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An elementary though seemingly underappreciated finding shows that small
global correlations are amplified by aggregation. We observe this behavior in flood
damage claims in the US. We also observe that upper tail dependence seems to
be amplified by aggregation in these data. We seek to understand this behavior.
For sums of exponential variables which are conditionally independent given a
gamma-distributed rate, we derive explicit expressions for upper tail dependence
and prove that it goes to one as the number of summands goes to infinity, and
that the lower tail dependence is zero. We also study sums of events under a
latent variable model, where each event occurs if a uniform variable exceeds a
threshold, and all uniform variables are conditionally independent given a “latent
variable”. We obtain a necessary and sufficient condition for strong asymptotic
upper tail dependence as the number of summands goes to infinity. Curiously,
the normal copula satisfies this condition, although it is not tail dependent via
the usual definition. Thus, sums of events under the normal copula latent vari-
able model have upper tail dependence increasing to 1. We also identify tail
dependent-like behavior in finite sums of events with the latent variable model.
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5.1 Introduction

Micro correlations will amplify the correlation of sums of globally correlated
variables, and under certain circumstances they will also amplify tail depen-
dence. This is of evident concern to risk managers, as it will compromise risk
management based on diversification. The circumstances under which aggre-
gation amplifies tail dependence are not well understood, and this chapter
represents a first foray into the area of tail dependence amplification. We
study latent variable models for sums of events, and L1-symmetric variables.
We obtain a condition that leads to upper tail dependence for two different
sums of events. In the case of L1-symmetric measures with gamma scale
mixtures, we can prove that aggregation amplifies upper tail dependence.

In Section 5.2, we first discuss the issue of micro correlation and present
loss data, draw from Kousky and Cooke,8 where micro correlations amplify
under aggregation. Section 5.3 shows results on tail dependence and aggre-
gation, and Section 5.4 concludes with a discussion of further research.

5.2 Micro Correlations

Let X1, . . . ,XN and XN+1, . . . ,X2N be sets of random variables with the
average variance σ2 over the first N and second N random variables and
average covariance γ within and between the two sets. The correlation of
the sum of the first N and second N X’s is:

corr

(
N∑
i=1

Xi,

2N∑
i=N+1

Xi

)
=

N2γ

Nσ2 +N(N − 1)γ
=

Nγ

σ2 + (N − 1)γ
.

Evidently, if γ > 0 and σ < ∞, this goes to 1 as N → ∞. Since σ2 > 0,
σ2

N−1 ≥ −γ which shows that for all N sufficiently large, γ ≥ 0.
We can find micro correlations in many places once we start looking for

them. We illustrate with two data sets: flood insurance claims data from the
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US National Flood Insurance Program (NFIP) and data on crop insurance
indemnities payments from the United States Department of Agriculture’s
Risk Management Agency. Both data sets are aggregated by county and year
for the years 1980 to 2008. The data are in constant year 2000 dollars. Over
this time period there has been substantial growth in exposure to flood risk,
particularly in coastal counties. To remove the effect of growing exposure,
we divide the claims per county per year by personal income per county
per year available from the Bureau of Economic Accounts (BEA). Thus we
study yearly flood claims per dollar income, per year per county. The crop
loss claims are not exposure-adjusted, as an obvious proxy for exposure is
not at hand, and exposure growth was less of a concern.

Suppose we randomly draw pairs of counties in the US and compute
the correlation of their exposure-adjusted flood losses. Figure 5.1 shows the
histogram of 500 such correlations. The average correlation is 0.04. A few
counties have quite high correlations but the bulk is around zero. Indeed,
based on the sampling distribution for the normal correlation coefficient,
correlations less than 0.37 in absolute value would not be statistically dis-
tinguishable from zero at the 5% significance level. 91% of these correlations
fall into that category.

Instead of looking at the correlations between two randomly chosen coun-
ties, consider summing 100 randomly chosen counties and correlating this
with the sum of 100 distinct randomly chosen counties (i.e., sampling without
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Figure 5.1. Histogram of 500 correlations of randomly paired US exposure-adjusted flood
loss per county, 1980–2006. The average correlation is 0.04.
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Figure 5.2. Similar to Fig. 5.1, but showing 500 correlations of random sums of 100
and 500.

replacement). If we repeat this 500 times, the centered histogram in Fig. 5.2
results; the average of 500 such correlations-of-100 is 0.23. The histogram at
the upper extreme depicts 500 correlations-of-500; their average value is 0.71.

The flood damage per dollar exposure shows a lower correlation than the
US crop losses in Fig. 5.3. The mean correlation is 0.13, and the mean of
correlations-of-100 is 0.88.

It is interesting to compare the histograms of real loss distributions with
a histogram in which each county is assigned an independent uniform vari-
able. The histogram of 500 correlations of random pairs and correlations of
random aggregations-of-500 are shown in Fig. 5.4.

5.3 Tail Dependence and Aggregation

In this section, we obtain some results on when aggregation amplifies tail
dependence.

The definition of upper tail dependence is given below.

Definition 5.1 (Upper tail dependence). The upper tail dependence
between random variables X and Y is

UTD(X,Y ) = lim
q→1

Pr(X > xq|Y > yq) (5.1)

where xq = F−1
X (q) and yq = F−1

Y (q).
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Figure 5.3. Histogram of 500 random correlations of US crop losses per county,
1980–2008, random pairs and random sums of 100.
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Figure 5.4. Histogram of 500 random correlations of independent uniforms assigned to
each county, 1980–2008, random pairs and random sums of 500.
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Figure 5.5. Percentile scatterplots of random aggregation of Florida county monthly
flood losses. Left: two random aggregations of five counties; right: two random aggregations
of 30 distinct counties.

Lower tail dependence is defined in a similar way in the lower quadrant:
LTD(X,Y ) = limq→0 Pr(X ≤ xq|Y ≤ yq). As is evident from the definition,
tail dependence is a property of the copula. The normal copula has zero tail
dependence for all correlation values in (−1, 1); see McNeil et al.10

A central question is whether tail dependence is also amplified by aggre-
gation. In loss distributions we can see the amplification of tail dependence
under aggregation. To see tail dependence, the yearly data are not sufficient.
Figure 5.5 plots monthly flood loss data in the state of Florida from 1980
to 2008. We choose Florida because there are numerous counties with many
non-zero losses in several months. There are two percentile scatterplots: that
on the left shows two random aggregation of five counties while the plot
on the right shows two random aggregations of 30 counties. Points on the
axes correspond to months in which there were no losses in the correspond-
ing aggregate variable. The plot suggests that the upper tail dependence
is amplified by aggregation. We seek models to help understand why and
when this happens.

5.3.1 Latent variable models for tail dependence

In simple latent variable models, a latent variable is an unobserved variable
to which all observed variables are correlated, and conditional on which all
observed variables are independent. Recognizing this structure as a C-vine
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with dependence confined to the first tree rooted at the latent variable, it
is evident that this is the simplest of a wide class of models.

We first consider a finite class of events, where each event occurs when a
physical variable exceeds some limit, and each physical variable is connected
to a latent variable. For simplicity, let U1, . . . , U2N be uniform variables and
suppose event Ei occurs if and only if Ui > r. Suppose further that the
Ui are conditionally independent given a latent variable V , which is also
uniform. To study such models, we require a copula joining Ui and V .

Specifically, (Ui, V ) ∼ C(u, v) for all i and C is a bivariate copula. Let
C1|2(u|v) = ∂C(u, v)/∂v be the conditional distribution of Ui given V = v.
We assume C has positive dependence in the sense of stochastic increasing,
that is Pr(U1 > u|V = v) = 1 − C1|2(u|v) is strictly increasing in v ∈ [0, 1]
for all 0 < u < 1. This condition is satisfied by all of the commonly used
one-parameter families of copula when restricted to the region of positive
dependence. For a fixed r in (0, 1), let Yi = I(Ui > r) for the indicator
of the extreme event Ei. Let S1(N) = Y1 + · · · + YN and let S2(N) =
YN+1 + · · · + Y2N be two aggregate numbers of extreme events in two sets.
We study the (upper) tail dependence of S1, S2 under this simple latent
variable model.

Let
pr(v) = 1 − C1|2(r|v), qr(v) = 1 − pr(v), 0 ≤ v ≤ 1. (5.2)

For an integer k between 0 and N inclusive, and j = 1 or 2,

Pr(Sj = k) =
∫ 1

0
Pr(Sj = k|V = v) dv

=
∫ 1

0

(
N

k

)
[pr(v)]k[qr(v)]N−k dv,

and
Pr(S1 = k1, S2 = k2)

=
∫ 1

0
Pr(S1 = k1|V = v) Pr(S2 = k2|V = v) dv

=
∫ 1

0

(
N

k1

)
[pr(v)]k1 [qr(v)]N−k1

(
N

k2

)
[pr(v)]k2 [qr(v)]N−k2 dv.

For a fraction 0 < ζ < 1, let λU (r, ζ,N) = Pr(S2 > Nζ|S1 > Nζ). Then

λU (r, ζ, N) =

R 1

0

P
k1≥Nζ,k2≥Nζ

„
N
k1

«
[pr(v)]k1 [qr(v)]N−k1

„
N
k2

«
[pr(v)]k2 [qr(v)]N−k2 dv

R 1

0

P
k≥Nζ

„
N
k

«
[pr(v)]k[qr(v)]N−k dv

.

(5.3)
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The analysis of (5.3) for large N is given next. Let Z be a standard normal
random variable, with cumulative distribution function Φ. Let

g(v) = g(v; r, ζ) =
pr(v) − ζ√
pr(v)qr(v)

.

By the normal approximation to binomial, for large N , (5.3) can be approx-
imated by∫ 1

0 {Pr(Z > [Nζ −Npr(v)]/
√
Npr(v)qr(v) )}2 dv∫ 1

0 Pr(Z > [Nζ −Npr(v)]/
√
Npr(v)qr(v) ) dv

=

∫ 1
0 Φ2[N1/2g(v)] dv∫ 1
0 Φ[N1/2g(v)] dv

.

(5.4)
From the positive dependence assumption of stochastic increasing, pr(v) in
(5.2) is increasing in v. Let

v0 = v0(r, ζ) = sup{v ∈ (0, 1) : pr(v) ≤ ζ}
= sup{v ∈ (0, 1) : g(v; r, ζ) ≤ 0}.

Then (5.4) becomes∫ v0
0 Φ2[N1/2g(v)] dv +

∫ 1
v0

Φ2[N1/2g(v)] dv∫ v0
0 Φ[N1/2g(v)] dv +

∫ 1
v0

Φ[N1/2g(v)] dv
. (5.5)

If 0 ≤ v0 < 1, then

lim
N→∞

∫ v0

0
Φj[N1/2g(v)] dv = 0, and

lim
N→∞

∫ 1

v0

Φj[N1/2g(v)] dv = 1 − v0, j = 1, 2.

Therefore, λU (r, ζ,N) in (5.3) goes to 1 as N → ∞ if 0 ≤ v0 < 1, and

lim
N→∞

λU (r, ζ,N) = 1 ∀ 0 < r < 1, 0 < ζ < 1

if and only if pr(1) = C1|2(r|1) = 1 for all 0 < r < 1 or C1|2(u|1) = 0 for all
0 < u < 1.

If pr(1) = C1|2(r|1) < 1, then limN→∞ λU (r, ζ,N) = 1 only if ζ is small
enough so that 0 < v0 < 1. If v0 = 1 and pr(1) < ζ, then (5.5) is bounded
above by max0≤v≤1 Φ[N1/2g(v)] and this approaches 0 as N → ∞.

For numerical computations, if the limit is 1, λU (r, ζ,N) is practical only
if Pr(S1 > ζN) is not too small and v0(r, ζ) is not too close to 1; this means
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ζ should not be too close to 1. For fixed ζ, Pr(S1 > ζN) tends to get smaller
as the (upper tail) dependence of (Ui, V ) gets weaker.

The condition of C1|2(r|1) = Pr(U > r|V = 1) = 1 for all 0 < r < 1 or

C1|2(u|1) = Pr(U ≤ u|V = 1) = 0 ∀ 0 < u < 1 (5.6)

is an upper tail dependence condition. It is the same as [U |V = v] →
p 1,

as v ↑ 1.
Equation (5.6) holds for all bivariate extreme value copulae, e.g., Gumbel

and Galambos. The condition for (5.6) to hold for an Archimedean copula
Cψ(u, v) = ψ(ψ−1(u) + ψ−1(v)) is ψ′(0) = −∞ and this is the same condi-
tion for the usual tail dependence (Theorem 3.12 in Joe6). Hence (5.6) fails
to hold for the Frank copula. It also fails to hold for the Plackett copula but
holds for the bivariate normal copula with positive correlation ρ. This means
that (5.6) is not exactly the same as the usual tail dependence condition
of limv↑1 C(v, v)/(1 − v) being positive because the bivariate normal copula
does satisfy this. Some proofs of these cases are given in Appendix A.

Table 5.1 compares the conditional probability λU (r, ζ,N) for the
Gumbel, bivariate normal and Frank copulae when r = 0.9, ζ = 0.7, and
the dependence parameters for the three copulae are chosen to get a rank
correlation of 0.5.

The definition of tail dependence as limiting conditional probabilities
of exceedence is not appropriate for finite sums of events. Nonetheless we
can identify tail dependence-like behavior in finite sums of events. With
Frank’s copula, take the probability of the individual events as 0.1 and the
correlation to the latent variable V as 0.9 (the parameter θ = 12.3) which
induces a correlation 0.36 between any two events. Figure 5.6 illustrates
curious non-monotonic behavior in P{S1 > i|S2 > i}, for N = 100 and
i = 1, . . . , 100. This is caused by the interaction of two opposing “forces”; as
i increases, P{S1 > i} goes down, while on the other hand, conditionalizing
on P{S2 > i} drives the latent V up, which increases P{S1 > i|S2 > i}.
The pattern with N fixed and ζ increasing is quite different from the pattern
when ζ is fixed and N increasing.

5.3.2 Sum of damages over extreme events

Instead of the number of extreme events, consider the sum of losses or dam-
ages. The situation becomes more complex and the results depend strongly
on the copula and the damage distributions. Figure 5.7 shows percentile
scatterplots of events multiplied by independent damages, and where the
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Table 5.1. Conditional probabilities Pr(S2 > Nζ|S1 > Nζ) =
λU (r, ζ, N) with r = 0.9, ζ = 0.7, Spearman ρS = rank correla-
tion = 0.5; leading to parameters θ = 1.54 for the Gumbel,
ρ = 0.518 for the bivariate normal (BVN), θ = 7.90 for
the Frank copulae respectively. Limit behavior depends on the
comparison sign of pr(1) − ζ.

λU (r, ζ, N)

N Gumbel BVN Frank

10 0.604 0.264 0.144
20 0.687 0.411 0.067
30 0.733 0.528 0.034
40 0.763 0.620 0.019
50 0.785 0.695 0.010
60 0.801 0.755 0.006
70 0.815 0.804 0.003
80 0.826 0.845 0.002
90 0.835 0.877 0.001

100 0.843 0.903 0.001

pr(v) = C1|2(r|v)

v Gumbel BVN Frank

1 1.0 1.0 0.546
0.99999 0.994 0.861 0.546

Figure 5.6. Tail dependent-like behavior of sums of events, probability of exceedence as
function of i, for Frank’s copula, θ = 12.3, N = 100.
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Figure 5.7. Tail dependent-like behavior of sums of events times damages. Left: Pareto 2
damages with Gumbel copula; middle: Pareto 2 damages with bivariate normal copula;
right: exponential damages with Gumbel copula.
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Figure 5.8. A model for Florida monthly flood damages, exponential damages linked to
a latent variable with the Gumbel copula.

joining copulae are Gumbel and bivariate normal. Figure 5.8 shows exponen-
tially distributed damages linked to a latent variable via the Gumbel copula,
and parameters are chosen to resemble Fig. 5.5. This suggests that simple
latent variable models may describe such loss phenomena satisfactorially.

Without considering sums of events, it is easy to construct simulations
in which this amplification occurs. Figure 5.9 shows percentile plots of two
normal variables X1 and X2 which each have rank correlation 0.1 to a latent
variable V , and are conditionally independent given the latent variable. The
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Figure 5.9. Percentile plots with tail dependence. Left: two normal variables rank-
correlated 0.1 to a latent variable with Gumbel copula; right: distinct sums of 40 such
variables, each similarly rank-correlated to the latent variable.

rank correlation is realized with the Gumbel copula, which has very weak
tail dependence at that correlation value. This induces a very weak tail
dependence between Xi and V . If we form sums of 40 such normal variables
and consider the tail dependence of two such sums, we see in the right-hand
plot of Fig. 5.9 that the tail dependence has become more pronounced.

Although tail dependence is a property of the copula, whether and to
what degree tail dependence is amplified by aggregation depends on the
marginal distributions. Figure 5.10 is similar to Fig. 5.9 except that the

Figure 5.10. Percentile plots with tail dependence. Left: sums of 40 Pareto variables with
survival function (1/(1 + x)), each rank-correlated 0.1 to a latent variable with Gumbel
copula; right: sums of 120 such variables.
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variables are Pareto with survival function S(x) = (1 + x)−1. The amplifi-
cation of tail dependence for 120 Pareto variables is much weaker than that
for 40 normal variables. This Pareto distribution does not have a finite first
moment (or, of course, correlation).

In certain cases we can prove some results for tail dependence. The fol-
lowing proposition, whose proof is in Appendix B, gives a lower bound for
tail dependence of variables, which are tail dependent on a latent variable:

Proposition 5.1. Suppose (U1, V ) and (U2, V ) are pairwise upper tail
dependent with, respectively, coefficients λ1 > 0 and λ2 > 0, and (U1, U2)
is conditionally independent given V . Also suppose that U1 and U2 are each
stochastically increasing in V . Then (U1, U2) has an upper tail dependence
coefficient that exceeds λ1λ2.

5.3.3 L1-symmetric measures

Results relating tail dependence to aggregation are difficult to obtain, since
aggregation is not simply a question of the copula, but also of the marginal
distributions. One case where analytic results are possible concerns the
Lp-symmetric variables with 1/p ∈ N.

Recall the Gamma integral:∫ ∞

0
yη−1e−βy dy =

Γ(η)
βη

; β > 0, η > 0.

The Gamma(η, β) density with shape η and rate β is f(y; η, β) =
βηyη−1e−βy/Γ(η), with mean η/β and variance η/β2.

An atomless Lp-symmetric measure on R
n is one whose density at

(x1, . . . , xN ) depends only on the Lp norm (
∑ |xi|p]1/p. Berman2 proved that

Lp-symmetric measures on R can be uniquely represented as conditionally
independent gamma transforms with shape 1/p. For L1 measures, we have
conditionally independent exponentials given the failure rate. (X1, . . . ,XN )
have an L1-symmetric distribution with Gamma(η, β) mixing distribution
if, for any N , the N -dimensional marginal density is given by

fN (x1, . . . , xN ) =
∫ { N∏

i=1

λe−λxi

}
βηλη−1e−βλdλ/Γ(η). (5.7)

Setting N = 1 and integrating over λ, one finds the univariate density
and survivor functions:

f1(x) =
ηβη

(β + x)η+1
; 1 − F1(x) =

(
β

β + x

)η
, (5.8)
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which is the Pareto thick-tailed (leptokurtic) distribution with shape param-
eter η and scale parameter β. These multivariate distributions were first
studied by Takahasi11 and Harris.5 Then unconditionally the joint survival
function of X1, . . . ,XN is

Pr(X1 > x1, . . . ,XN > xN ) =
∫ ∞

0

N∏
i=1

e−λxi
λη−1βη

Γ(η)
e−βλdλ

=
βη

[β + x1 + · · · + xN ]η
. (5.9)

This is a special case of the multivariate Burr distribution of Takahasi,11

with type II Pareto as a special case of Burr for the univariate margins. The
multivariate Pareto distribution of Mardia9 has type I Pareto margins rather
than type II Pareto. From this distribution, Cook and Johnson4 obtained
the copula (replacing Pareto survival functions) as

C(u1, . . . , uN ; η) = [u−1/η
1 + · · · + u

−1/η
N − (N − 1)]−η . (5.10)

As an aside, Kimeldorf and Sampson7 did the same thing but only for the
bivariate case; Clayton3 has the bivariate distribution as a gamma frailty
model and through a derivation from a differential equation, but does not
have the multivariate case. In this parametrization, dependence increases as
η decreases. The copula (5.10) has lower tail dependence and the distribution
(5.9) has upper tail dependence.

Consider the sum S = X1 + · · · +XN , where (X1, . . . ,XN ) has density
(5.7). Since S|Λ = λ ∼ Gamma(n, λ),

fS(r;N) =
∫ ∞

0

1
Γ(N)

λNrN−1e−λr · 1
Γ(η)

λη−1βηe−βλdλ

=
rN−1Γ(N + η)βη

Γ(N)Γ(η)(β + r)η+N
.

The sums have the same tail behavior as the one-dimensional margins.
From (5.8), we obtain the mean of X. The variance, covariance and product
moment correlation may be obtained from (5.7) with N = 2, giving:

µ(X) =
β

η − 1
; η > 1

Var(X1) =
β2η

(η − 1)2(η − 2)
; η > 2
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Cov(X1,X2) =
β2

(η − 1)2(η − 2)
; η > 2

corr(X1,X2) = η−1; η > 2

Var(X1 + · · · +XN ) = Var(X1){N +N(N − 1)η−1}; η > 2.

Note that the mean exists only if η > 1, and the variance, covariance and
correlation require η > 2.

5.3.4 Tail dependence for sums of L1 measures

Computations of tail dependence for sums of L1 measures are tractable, and
the same holds for Lp measures with 1/p ∈ N. If X is independent of Y then
UTD(X,Y ) = 0 but not conversely. Tail dependence is invariant under a
monotone transformation of X and Y , hence it is a property of the copula
joining X and Y .

Let (X1, . . . ,X2N ) have density (5.7) with 2N replacing N .
The incomplete Gamma integral with positive integer parameter m is:

1
Γ(m)

∫ ∞

y
λmzm−1e−λz =

m−1∑
k=0

(λy)i

i!
e−λy, y > 0.

Then

Pr

(
N∑
i=1

Xi > r

)
=
∫ ∞

0
Pr

(
N∑
i=1

Xi > r |Λ = λ

)
λη−1βη

Γ(η)
e−βλdλ

=
∫ ∞

0

N−1∑
k=0

(λr)k

k!
e−λr · λ

η−1βη

Γ(η)
e−βλdλ

=
(

β

β + r

)η [N−1∑
k=0

Γ(η + k)
k! Γ(η)

rk

(β + r)k

]
. (5.11)

As r → ∞, the bracketed term goes to

[
N−1∑
k=0

Γ(η + k)
k! Γ(η)

]
.
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Similarly,

Pr

(
N∑
i=1

Xi > r
⋂ 2N∑

i=N+1

Xi > r

)

=
∫ ∞

0
e−2λr

[
N−1∑
k=0

(λr)k

k!

]2

· λ
η−1βη

Γ(η)
e−βλdλ

=
(

β

β + 2r

)η N−1∑
k,j=0

Γ(k + j + η)
k!j! Γ(η)

(
r

β + 2r

)k+j
. (5.12)

The tail dependence of sums of N L1 variables is therefore the limiting ratio
as r → ∞ of (5.12) over (5.11):

(
1
2

)η ∑N−1
k,j=0 2−k−j Γ(k+j+η)

k!j! Γ(η)∑N−1
k=0

Γ(η+k)
k! Γ(η)

. (5.13)

Table 5.2 gives some values, comparing the number N of disjunct vari-
ables summed. We see that the tail dependence grows in N and decreases in
the shape factor η. Also (5.13) converges to 1 as N → ∞ for any η > 0 —
a proof is given in Appendix C; the rate of convergence to 1 is slower for
larger η.

Figure 5.11 shows rank scatterplots for sums of L1 measures with shape
η = 3. The first shows two variables, the second shows two sums of 10
variables, and the third shows two sums of 50 variables.

Table 5.2. Upper tail dependence for sums of N L1 variables, the shape of
the Gamma mixing distribution ranges from 1 to 5, 10, 15 and 20.

Shape corr(X1, X2) N = 1 N = 3 N = 5 N = 10 N = 50

1 0.500 0.688 0.754 0.824 0.920
2 0.250 0.453 0.549 0.664 0.842
3 0.3333 0.125 0.289 0.388 0.523 0.767
4 0.2500 0.062 0.180 0.267 0.405 0.694
5 0.2000 0.031 0.109 0.180 0.307 0.624

10 0.1000 0.001 0.007 0.019 0.061 0.338
15 0.0667 3 × 10−5 4 × 10−4 0.002 0.009 0.160
20 0.0500 1 × 10−6 2 × 10−5 1 × 10−4 0.001 0.066
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Figure 5.11. Percentile scatterplots for sums of L1 variables, with shape of Gamma
mixing distribution = 3. Left: 2 L1 variables, rank correlation = 0.21; center: sums of 10
such variables, rank correlation = 0.77; right: sums of 50 such variables, rank correlation =
0.94.

5.3.5 Lower tail dependence

The multivariate Pareto model (5.9) does not have lower tail dependence,
so it is not surprising that the aggregate losses S1, S2 do not have lower tail
dependence. A derivation is given below, making use of the identity for the
incomplete Gamma function with an integer shape parameter.

For i = 1, 2, let Si = Si(N) denote the ith sum of N L1 variables, as
above. The marginal probability is

Pr(Si ≤ r) =
βη

(r + β)η

∞∑
k=N

rk

(r + β)k
Γ(η + k)
k! Γ(η)

and

Pr(S1 ≤ r, S2 ≤ r)

=
∫ ∞

0

∞∑
k=N

(λr)k

k!
e−λr ·

∞∑
j=N

(λr)j

j!
e−λr · λ

η−1βη

Γ(η)
e−βλdλ

=
βη

(2r + β)η

∞∑
k=N

∞∑
j=N

rk+j

(2r + β)k+j
Γ(η + k + j)
k!j! Γ(η)

.

Putting z = r/β this becomes:

z2N Γ(η + 2N)
N !N ! Γ(η)

+O(z2N+1), r = βz → 0,

and

Pr(S1 ≤ r) =
∞∑
k=N

zk(1 + z)−η−k
Γ(η + k)
k! Γ(η)

= zN
Γ(η +N)
N ! Γ(η)

+O(zN+1), y = βz → 0.
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The limit of the lower tail (for a fixed N) is:

λL = lim
r→0

Pr(S1 ≤ r, S2 ≤ r)
Pr(S1 ≤ r)

= lim
z→0

z2N Γ(η+2N)
N !N ! Γ(η) +O(z2N+1)

zN Γ(η+N)
N ! Γ(η) +O(zN+1)

= lim
z→0

zN

N !

2N−1∏
k=N

(η + k) = 0.

5.4 Discussion

In this chapter, we have shown how some simple latent variable models
lead to interesting results on tail dependence of aggregate losses. Further
research consists of studying tail dependence on sums under more general
dependence models, such as via vines. For example,

∑N
i=1X1, . . . ,X2N and∑2N

i=N+1X1, . . . ,X2N are conjectured to have upper tail dependence of 1
as N → ∞, if Xi have Pareto-like upper tails and their joint distribution
has upper tail dependence. In analyzing data, tail dependence-like behavior
is also of interest, as this behavior may obtain for more general classes of
copulae.

Appendices

A. Proofs for the tail dependence condition involving
C1|2(u|1)

The conditional distributions C1|2 for the common one-parameter copula
families are given on pp. 146–147 of Joe.6

• For the Frank copula with parameter θ > 0,
C1|2(u|v) = [1 + e−θva(u)]−1, a(u) = (1 − e−θu)/(e−θu − e−θ),

so that C1|2(u|1) = [1+e−θa(u)]−1 = (eθ−eθu)/(eθ−1) < 1 for 0 < u < 1.
• For the Plackett copula with parameter θ > 0, C1|2(u|1) = θ(1 − u)/

[θ(1 − u) + u] < 1 for 0 < u < 1.
• For the bivariate normal copula with parameter ρ > 0, C1|2(u|v) = 1 −

Φ([Φ−1(u) − ρΦ−1(v)]/
√

1 − ρ2 ) → 1 − Φ(−∞) = 1 as v → 1.
• For the Archimedean copula: with Cψ(u, v) = ψ(ψ−1(u)+ψ−1(v)), where
ψ is a Laplace transform,

C1|2(u|v) =
ψ′(ψ−1(u) + ψ−1(v))

ψ′(ψ−1(v))



July 26, 2010 17:35 9.75in x 6.5in b979-ch05 2nd Reading

Micro Correlations and Tail Dependence 107

so that

lim
v→1

C1|2(u|v) = lim
s→0

ψ′(ψ−1(u) + s)
ψ′(s)

= lim
s→0

ψ′(ψ−1(u))
ψ′(s)

.

This is 0 if ψ′(0) = −∞ and is in (0, 1) if −ψ′(0) <∞.
• For the Extreme-value copula: Let C(u, v) = e−A(− log u,− log v), where

max{w1, w2} ≤ A(w1, w2) ≤ w1 + w2 and A is homogeneous of order
1. Let A2 = ∂A/∂w2 which is homogeneous of order 0. Then C1|2(u|v) =
C(u, v)A2(−log u,−log v) · v−1 so that C1|2(u|1) = uA2(−log u, 0) = 0,
assuming A(w1, w2) 	≡ w1 + w2 and

A2(w1, 0) = lim
w2→0

∂A(w1, w2)
∂w2

=
∂ limw2→0A(w1, w2)

∂w2
=
∂w1

∂w2
= 0.

It is easily shown directly that A2(w, 0) = 0 for the Gumbel and Galambos
copulae with positive dependence. For the Gumbel copula, A(w1, w2) =
(wθ1 + wθ2)

1θ
(for θ > 1), and for the Galambos copula, A(w1, w2) =

w1 + w2 − (w−θ
1 +w−θ

2 )−1θ
(for θ > 0)

B. Proof of Proposition 5.1 and an example

Proof. Since tail dependence is invariant under monotone increasing
transforms, without loss of generality, we assume that U1, U2, V are uni-
form (0, 1) random variables. We need to show that limu↑1 Pr(U2 > u|U1 >

u) ≥ λ1λ2.
Let CU1U2V (u1, u2, v) be the copula and joint distribution of U1, U2, V

with margins CU1V (u1, v), CU2V (u2, v). Let C12|V , C1|V , C2|V be the partial
derivatives with respect to v, and let C12|V , C1|V , C2|V be the corresponding
survival functions. Note that for 0 < u < 1,

Pr(U2 > u|U1 > u) ≥ Pr(U2 > u, V > u|U1 > u)

=
Pr(U2 > u, V > u,U1 > u)

1 − u
= (1 − u)−1

∫ 1

u
C12|V (u, u|v) dv

= (1 − u)−1

∫ 1

u
C1|V (u|v)C2|V (u|v) dv, (5.14)

where the last equality comes from conditional independence. The right-
hand side of (5.14) is the same as

E
[
C1|V (u|Z)C2|V (u|Z)

]
, (5.15)
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where Z is uniform on [u, 1]. With the stochastically increasing assumption,
C1|V (u|v) and C2|V (u|v) are increasing in v ∈ [u, 1). By positive depen-
dence from Fréchet upper bound or co-monotonicity, the covariance of two
increasing functions of a random variable is non-negative (if it exists), and
hence (5.15) exceeds

E[C1|V (u|Z)] · E[C2|V (u|Z)]

= (1 − u)−1

∫ 1

u
C1|V (u|v) dv · (1 − u)−1

∫ 1

u
C2|V (u|v) dv

= Pr(U1 > u|V > u) · Pr(U2 > u|V > u). (5.16)

Take the limit of (5.14) and (5.16) to get:

lim
u↑1

Pr(U2 > u|U1 > u)

≥ lim
u↑1

Pr(U1 > u|V > u) · lim
u↑1

Pr(U2 > u|V > u) = λ1λ2 > 0. �

Remark 5.1. Note that the stochastic increasing condition can be weak-
ened to “Pr(Ui > u|V = v) is increasing in v ∈ [u, 1) for all u near 1”.
Hence it is a weak condition that would be expected to hold if there is tail
dependence. The stochastic increasing condition, as given in Proposition 5.1,
usually holds in models with conditional independence given a latent vari-
able, as shown in the example below.

Example 5.1. For the multivariate Pareto distribution (5.9) that derives
from a Gamma mixture of exponentials, let (X1,X2) be such that Xi|Λ = a

are conditional exponential with mean a−1, and Λ ∼ Gamma(η, β). Then
with U1 = X1, U2 = X2, V = Λ−1, U1, U2 are each stochastically increas-
ing in V . From the copula (5.10), the bivariate upper tail dependence
parameter of (X1,X2) is 2−η. We next obtain the common tail dependence
parameter λ1 for (Xi, V ) for i = 1, 2 and show the inequality from the
proposition. Because of scale invariance, we assume β = 1 for the following
calculations. Let G(z; η) = [Γ(η)]−1

∫ z
0 y

η−1e−y dy be the cumulative distri-
bution function of the Gamma(η, 1) random variable Λ. Then

Pr(X1 > x|Λ−1 > v) = Pr(X1 > x,Λ < v−1)/Pr(Λ−1 > v), (5.17)

Pr(X1 > x,Λ < v−1)

= Γ−1(η)
∫ v−1

0
e−axaη−1e−a da = (1 + x)−ηG(v−1(1 + x); η). (5.18)
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X1 has cumulative distribution function F (x) = 1 − (1 + x)−η (x > 0) and
inverse cumulative distribution function F−1(p) = (1 − p)−1/η − 1 (0 < p <

1). For z near 0, G(z; η) ≈ zη/Γ(η + 1). For 0 < u < 1 that is close to 1, let
x = F−1(u) = (1 − u)−1/η − 1 and v(u) be the u quantile of Λ−1, so that
[v(u)]−1 is the lower 1 − u quantile of Λ or [v(u)]−1 ≈ [(1 − u)Γ(η + 1)]1/η .
Substitute into (5.17) and (5.18) to get:

lim
u↑1

Pr(X1 > F−1(u)|Λ−1 > v(u))

= lim
u↑1

(1 − u)G(Γ1/η(η + 1)(1 − u)1/η(1 − u)−1/η ; η)
1 − u

= G(Γ1/η(η + 1); η).

To match Proposition 5.1, λ1 = λ2 = G(Γ1/η(η+ 1); η) and it can be shown
numerically that

lim
u↑1

Pr(X2 > F−1(u)|X1 > F−1(u)) = 2−η ≥ [G(Γ1/η(η + 1); η)]2.

C. Proof that λU,η,N → 1 as N → ∞
Rewrite (5.13) as:

λU,η,N = 2−η
∑N−1

k=0

∑N−1
j=0

Γ(η+k+j)
Γ(η) 2k+jk!j!∑N−1

k=0
Γ(η+k)
Γ(η) k!

. (5.19)

The numerator on the right-hand side of (5.19) can be written as

2N−2∑
�=0

Γ(η + �)
Γ(η) �!

A�,N , (5.20)

where

A�,N =
∑

0≤k,j≤N−1:k+j=�

�!
2k+jk!j!

.

For 0 ≤ � ≤ N − 1, then A�,N = 1 from a binomial sum, and for N ≤ � ≤
2N − 2,

A�,N =
N−1∑

i=�−N+1

(
�

i

)
2−�.

It is shown in Lemma 5.2 below that A�,N → 1 as N → ∞ for (approxi-
mately) fixed �/N .
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Next, (5.20) can be written as (with k = �−N in second summation):

N−1∑
k=0

Γ(η + k)
Γ(η) k!

+
N−2∑
k=0

Γ(η + k +N)
Γ(η) (k +N)!

Ak+N,N = D+
N−2∑
k=0

Γ(η + k +N)
Γ(η) (k +N)!

Ak+N,N

where D is the denominator in (5.19). The proof is complete by showing
that as N → ∞,

D−1
N−2∑
k=0

Γ(η + k +N)
Γ(η) (k +N)!

Ak+N,N → 2η − 1

because then (5.19) goes to 2−η [1 + (2η − 1)] = 1. This follows from the
two lemmas below, together with the Lebesgue Dominated Convergence
Theorem.

Lemma 5.1. Let

dη,k =
Γ(η + k)
Γ(η) k!

, k = 1, 2, . . . .

As N → ∞, ∑N−2
k=0

Γ(η+k+N)
Γ(η) (k+N)!∑N−1

k=0
Γ(η+k)
Γ(η) k!

=
∑N−2

k=0 dη,k+N∑N−1
k=0 dη,k

→ 2η − 1.

Proof. This is split into cases.

• η = 1: dη,i = 1 for all i so the ratio is 1 = 21 − 1.
• η = 2: dη,k = (k + 1), dη,k+N = (k +N + 1). Hence∑N−2

k=0 dη,k+N∑N−1
k=0 dη,k

=
∑N−2

k=0 (k +N + 1)∑N−1
k=0 (k + 1)

=
3N(N − 1)/2
N(N + 1)/2

→ 3 = 22 − 1.

• η = 3: dη,k = (k+2)(k+1)/2!, dη,k+N = (k+N +2)(k+N +1)/2!. Hence
for large N ,∑N−2

k=0 dη,k+N∑N−1
k=0 dη,k

=
∑N−2

k=0 (k +N + 2)(k +N + 1)∑N−1
k=0 (k + 2)(k + 1)

≈
∫ N
0 (x+N)2 dx∫ N

0 x2 dx
=

(23 − 1)N3/3
N3/3

= 23 − 1.
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• General η > 0: Since Γ(η+ i)/i! behaves like iη−1 for large i (by applying
Stirling’s formula), then for large N ,∑N−2

k=0 dη,k+N∑N−1
k=0 dη,k

≈
∫ N
0 (x+N)η−1 dx∫ N

0 xη−1 dx
=

(2η − 1)Nη/η

Nη/η
= 2η − 1. �

Lemma 5.2. A�N ,N → 1 as N → ∞ with �N/N → a ∈ [1, 2).

Proof. A�,N = Pr(� −N + 1 ≤ Y ≤ N − 1), where N ≤ � ≤ 2N − 2 and
Y ∼ Binomial(�, 1

2 ). By the normal approximation for large N and �, this is
approximately

Pr

(
�−N + 1

2 − 1
2�

1
2

√
�

≤ Z ≤ N − 1
2 − 1

2�
1
2

√
�

)

= Φ
(

2N − 1 − �√
�

)
− Φ

(
�− 2N + 1√

�

)

where Z ∼ N(0, 1) and Φ is the standard normal cumulative distribution
function. Let � = �N = [aN ] where 1 ≤ a < 2. Then, as N → ∞,

Φ
(

(2 − a)N√
aN

)
− Φ

(−(2 − a)N√
aN

)
→ 1. �
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