to sample these independently of the values for (Ye, resp. &. * TU Delft 

performed an uncertainty analysis of the unlinearized q(x) under the AVIV assumptions, and 

also under alternative assumptions. According to the alternative assumptions, o2 and p2 were 

assigned distributions which were correlated with o1 resp. p,, based on the data in Table 1 

(Meeuwissen and Cooke, 1989). In the TU Delft study it emerged that /3*, affecting the total 

bum time was the most sensitive parameter for q(x). 

Figure 3 shows 5% and 95% confidence bounds for q(x), x = 1000, 1500, 2000 (without 

linearization), using the AVIV and the alternative assumptions on the uncertainty of the 

parameters in q(x). Figures 2 and 3 draw attention to the importance of carefully modeling 

uncertainty, with dependence, in using quantitative models with uncertain parameters to 

support siting and licensing decisions. The 95% quantile for the main risk indicator at 1000 m 

varies by more than an order of magnitude over the three figures. 

2.2. Cluster 

The Cluster mission at the European Space Agency involves simultaneously launching four 

identical satellites to measure turbulence in the cusp of the earth’s magnetic field. The four 

satellites must orbit in a rigid tetrahedronal configuration and must pass through the cusp 

several times to accomplish all the mission goals. The design life for each satellite is 2 years 

’ From dimensional analysis assuming that 4 is a function of the quantities listed above, it can be derived that 

(Y* = 0.333, & = 0.333. These are NOT the nominal values used in the AVIV study (0.327 and 0.303 respectively). 

Moreover, this argument neglects other forces, e.g. buoyancy forces in the atmosphere, which would lead to very 

different values. 
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Fig. 3. TU Delft and AVIV uncertainty bounds. 

(720 days). During the design phase, a cursory traditional reliability analysis was performed 

for a single satellite, and it emerged that the probability of surviving at least 720 days was 

about 0.80. Since mission success required the functioning of all four satellites for 720 days, 

the traditional analysis, treating the satellite lifetimes as independent random variabbes, 

predicted a mission success probability of (0.80j4 = 0.41. This figure was alarmingly low. If 

this cursory analysis were correct, project management would have to contemplate design 

enhancements, possibly involving a 5th redundant satellite, before moving forward. 

The TU Delft was asked to review this cursory analysis to determine whether it could be 

enhanced prior to committing additional resources to improve data and possibly to change 

design. The TU Delft analysis was published at the ESREL ‘95 Conference (Bedford and 

Cooke, 1995). A simplified account of the main findings is described here. 

Two features of the traditional reliability analysis were identified as unrealistically @es- 

simistic. Neither could be redressed with traditional calculational methods, and both were 

treated simply with UNICORN. First, on the traditional analysis no credit could be given for 

partial completion of mission goals. If one satellite expired on day 719 while the others were 

still functioning, this would count as mission failure. In discussions with project management 

it emerged that, roughly speaking, 80% of the mission goals would be realized if four satellites 

survived for 180 days and at least three survived for two years. The second unrealistic feature 

of the traditional analysis was that the four satellites were assumed to be independent. This 

however is quite unrealistic. The four satellites are built by the same contractor to identical 

specifications, launched together and subject to the same stresses during passage through the 

earth’s shadow. In so far as these factors contribute to failure, the lifetimes should be modeled 

as positively dependent. Intuitively speaking, if one satellite fails ‘sooner than expected’ then 

knowledge of this fact should increase our assessment of the probability that the others also 

fail sooner than expected. 

2.2. I. The traditional analysis 

The traditional analysis modeled the cluster system as the minimum of four independent 

identically distributed life variables with constant failure rate of A = 0.0003 1 /day. Since the 
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failure rate of the minimum of independent exponent& is the sum of the individual failure 

rates, a system failure rate of O.O0124/day resulted. Hence 

P( minimum of foursatellites lives longer than 720 days) = e-o.oo124 * 720 = 0.41. 

2.2.2. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPartial mission success 

To compute the probability 

compute 

that at least 80% of the mission goals are realized, we must 

P(al1 four satellites 2 180 and at least three 2 720). 

On the assumption of independence this can be done analytically but the computation is 

tedious. It can be simulated quite easily with generalized indicator functions: 

ik{ A, X,, . . . , X,, B} = 
1 if at least k of Xi,. . . , X, are between A and B, 

0 otherwise. 

A and B may be random variables but in this case we treat them as constants. If X,, . . . , X4 

represent the lifetimes of the four satellites the probability can be simulated by simulating the 

distribution of 

il(180, min( X,, X2, X,, X4), w}* i3(720, X,, X,, X,, X4, m}. 

Sampling 1000 times independently from the distributions of Xi, i = 1,. . . , 4, the probability 

of the event in question from simulated is 0.69. 

2.2.3. Dependence 

The assumption of independence is pessimistic, this can be seen intuitively as follows. If 

the four satellites were completely dependent, then the probability that they all four fail before 

time T is equal to the probability that one of them fails before T. If they are independent, then 

the probability that one of the four fails before T is greater. It is not clear what value of 

dependence should be used but a rather strong positive coupling is more realistic than the 

assumption of independence. The simulation was done for a number of rank correlations 

between the satellite’s life distributions (an explanation of rank correlation is given below). 

Using a rank correlation of 0.75 between all four satellites yielded the following comparison 

to the case of independence: The probability of realizing at least 80% of the mission goals rose 

from 0.69 to 0.72; and the probability that all four satellites functioned at least 720 days rose 

from 0.41 to 0.64. 

Figures 4 and 5 show the reliability of the 4 out of 4 system and the 4 out of 5 system with 

different values for the correlation in satellite life times. 3 On the basis of such calculations, 

project management decided to proceed to the next phase without redesigning the satellites or 

re-configuring the missions. 

3 The satellite distributions used here were modeled using competing risk models for different stresses during 

mission: they were not modeled with constant failure rates as in the simplified example discussed here. 



Uncenainry modeling 55 

0.0 ! # 
0 DAYS - O' "'--'- Boa 720 dM#l 
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2.3. Post-processing expert uncertainty assessments 

The following examples are representative of new types of applications of uncertainty 

analysis. To perform uncertainty analysis of large computer models, uncertainty distributions 

are placed on the model’s unknown parameters. If the parameters have a straightforWard 

empirical interpretation, then distributions can be developed directly, either with observational 

data or expert judgment. Often however, the model’s parameters do not possess a transparent 

and straightforward empirical interpretation. The option of obtaining distributions from dama is 

excluded. Expert judgment is sanctioned if experts are queried only about observable (not 

necessarily observed) phenomena. 4 ‘Post-processing’ denotes the method or methods used in 

projecting the elicited distributions over physical quantities onto the parameters space of a 

model. 

2.3.1. Post-processing dispersion coeffkients 

The first example was developed in the course of the joint CEC \ USNRC uncertainty study 

(Cooke, 1994; Cooke et al., 1994; Harper et al., 1994). Uncertainty distributions were required 

for the coefficients in the power law expressions for cross wind dispersion v~(x, SC) and 

vertical dispersion cz( x, SC) as a function of down wind distance x and atmospheric stability 

class. 

4 This standpoint is crucial for the approach to uncertainty analysis elaborated in (Harper et al., 1994). 
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Fig. 5. Cluster reliability (4 out of 5) with correlations. 

u,( x, SC) = A,,,, xB,=, 

a,( x, SC) = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA,.,, xB-. 

All models for accident consequences following airborne releases incorporate these or similar 

laws for down wind dispersal. The coefficients A, B are determined per stability class from 

measured data. The measurements have a fairly low reproducibility and are influenced by a 

host of factors not included in the model. Therefore, the actual values used in the accident 

consequence models are uncertain. We focus on a,(x) and drop the subscripts so that 

To quantify the uncertainty on uY as a function of down wind distance x, we require a 

joint distribution on (A, B). It is hardly reasonable to expect that A and B will be 

independent. Moreover, the power law is not derived from underlying physical laws, but 

represents a mere statistical fit to data. The coefficients are not directly measurable. 

For all these reasons it was deemed infeasible to query experts about the values of (A, B) 

directly. Instead, a number of distances x1 = 500 m, x2 = 1000 m, . . . , x5 = 30 km were 

selected and the experts were asked to quantify their uncertainty on o,, at each of these 

distances. This distributions for oY(x, ), . . . , a;(~,) were then ‘lifted ’ up to the parameter 

space of the model. This lifting process will not be described in detail, Fig. 6 gives the basis. 

It is helpful to transform the power law by taking logs: 

log oY( x2) = log A + B log x. 

A point (A, B) in the parameter space is mapped onto a line in the observable space (log a;, 

log x) with slope B. The experts distributions for oY,(xi) are represented as dotted lines. The 

probability for the point (A, B) is determined by the probabilities of the points AX:. 

Figure 7 shows a distribution on the parameter space which has been lifted in this way from 

the observable space. Note that the A and B are strongly correlated in this lifted distribution. 
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in this way a dependent distribution is induced on the parameter space of the model while the 

experts are queried only about the outcomes of possible physical measurements. 

2.3.2. Post-processing soil migration transfer coeficients 

A recurrent problem in assessing uncertainty in physical models is this: We can obtain 

marginal uncertainty distributions on quantities X,, . . . , X,. However we know that certain 

combinations of the Xi are physically impossible. The conditions describing physically 

possible combinations are complicated and cannot be incorporated easily into the joint 

distribution over the Xi. We solve this problem by conditional sampling: we sample 

independently from the marginals, and retain only those samples which satisfy the stipulated 

conditions. Among all distributions concentrated on physically possible combinations, the 

conditional distribution thus obtained is the distribution which is ‘closest’ (in the sense of 

relative information) to the initial distribution. Although the original distributions were 

independent, after conditionalization the distributions become correlated. Thus, conditional 

sampling relieves the experts of the task of assessing the correlations themselves. The 

marginals of the conditional distribution, however, will not coincide with the initial marginals. 

Conditional sampling can be extended to impose a probabilistic rather than a deterministic 

condition. A probabilistic condition may be a distribution supplied by an expert on some 

function of underlying variables. A pull-back algorithm finds a distribution over the arguments 

of the function which reproduces the expert’s distribution on the function. 

We illustrate this technique with an example from an ongoing uncertainty analysis of food 

chain models. Consider a model describing the transport of radioactive material through soil 

following a large airborne release. Modelers construct box models to describe the transport 

through different soil segments and assign values to the transfer coefficients. A box model of 

this type is pictured below. 

It may take up to 100 years for an initial deposit of radioactive material in box 1 to migrate 

through to box 5. The values for the transfer coefficients kij are fitted by occulation 

(eyeballing) to scant and ambiguous data from concentration measurements at various times 

following various releases at various places. The point values actually used in the models are 

therefore characterized by large uncertainties. An uncertainty analysis requires distributions 

over the transfer coefficients. 

A box model like that in Fig. 8 is a picture of a system of first order differential equations 

with constant coefficients. The coefficient k,, for example, describes the proportion of the 

material in box 2 that moves to box 3 in a small time interval. When no arrow is drawn 

between two boxes, the proportion moved between these boxes is zero. Transfer coefficients 

and amounts of material are always positive. In this application, as in most applications of 

such models, the transfer coefficients cannot be measured directly. 

Given such a system with fixed values for the transfer coefficients. we can solve for the 

functions m,(t) = amount in box i at time t, as follows: 

0-lcm 1-5cm 5-15cm 1%30cm >30cm 

Fig. 8. Box model for soil migration. 
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1. Extract the eigenvectors from the coefficient matrix K = {kij}, setting k,, = 0 when no 

arrow is indicated. 

2. Form a basis of solutions using the eigenvectors and eigenvalues of K, as described in any 

textbook on differential equations. 

3. Express the initial mass distribution at time t = 0 as a linear combination of the basic 

solutions from step 2. 

For example, under the initial condition: m,(O) = 1, mj(0) = 0, j = 2,. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA. . , 5: we have for 

the first two boxes: 

m,(t) = e-“‘l2, 

m2(t) = Me;‘k2;;e-‘x2) . 

12 23 

Experts are reluctant to assess uncertainty over the transfer coefficients. Their knowledge is 

best expressed in uncertainty distributions over the time T, at which half the total material 

passes through box i: that is m,(T,) + m,(T) + . . . +m$Ti) = l/2. Let 9, and 7-, denote 

random variables having the expert’s assessed distributions for the half-lives T, and T2 (7, 

and S, are assumed independent, but this is not essential). We want to use these in 

conjunction with the above equations to obtain a joint distribution on (k,,, k,,). This can be 

done with an appropriate use of conditional sampling. The following brief description is 

intended to show the rough contours of the method. We confine attention to T2. 

The method involves the following mathematical fact: If X and Y are independent random 

variables taking outcomes in (1, . . , n}, then the distribution of X conditional on X = Y is 

equal to the unconditional distribution of Y if, and only if, X is uniform. 

Using yI in the first equation above, we obtain immediately the distribution for k,? as 

ln(2)/7,. Using numerical interpolation. we may write T2 as a function of k,, and k,, Let us 

assume an arbitrary independent distribution for k,,, independent of k,, and 9,. Sample 

from (k,,, k,,, Y2>, compute T, (= ln(2)/k,,) and T2 (a function of k,,, kz3) and retain the 

sample only if the following condition C holds 

C: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAG(T,) = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAG(Y2) 

where G transforms T2 into a uniform variable. It can be shown that conditional on C, T, has 

the distribution of .7,, and the variables k,, and k,, will be correlated. Moreover the result 

depends on the arbitrary choice for the distribution of k,,. Unless further information is 

available, it is advisable to choose the initial distribution of k,, to be non-informative over the 

range of all physically plausible values. 

3. Conclusions 

Examples have been given to illustrate how uncertainty plays a role in framing complex 

decision problems. Mathematical techniques are available to propagate correlated uncertainties 

through complicated models. Conversely, we can use assessments of uncertainty over observ- 

able target variables to induce distributions over unobservable variables. The numerical results 

given here show that dependence cannot be neglected in real problems. 
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