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Chapter 3

Vines Arise
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An introduction to the main idea of vines as graphical models is pre-

sented, with various notation and graphs for representing vines. The

early history of vines is summarized, together with motivation for their

construction. The relation to compatibility of subsets of marginal dis-

tributions is given to provide some intuition. Important properties and

applications of vines are included.

Contents

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Regular Vines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Vine types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3.1 Vine copula or pair-copula construction . . . . . . . . . . . . . . . . 8

1.3.2 Partial correlation vine . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.4 Historical Origins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.5 Compatibility of marginal distributions . . . . . . . . . . . . . . . . . . . . 19

1.6 Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.6.1 Sampling a D-vine . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.6.2 Sampling an arbitrary Regular Vine . . . . . . . . . . . . . . . . . . 24

1.6.3 Density approach sampling . . . . . . . . . . . . . . . . . . . . . . . 25

1.7 Parametric inference for a specific pair-copula construction . . . . . . . . . 25

1.7.1 Inference for a C-vine . . . . . . . . . . . . . . . . . . . . . . . . . . 27

1.7.2 Inference for a D-vine . . . . . . . . . . . . . . . . . . . . . . . . . . 29

1

cooke
Sticky Note
Cooke, Roger M., Joe, H. and Aas, K. (2010) Vines Arise, in Kurowicka and Joe (eds) Dependence Modeling: Handbook on Vine Copulae, World Scientific, Singapore, 978-981-4299-87-9, 981-4299-87-1



August 26, 2010 14:4 World Scientific Review Volume - 9in x 6in HandbookVCM

2 R.M. Cooke, H. Joe and K. Aas

1.8 Model Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

1.8.1 Sequential selection . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

1.8.2 Information Based Model Inference . . . . . . . . . . . . . . . . . . 33

1.9 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

1.9.1 Multivariate data analysis . . . . . . . . . . . . . . . . . . . . . . . 37

1.9.2 Non-parametric Bayesian Belief Nets . . . . . . . . . . . . . . . . . 37

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.1. Introduction

A vine is a graphical tool for labeling constraints in high-dimensional dis-

tributions. A regular vine is a special case for which all constraints are

two-dimensional or conditional two-dimensional. Regular vines generalize

trees, and are themselves specializations of something called Cantor trees5 .

Combined with copulae, regular vines have proven to be a flexible tool in

high-dimensional dependence modeling. Copulae24,42 are multivariate dis-

tributions with uniform univariate margins. Representing a joint distribu-

tion as univariate margins plus copulae allows us to separate the problems

of estimating univariate distributions from problems of estimating depen-

dence. This is handy in as much as univariate distributions in many cases

can be adequately estimated from data, whereas dependence information

is rough hewn, involving summary indicators and judgment3,30 . Whereas

the number of parametric multivariate copula families with flexible depen-

dence is limited, there are many parametric families of bivariate copulae.

Regular vines owe their increasing popularity to the fact that they lever-

age from bivariate copulae and enable extensions to arbitrary dimensions.

Sampling theory and estimation theory for regular vines are well devel-

oped2,36 , and model inference has left the post2,33,34 . Regular vines have

proven useful in other problems such as (constrained) sampling of correla-

tion matrices26,37,38 , building non-parametric continuous Bayesian belief

nets16,17 , and characterizing the set of rank correlation matrices27 .

This chapter traces the historical development of vines, and summarizes

their most important properties. We focus on formulating the main results
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and indicating their role in the development; for proofs the reader is referred

to the original articles. Section 3.2 gives precise definitions, while Section

3.3 describes different types of vines. Section 3.4 on historical origins gives

an informal rendering of the main ideas, and Section 3.5 makes the links to

compatibility of marginal distributions. Sections 3.6–3.9 treat respectively

sampling, model inference and applications.

3.2. Regular Vines

Graphical models called vines were introduced in Cooke9 , Bedford and

Cooke5 and Kurowicka and Cooke31 . A vine V on n variables is a nested

set of connected trees V = {T1, . . . , Tn−1} where the edges of tree j are the

nodes of tree j +1, j = 1, . . . , n− 2. A regular vine on n variables is a vine

in which two edges in tree j are joined by an edge in tree j+1 only if these

edges share a common node, j = 1, . . . , n−2. The formal definitions follow

(based on Section 4.4.1 of Kurowicka and Cooke33).

Definition 3.1 (Regular vine). V is a regular vine on n elements with

E(V) = E1 ∪ · · · ∪ En−1 denoting the set of edges of V if

1. V = {T1, . . . , Tn−1},
2. T1 is a connected tree with nodes N1 = {1, . . . , n}, and edges E1;

for i = 2, . . . , n− 1 Ti is a tree with nodes Ni = Ei−1.

3. (proximity) for i = 2, . . . , n − 1, {a, b} ∈ Ei,#(a△b) = 2 where

△ denotes the symmetric difference operator and # denotes the

cardinality of a set.

An edge in tree Tj is an unordered pair of nodes of Tj , or equivalently,

an unordered pair of edges of Tj−1. By definition, the order of an edge in

tree Tj is j−1, j = 1, . . . , n−1. The degree of a node is the number of edges

attached to that node. A regular vine is called a canonical or C-vine if each

tree Ti has a unique node of degree n − i, hence has maximum degree. A

regular vine is called a D-vine if all nodes in T1 have degree not higher than
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2 (see Figs. 3.3, 3.2). a

The constraint, conditioning, and the conditioned set of an edge are

defined as follows:

Definition 3.2.

1. For e ∈ Ei, i ≤ n− 1, the constraint set associated with e is the

complete union U∗
e of e, that is, the subset of {1, . . . , n} reachable

from e by the membership relation.

2. For i = 1, . . . , n − 1, e ∈ Ei, if e = {j, k} then the conditioning

set associated with e is

De = U∗
j ∩ U∗

k

and the conditioned set associated with e is

{Ce,j , Ce,k} = {U∗
j \De, U

∗
k \De}.

Note that for e ∈ E1, the conditioning set is empty. One can see

that the order of an edge is the cardinality of its conditioning set. For

e ∈ Ei, i ≤ n− 1, e = {j, k} we have U∗
e = U∗

j ∪ U∗
k .

Fig. 3.1 shows a regular vine (left) and a non-regular vine (right).

Fig. 3.2 shows a D-vine on five variables with the constraint sets added.

Conditioning variables are shown to the right of ’|’, conditioned variables

to the left. The trees at each echelon are drawn in a different style. Fig.

3.3 shows similar information for the C-vine. Although the D-vine looks

simpler, in many ways the C- (for canonical) vine is simpler mathematically.

Compare the algorithms 1 and 2 for maximum likelihood estimation in

Section 3.7.

The following propositions of regular vines are proved in:5,31,35

aThe term canonical vine first appears in Bedford and Cooke4 , with abbreviation of

C-vine in Kurowicka and Cooke33 ; the term D-vine first appears in Kurowicka and

Cooke33,35 . The designation ‘D’ has nothing to recommend it, beyond being the letter

to follow ‘C’ but it is linked to drawable on page 93 of Kurowicka and Cooke33 (unfounded

is the suggestion that D-vine is an irreverent pun).
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Figure 3.1. A regular (left) and a non regular (right) vine on 4 variables.
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Figure 3.2. A D-vine on 5 variables with constraint sets.

Proposition 3.1. Let V = {T1, . . . , Tn−1} be a regular vine, then

(1) the number of edges is n(n− 1)/2,

(2) each conditioned set is a doubleton, each pair of variables occurs exactly

once as a conditioned set,

(3) if two edges have the same conditioning set, then they are the same

edge.

Definition 3.3 (m-child; m-descendent). If node e is an element of

node f , we say that e is an m-child of f ; similarly, if e is reachable

from f via the membership relation: e ∈ e1 ∈ · · · ∈ f , we say that e is

an m-descendent of f .
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Figure 3.3. A C−vine on 5 variables with constraint sets.

Proposition 3.2. For any node K of order k > 0 in a regular vine , if

variable i is a member of the conditioned set of K, then i is a member of the

conditioned set of exactly one of the m-children of K, and the conditioning

set of an m-child of K is a subset of the conditioning set of K.

The search for an optimal vine requires a method for enumerating and

searching all vines. The number of regular vines grows very quickly. A

closed formula for the number of regular vines on n elements was found in

Morales Napoles et al.41 :

Theorem 3.1.

(1) For any regular vine on n − 1 elements, the number of regular n-

dimensional vines which extend this vine is 2n−3.

(2) There are
(
n
2

)
× (n− 2)!× 2(n−2)(n−3)/2 labeled regular vines in total.

Note that the number of extensions of a regular vine does not depend on

the vine itself.

From Kurowicka and Cooke33 (see also Chapter ?? in this volume), we

have that for n = 3, all vines are in the same equivalent class, and for n = 4,

all regular vines are either C-vines or D-vines. For n ≥ 5, there are many

vines that are neither C-vines nor D-vines. However, the C-vines and D-

vines are boundary cases of the possible vines. An extension to non-regular

vines is presented in Bedford and Cooke5 .
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We conclude this subsection with some examples to illustrate the no-

tation. The examples consist of a C-vine for n = 3, a general C-vine, a

general D-vine, a D-vine for n = 4, and a vine for n = 5 that is neither a

C-vine nor a D-vine.

For a C-vine for n = 3, in T1, N1 = {1, 2, 3} and E1 = {{1, 2}; {1, 3}} =
{1, 2; 1, 3} = {12; 13}; then in T2, N2 = E1, and E2 = {[{1, 2}; {1, 3}]} =
{2, 3|1} = {23|1}. The shorthand notation with fewer commas and braces

is used for simplicity. For the edge e = 23|1 in T2, U
∗
j = {1, 2}, U∗

k = {1, 3},
the conditioning set is De = {1, 2}∩{1, 3} = {1}, Ce,j = {1, 2}\{1} = {2},
Ce,k = {1, 3} \ {1} = {3}, and the conditioned set is Ce,j ∪ Ce,k = {2, 3}.

For a general C-vine in n variables with standard indexing, E1 = {1, i :
i = 2, . . . , n}, E2 = {2, i|1 : i = 3, . . . , n}, . . ., Eℓ = {ℓ, i|1, . . . , i − 1 :

i = ℓ + 1, . . . , n}, . . ., En−1 = {n − 1, n|1, . . . , n − 2}, T1 = {1, 2, . . . , n}
and Tℓ = Eℓ−1 for ℓ = 2, . . . , n − 1}. For an edge e = [i1, i2|1, . . . , i1 − 1]

with 1 ≤ i1 < i2 ≤ n, the conditioning set is De = {1, . . . , i1 − 1} and

the conditioned set is {i1, i2}. If the indices {1, . . . , n} are permuted, the

result is still a C-vine, since the C-vine is characterized by the degrees of

the nodes for T1, . . . , Tn−1.

For a general D-vine in n variables with standard indexing, E1 = {i, i+
1 : i = 1, . . . , n − 1}, E2 = {i, i + 2|i + 1 : i = 1, . . . , n − 2}, . . ., Eℓ =

{i, i+ ℓ|i+1, . . . , i+ ℓ−1 : i = 1, . . . , n− ℓ}, . . ., En−1 = {1, n|2, . . . , n−1},
T1 = {1, 2, . . . , n} and Tℓ = Eℓ−1 for ℓ = 2, . . . , n − 1}. For an edge

e = [i1, i2|i1 + 1, . . . , i2 − 1] with 1 ≤ i1 < i2 ≤ n, the conditioning set is

De = {i1 + 1, . . . , i2 − 1} and the conditioned set is {i1, i2}. If the indices

{1, . . . , n} are permuted, the result is still a D-vine.

Specific details in shorthand notation for the D-vine with n = 4

are: N1 = {1, 2, 3, 4}, E1 = {12; 23, 34}; then in T2, N2 = E1 and

E2 = {13|2; 24|3}; finally, in T3, N3 = E2 and E3 = {14|23}. For the

edge in T3, the conditioning set is De = {2, 3} and the conditioned set is

{1, 4}.
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An example of a 5-dimensional regular vine that is neither a C-vine nor

a D-vine is shown in Fig. 3.4 E1 = {12; 23; 24; 45}, E2 = {13|2; 14|2; 25|4},
E3 = {34|12; 15|24}, E4 = {35|124}.

54

321

13|2

14|2

52|4

51|24

43|12

53|124

Figure 3.4. A regular vine on 5 variables which is neither a C−vine nor a D-vine with

constraint sets.

3.3. Vine types

Two main types of regular vines have been treated in the literature; vine

copulae and partial correlation vine representations. Vine copulae or pair

copula constructions are obtained by assigning a bivariate copula to each

edge in the vine. Similarly a partial correlation vine representation of a

correlation matrix is obtained by assigning a partial correlation to each edge

in the vine. In this section the two types of specifications are discussed.

3.3.1. Vine copula or pair-copula construction

A bivariate copula vine specification is called a pair-copula construction,1,2

or a vine copula (Section 4.4.2 of Kurowicka and Cooke33). It is obtained

by assigning a bivariate copula Ce for each edge e in the union E(V) =

E1∪· · ·∪En−1 of the vine defined in the preceding subsection. The set of
(
n
2

)
copulae is denoted by B. The elements of B can be chosen independently of

each other (as long as they are bivariate copulae); this follows from Bedford
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and Cooke4 .

In general, the form of the joint density of a regular vine copula with

margins F1, . . . , Fn is given by the following theorem:

Theorem 3.2 (Bedford and Cooke4). Let V = (T1, . . . , Tn−1) be a reg-

ular vine on n elements. For an edge e ∈ E(V) with conditioned elements

e1, e2 and conditioning set De, let the conditional copula and copula den-

sity be Ce1,e2|De
and ce1,e2|De

, respectively. Let the marginal distributions

Fi with densities fi, i = 1, . . . , n be given. Then the vine-dependent distri-

bution is uniquely determined, and has a density given by

f1···n = f1 · · · fn
∏

e∈E(V)

ce1,e2|De
(Fe1|De

, Fe2|De
). (3.1)

Equation (3.1) shows that vine copulae have closed form densities when

F1, . . . , Fn and the bivariate copulae in B are differentiable.

Note that Ce is a marginal bivariate copula for edges in T1 and Ce

is a conditional bivariate copula for edges in T2, . . . , Tn−1. For a C-vine,

the set of bivariate copulae is denoted as B = {Ci1i2|1,...,i1−1 : 1 ≤ i1 <

i2 ≤ n} = {C12; . . . ;C1n;C23|1; . . . ;C2n|1; . . . , Cn−1,n|1,...,n−2}. For a D-

vine, the set of bivariate copulae is denoted as B = {Ci1i2|i1+1,...,i2−1 : 1 ≤
i1 < i2 ≤ n} = {C12; . . . ;Cn−1,n;C13|2; . . . ;Cn−2,n|n−1; . . . , C1,n|2,...,n−1}.
For the regular vine in Section 3.2 that is not a C-vine or a D-vine, the

set of bivariate copulae is: B = {C12;C23;C24;C45; C13|2;C14|2;C25|4;

C34|12;C15|24;C35|124}.
For applications, univariate margins F1, . . . , Fn are specified or esti-

mated, as well as the marginal or conditional copulae in B. The resulting

multivariate distribution in the Fréchet class F(F1, . . . , Fn) has a form that

can be shown recursively. We show the results for a C-vine with n = 3 and

and a D-vine with n = 4.

First note that, assuming F1, F2, C12 are differentiable with respec-

tive densities f1, f2, c12, then F12 = C12(F1, F2) has density f12 =

c12(F1, F2) f1f2 and conditional density f2|1 = f12/f1 = c12(F1, F2) f2.
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For the C-vine with n = 3, the trivariate distribution comes from the

specification {F1, F2, F3, C12, C13, C23|1}. The (1, 2) and (2, 3) margins are

F12 = C12(F1, F2) and F13 = C13(F1, F3), from which conditional distribu-

tion F2|1, F3|1 can be obtained; then

F123(x1, x2, x3) =

∫ x1

−∞
C23|1

(
F2|1(x2|z), F3|1(x3|z)

)
dF1(z). (3.2)

If Fi are differentiable with respective densities fi, i = 1, 2, 3, and

C12, C13, C23|1 have densities c12, c13, c23|1 respectively, then the conditional

densities f2|1, f3|1 exist, and the mixed third order derivative of (3.2), com-

pare Theorem 3.2, is:

f123(x1, x2, x3) = c23|1
(
F2|1(x2|x1), F3|1(x3|x1)

)
f2|1(x2|x1) f3|1(x3|x1) f1(x1)

= c23|1
(
F2|1(x2|x1), F3|1(x3|x1)

)
c12

(
F1(x1), F2(x2)

)
f2(x2)

·c13
(
F1(x1), F3(x3)

)
f3(x3) f1(x1)

= c12
(
F1(x1), F2(x2)

)
c13

(
F1(x1), F3(x3)

)
c23|1

(
F2|1(x2|x1), F3|1(x3|x1)

)
·

3∏
i=1

fi(xi)

For the D-vine with n = 4, the 4-variate distribution comes from the

specification {F1, F2, F3, F4, C12, C23, C34, C13|2, C24|3, C14|23}. The (i, i+1)

margins are Fi,i+1 = Ci,i+1(Fi, Fi+1), F123 and F234 have expressions like

(3.2), and then

F1234 (x1, x2, x3, x4) =∫ x2

−∞
∫ x3

−∞ C14|23
(
F1|23(x1|z2, z3), F4|23(x4|z2, z3)

)
dF23(z2, z3).

(3.3)

If Fi are differentiable with respective densities fi, i = 1, 2, 3, 4, and Ce have

densities ce for edges e in this vine, then the mixed fourth order derivative
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of (3.3) is:

f1234(x1, x2, x3, x4)

= c14|23
(
F1|23(x1|x2, x3), F4|23(x4|x2, x3)

)
f1|23(x1|x2, x3)

×f4|23(x4|x2, x3) f23(x2, x3)

= c14|23
(
F1|23(x1|x2, x3), F4|23(x4|x2, x3)

)
f123(x1, x2, x3)

×f234(x2, x3, x4)/f23(x2, x3)

= c14|23
(
F1|23(x1|x2, x3), F4|23(x4|x2, x3)

)
×c13|2

(
F1|2(x1|x2), F3|2(x3|x2)

)
c24|3

(
F2|3(x2|x3), F4|3(x4|x3)

)
×c12

(
F1(x1), F2(x2)

)
c23

(
F2(x2), F3(x3)

)
c34

(
F3(x3), F4(x4)

)
·

4∏
i=1

fi(xi)

In applications of vine copulae to date, a parameter (vector) is asso-

ciated with each Ce ∈ B, and then statistical inference can proceed with

maximum likelihood; see Section 3.7.

Normal copulae When each bivariate copula Ce is a bivariate normal

copula, then the resulting multivariate copula is a multivariate normal cop-

ula. For a multivariate normal copula represented as a vine, there is a

correlation or partial correlation parameter associated with each Ce, and

the parameters can be summarized into a partial correlation vine; see Sec-

tion 3.3.2. Moreover, since, the multivariate normal has the property that

conditional correlations do not depend on the values of the conditioning

variables, any multivariate normal copula has many representations as a

vine copula. It can be shown that also the multivariate tν copulae are

special cases of vine copulae.

Dependence properties The following dependence properties for vine

copulae are shown in Joe23 and Joe et al.28 :

(1) Let edge e be in Eℓ with ℓ > 1 and let the conditioned set for e be

{e1, e2}. If Ce is more concordant than C ′
e, then the margin Fe1,e2 is

more concordant than F ′
e1,e2 .
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(2) If Ce has upper (lower) tail dependence for all e ∈ E1, and the

remaining copulae have support on [0, 1]2, all bivariate margins of

F1···n(x1, . . . , xn) have upper (lower) tail dependence.

(3) For parametric vine copulae with a parameter θe associated with Ce, a

wide range of dependence is obtained if each Ce(·; θe) can vary from the

bivariate Fréchet lower bound to the Fréchet upper bound. Consider

the Kendall tau triple (τ12, τ13, τ23) for n = 3. It is shown in Joe23 for

a 3-dimensional vine copula that if C23|1 is the conditional Fréchet up-

per (lower) bound copula, then τ23 achieves the maximum (minimum)

possible, given τ12, τ13.

3.3.2. Partial correlation vine

In this section we first give the definition of partial correlation. Then, we

describe the partial correlation vine structure and finally, we mention two

applications of partial correlation vines.

3.3.2.1. Partial correlation

A partial correlation can be defined in terms of partial regression coef-

ficients. Consider variables Xi with zero mean and standard deviations

σi = 1, i = 1, . . . , n. Let the numbers bij;{1,...,n}\{i,j} minimize

E
[(

Xi −
∑
j:j ̸=i

bij;{1,...,n}\{i,j}

)2]
, i = 1, . . . , n.

Definition 3.4 (Partial correlation). The partial correlation of vari-

ables 1 and 2 given the remaining variables is:

ρ12;3,...,n = sgn(b12;3,...,n) (b12;3,...,nb21;3,...,n)
1/2

.

By permuting the indices, other partial correlations on n variables are de-

fined.

Equivalently we could define the partial correlation as

ρ12;3,...,n = − K12√
K11K22

,
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where Kij denotes the (i, j) cofactor of the correlation matrix. The par-

tial correlation ρ12;3,...,n can be interpreted as the correlation between the

orthogonal projections of X1 and X2 on the plane orthogonal to the space

spanned by X3, . . . , Xn.

Partial correlations can be computed from correlations with the follow-

ing recursive formula49 :

ρ12;3,...,n =
ρ12;3,...,n−1 − ρ1n;3,...,n−1 · ρ2n;3,...,n−1√

1− ρ21n;3,...,n−1

√
1− ρ22n;3,...,n−1

. (3.4)

3.3.2.2. Partial Correlation Vine

A partial correlation vine5,31,38 , which is a useful parametrization for a

multivariate normal or elliptical distribution, is obtained by assigning a

partial correlation ρe, with a value chosen arbitrarily in the interval (−1, 1),
for each edge e in the union E(V) = E1 ∪ · · · ∪En−1 of the vine defined in

Section 3.2. Note that ρe is a correlation for edges in T1 and ρe is a partial

correlation for edges in T2, . . . , Tn−1. Theorem 3.3 in Bedford and Cooke5

shows that a regular vine provides a bijective mapping from (−1, 1)(
n
2) into

the set of positive definite matrices with 1’s on the diagonal.

Theorem 3.3. For any regular vine on n elements there is a one-to-one

correspondence between the set of n×n positive definite correlation matrices

and the set of partial correlation specifications for the vine.

All assignments of the numbers between −1 and 1 to the edges of a

partial correlation regular vine are consistent, and all correlation matrices

can be obtained this way. Specific examples of partial correlation vines are

the following: For a C-vine, the set of partial correlations is {ρi1i2;1,...,i1−1 :

1 ≤ i1 < i2 ≤ n} = {ρ12, . . . ; ρ1n, ρ23;1, . . . , ρ2n;1, . . . , ρn−1,n;1,...,n−2}. For

a D-vine, the set of partial correlations is {ρi1i2;i1+1,...,i2−1 : 1 ≤ i1 < i2 ≤
n} = {ρ12, . . . , ρn−1,n, ρ13;2, . . . , ρn−2,n;n−1, . . . , ρ1,n;2,...,n−1}. For the reg-

ular vine in the Section 3.2 that is not a C-vine or a D-vine, the set of partial

correlations is: {ρ12, ρ23, ρ24, ρ45, ρ13;2, ρ14;2, ρ25;4, ρ34;12, ρ15;24, ρ35;124}.
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One verifies that the correlation between ith and jth variables can be

computed from the sub-vine generated by the constraint set of the edge

whose conditioned set is {i, j} using recursively the formulae (3.4), and the

following lemma31 .

Lemma 3.1. If z, x, y ∈ (−1, 1), then also w ∈ (−1, 1), where

w = z
√

(1− x2)(1− y2) + xy.

A regular vine may thus be seen as a way of picking out partial cor-

relations which uniquely determine the correlation matrix and which are

algebraically independent. The partial correlations in a partial correlation

vine need not satisfy any algebraic constraint like positive definiteness. The

‘completion problem’ for partial correlation vines is therefore trivial. An

incomplete specification of a partial correlation vine may be extended to a

complete specification by assigning arbitrary numbers in the (−1, 1) interval
to the unspecified edges in the vine.

Partial correlation vines have another important property; the product

of 1 minus the square partial correlations equals the determinant of the

correlation matrix.

Theorem 3.4. (Kurowicka and Cooke35) Let D be the determinant of the

n-dimensional correlation matrix (D > 0). For any partial correlation vine

D =
∏

e∈E(V)

(1− ρ2e1,e2;De
). (3.5)

3.3.2.3. Applications

We mention two applications of partial correlation vines. One is the gener-

ation of random correlation matrices R that are uniform over the space of

correlation matrices. Another is a reparametrization for statistical models

where R is a parameter.

Random correlation matrices In Joe26 for the partial correlation D-

vine and in Lewandowski et al.38 for the general partial correlation vine,
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results and algorithms are given for generating a random correlation matrix

R based on a partial correlation vine. This random correlation matrix

generation is based on the property that the partial correlations in a regular

vine are algebraically independent. By choosing the distributions of ρe to

be appropriate Beta distributions on (−1, 1), Lewandowski et al.38 have

developed a method to obtain random correlation matrices that have a

uniform density or, more generally, a density proportional to |R|η−1 where

η > 0.

Numerically, use of the partial correlation C-vine is fastest, but one

might want to use a specific regular vine, if there is an indexing of partial

correlations of interest.

Reparametrization of statistical models Statistical models such as

the multivariate probit model for ordinal data or the t-copula model have an

n× n correlation matrix R = (ρij) as a parameter. To avoid checking the

positive definiteness constraint in the middle of the numerical maximum

likelihood iterations, the correlation matrix can be reparametrized via a

partial correlation vine. The idea of reparametrizing the correlation matrix

to n− 1 correlations and (n− 1)(n− 2)/2 partial correlations (D-vine) was

applied in Xu48 as a way of allowing the correlation matrix to be a function

of covariates. A more common way to deal with the positive definiteness

constraint is to reparametrize via the lower triangular Cholesky matrix

A = (aij). The partial correlation C-vine might be a more interpretable

parametrization. Note that if R = AA′, then

ai1 = ρ1i, i = 1, . . . , n,

aij = ρji;1···j−1

j−1∏
k=1

√
1− ρ2ki;1···k−1 , j = 3, . . . , n, i = j + 1, . . . , n,

aii = 1−
i−1∑
k=1

a2ik, i = 2, . . . , n.

That is, each element of A that is below the diagonal is a function of partial

correlations in the C-vine.
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As shown in Section 5.2 of Kurowicka and Cooke33 , with the use of ex-

pert judgement, it might be convenient to specify the conditional bivariate

copulae by first assigning a constant conditional rank correlation to each

edge of the vine. For i = 1, . . . , n − 1, with e ∈ Ei having {j, k} as the

conditioned variables and De as the conditioning variables, we associate

rj,k|De
.

The resulting structure is called a conditional rank correlation vine.

In the elicitation of expert judgement of strengths of dependence, the

conditional rank correlation vine avoids the constraints in a matrix of rank

correlations. It is shown in Joe27 , using conditional distributions in the

form of D-vines, that in dimensions n ≥ 5, the possible rank correlation

matrices (or correlation matrices of dependent uniform random variables) is

smaller than the set of all positive definite matrices with 1 on the diagonal.

3.4. Historical Origins

The first regular vine, avant la lettre, was introduced by Joe22 . The

motive was to extend the bivariate extreme value copula to higher di-

mensions. Consider a multivariate survival function G(z1, . . . , zn) =

Prob {Z1 > z1, . . . , Zn > zn}. If G is ‘min-stable’, then it satisfies

G(tz1, . . . , tzn) = e−A(tz1,...,tzn) = e−t A(z1,...,zn). (3.6)

As shown by Pickands (Galambos13 , Chapter 5), the family of functions

A satisfying this equation is infinite dimensional. Joe’s goal was to find

finite-dimensional parametric subfamilies that would cover the whole family

represented by (3.6). To this end he introduced what would later be called

the D-vine.

Joe23 was interested in a class of n-variate distributions with given one-

dimensional margins, and n(n− 1) dependence parameters, whereby n− 1

parameters correspond to bivariate margins, and the others correspond to

conditional bivariate margins. In the case of multivariate normal distribu-

tions, the parameters would be n−1 correlations and (n−1)(n−2)/2 partial
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correlations, which were noted to be algebraically independent in (−1, 1).
Implicit in this remark is the observation that partial correlations on what

is now called D-vine provide an algebraically independent parametrization

of the set of positive definite correlation matrices.

One main idea23,24 comes from the Fréchet class F(FiS , FjS) where

S is a set of indices of variables that does not contain i and j. That is,

F(FiS , FjS) is the class of distributions of cardinality |S|+2 with the margin

FS in common.

If S = {k1, . . . , km} with m ≥ 1, a member of F(FiS , FjS) has the form∫ xk1

0

· · ·
∫ xkm

0

Fij|S(xi, xj |yS) dFS(yS). (3.7)

By Sklar’s theorem, there are conditional copulae {Cij|S(·|yS)} such that

(3.7) is∫ xk1

0

· · ·
∫ xkm

0

Cij|S
(
Fi|S(xi|yS), Fj|S(xy|yS) | yS

)
dFS(yS). (3.8)

By imitating multivariate Gaussian distributions, simpler distributions in

F(FiS , FjS) have a constant conditional copula: Cij|S(·|yS) ≡ Cij|S for all

yS . By adding a dependence parameter, one can have a bivariate para-

metric copula family Cij|S(·|·;θ). A wide range of conditional dependence

obtains if Cij|S(·|·;θ) interpolates the Fréchet upper bound, independence

and the Fréchet lower bound.

Joe23,24 applied the above idea of Fréchet classes recursively in a D-vine

for F(Fi,i+1,...,j−1, Fj,i+1,...,j−1) with 1 ≤ i < j ≤ d. This was partly moti-

vated by variables which might be indices in time or in a one-dimensional

spatial direction. Properties of bivariate tail dependence, ordering by con-

cordance, and range of dependences were obtained. The basic sampling

strategy was also outlined.

An entirely different motivation underlay the first formal definition of

vines in Cooke9 . Uncertainty analyses of large risk models, such as those

undertaken for the European Union and the US Nuclear Regulatory Com-

mission for accidents at nuclear power plants, involve quantifying and prop-

agating uncertainty over hundreds of variables15,18 . Dependence informa-
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tion for such studies had been captured with Markov trees,47 which are

trees constructed with nodes as univariate random variables and edges as

bivariate copulae. For n variables, there are at most n− 1 edges for which

dependence can be specified. New techniques at that time involved obtain-

ing uncertainty distributions on modeling parameters by eliciting experts’

uncertainties on other variables which are predicted by the models. These

uncertainty distributions are pulled back onto the model’s parameters by a

process known as probabilistic inversion14,33 . The resulting distributions

often displayed a dependence structure that could not be captured as a

Markov tree.

Figure 3.5. A simple Markov tree (left) and vine (right) on 3 variables.

This lead to the invention of regular vines. Regular vines enable an

additive decomposition of the mutual information that depends only on

the expected mutual information of each edge. Making any conditional

copula the conditionally independent copula lowers the mutual informa-

tion9 . This remark shows that the minimal information completion of any

partially specified regular vine is trivially found by making the unspecified

conditional copulae conditionally independent. This situation compares

favorably with the problem of completing a partially specified correlation

matrix. If a partially specified regular vine has the property that no unspec-

ified edge has specified m-parents, then the partial specification is called

m-saturated. If we consider the indices in the conditioned sets of a partially

specified regular vine, then placing an edge between two indices in the same
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conditioned set generates a graph. m-saturation is equivalent to the decom-

posability of this graph, which is equivalent to the graph being chordal and

to the existence of a junction tree35 . Bedford and Cooke5 extend the result

of Joe23 and show that partial correlations in (−1, 1) on the edges of any

regular vine provide an algebraically independent parametrization of the

positive definite correlation matrices, and introduce Cantor trees as a gen-

eralization of regular vines. Bedford and Cooke4 give an explicit formula,

factorizing any multivariate density in terms of (conditional) copula densi-

ties on any regular vine. This generalizes the Hammersley-Clifford theorem

applied to Markov trees6 .

3.5. Compatibility of marginal distributions

n-dimensional vine copulae are based on
(
n
2

)
bivariate copulae which can

be specified completely independently of each other. To do this, n − 1 of

the bivariate copulae are bivariate margins and the remaining (n− 1)(n−
2)/2 are conditional copulae. In this section, we provide some results on

sets of marginal distributions that can be compatible and hence provide

some intuition for the definition of vines and vine copulae (pair-copula

construction) in Section 3.2.

The Fréchet class F(Fj , 1 ≤ j ≤ n;Fjk, 1 ≤ j < k ≤ n) of given

(continuous) univariate and bivariate margins is hard to study; there is

no general result on when the set of
(
n
2

)
bivariate margins or copulae are

compatible with an n-variate distribution. Assuming that bivariate margins

agree on the univariate margins, the maximal number of bivariate margins

that can be compatible with no constraints is n − 1. The maximum is

attained if an acyclic condition is satisfied. Consider the Fréchet class

F(Fj , 1 ≤ j ≤ n, Fjiki : ji < ki, i = 1, . . . , n − 1) with n − 1 distinct pairs.

This class is non-empty for any choice of the n − 1 bivariate margins, if

the graph with nodes {1, . . . , n} and edges {(ji, ki) : i = 1, . . . , n − 1} has
no cycles. This result follows the compatibility condition in Kellerer,29

summarized in Section 3.7 of Joe24 . It also follows from ideas presented
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below. If any additional bivariate margin Fjnkn is added, then the graph

will definitely have a cycle, and some choices of the Fjiki will lead to non-

compatibility.

With univariate margins fixed, let’s illustrate the above results with

bivariate copulae. Because we can permute indices of the variables without

changing probabilistic properties, a simple way to get the n − 1 bivariate

margins is to have pairs

{(1, 2), (j2, 3), . . . , (jn−1, n)}, ji ∈ {1, . . . , i}, i = 1, . . . , n− 1. (3.9)

The first edge has nodes 1 and 2 and edge (1, 2). The second edge adds

node 3 and connects to one of the nodes 1 or 2. The ith edge adds node

i and connects to one of the nodes between 1 and i − 1 inclusive. In this

way, no cycle is formed, and the result is a tree after n− 1 steps. If an nth

edge is added without adding another node, there will definitely be a cycle

(the reader can confirm by drawing some diagrams).

Let’s add the nth edge to get a cycle. By relabeling, we can assume that

the edges of the cyclical subgraph are {(1, 2), (2, 3), . . . , (m− 1,m), (1,m)}
where 3 ≤ m ≤ n. Consider copulae C12, C23, . . . , Cm−1,m, C1m. If

C12, C23, . . . , Cm−1,m are co-monotonic (Fréchet upper bound) and C1m is

counter-monotonic (Fréchet lower bound), then this set of bivariate margins

has no compatible n-variate or m-variate distribution.

We next show via an example why n−1 bivariate margins satisfying the

tree condition (3.9) imply that there are no extra constraints for compatibil-

ity. Consider the Fréchet class of bivariate copulae F(C12, C13, C14, C25) for

n = 5; the choice of bivariate margins satisfies (3.9). C12, C13 can be spec-

ified completely independently because this is the same as specifying the

univariate conditional distributions {C2|1(·|u1), C3|1(·|u1) : 0 < u1 < 1}.
For each u1, C2|1, C3|1 can be coupled with a conditional copula, and from

(3.7–3.8), one can construct all trivariate copulae with C12, C13 as bivari-

ate margins. The same statement holds for the pairs {C13, C14}. Hence

one can get distributions C123, C134 with bivariate margins {C12, C13, C14}.
For the resulting C123, C134, one can build a 4-variate copula C1234 via



August 26, 2010 14:4 World Scientific Review Volume - 9in x 6in HandbookVCM

Vines Arise 21

{C2|13(·;u1, u3), C4|13(·;u1, u3) : 0 < u1, u3 < 1} and (3.7). After adding

C25, one can get a trivariate distribution C125 with bivariate margins

{C12, C25}. By coupling the appropriate conditional distributions, one can

get C1235 with C123, C125 as trivariate margins. Finally, one can couple

C4|123(·|u1, u2, u3) and C5|123(·|u1, u2, u3) in (3.7) to get a 5-variate copula

C12345. Hence {C12, C13, C14, C25} is a set of compatible copulae with no

additional constraints.

The above example extends for any set of n− 1 bivariate copulae with

pairs of marginal indices of the form of (3.9). This explains the first tree

of a vine. However vines also provide conditions for bivariate conditional

copulae. Working with bivariate conditional copulae is easier than studying

conditions for compatibility of trivariate (and higher-dimensional) margins.

We next show that conditions for compatible trivariate margins are more

complicated.

For trivariate margins, we can consider a subset of n − 2 to consider

compatibility. For n = 5, n − 2 = 3 and there are three possible patterns

of 3 trivariate margins from the full set of 10 =
(
5
3

)
.

(a) Two indexes appear in all three triplets: e.g., {(1, 2, 3), (1, 2, 4),

(1, 2, 5)}: this is compatible with copulae for the univariate conditional

distributions 3|12, 4|12 and 5|12.
(b) Two of the three pairs intersect in two indices and one pair intersect

in one index, e.g., {(1, 2, 3), (1, 2, 5), (1, 3, 4)}. The above construction

shows that something like this will always be compatible.

(c) One of the three pairs intersect in two indices and the other two pairs

intersect in one index, e.g., {(1, 2, 3), (2, 3, 4), (1, 4, 5)}. It is shown in

Example 3.4 of Joe24 that this set of trivariate margins does not satisfy

the compatibility condition in Kellerer29 .

In general, the condition to determine which sets of trivariate margins

that always are compatible is more complicated than the condition for bi-

variate margins given above. Vines are a way to specify a set of compati-
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ble bivariate margins and bivariate conditional distributions and they lead

to compatible marginal distributions of higher dimensions. The condition

for compatibility is straightward to check, compared with something like

Kellerer’s condition. The examples in this section show why the definition

of vines involves tree graphs and conditional distributions.

3.6. Sampling

We assume that variables X1, X2, . . . , Xn are uniform on (0, 1). Each edge

in a regular vine may be associated with a conditional copula, that is, a

conditional bivariate distribution with uniform margins. Given a condi-

tional rank correlation vine as defined in Section 3.3.2.3, we choose a class

of copulae indexed by correlation coefficients in the interval (−1, 1) and

select the copulae with correlation corresponding to the conditional rank

correlation assigned to the edge of the vine. A joint distribution satisfying

the vine-copula specification can be constructed and sampled on the fly,

and will preserve maximum entropy properties of the conditional bivariate

distributions4,9 .

The conditional rank correlation vine plus copula determines the whole

joint distribution. There are two strategies for sampling such a distribution,

which we term the cumulative and density approaches.

3.6.1. Sampling a D-vine

We first illustrate the cumulative approach with the distribution specified

by a D-vine on four variables, D(1,2,3,4): Sample four independent variables

distributed uniformly on interval [0, 1], U1, U2, U3, U4 and determine the

values of correlated variables X1, X2, X3, X4 as follows:

(1) x1 = u1,

(2) x2 = F−1
r12;x1

(u2),

(3) x3 = F−1
r23;x2

(
F−1
r13|2;Fr12;x2 (x1)

(u3)
)
,
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(4)

x4 = F−1
r34;x3

(
F−1
r24|3;Fr23;x3 (x2)

(
F−1
r14|23;Fr13|2;Fr23;x2 (x3)(Fr12;x2 (x1))

(u4)

))
where Frij|k;xi(Xj) denotes the cumulative distribution function for Xj , ap-

plied to Xj , given Xi = xi under the conditional copula with correlation

rij|k. Notice that the D-vine sampling procedure uses conditional and in-

verse conditional distribution functions. A more general form of the above

procedure simply refers to conditional cumulative distribution functions:

x1 = u1

x2 = F−1
2|1:x1

(u2),

x3 = F−1
3|2:x2

(
F−1
3|12:F1|2(x1)

(u3)
)
,

x4 = F−1
4|3:x3

(
F−1
4|23:F2|3(x2)

(
F−1
4|123:F1|23(x1)

(u4)
))

.

(3.10)

X4

F4|23

F4|3

F4|123
U4

F
-1

4|123(u4)

u4

x4

Figure 3.6. Staircase graph representation of D-vine sampling procedure.

Fig. 3.6 depicts the sampling of X4 in the D-vine with a so-called staircase

graph. Following the dotted arrows, we start by sampling U4 (realization

u4) and use this with the copula for the conditional rank correlation of

{1, 4} given {2, 3} to find the argument of F−1
4|23, etc. Notice that for the
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D-vine, values of F2|3 and F1|23 that are used to conditionalize copulae with

correlations r24|3 and r14|23 to obtain F4|23 and F4|123, respectively, have to

be calculated.

The staircase graph shows that if any of the cumulative conditional

distributions in Fig. 3.6 is uniform, then the corresponding abscissa and

ordinates can be identified. This corresponds to noting that the inverse

cumulative function in (3.10) is the identity, and this in turn corresponds

to a conditional rank correlation being zero and the corresponding variables

being conditionally independent. Notice that the conditional rank corre-

lations can be chosen arbitrarily in the interval [−1, 1]; they need not be

positive definite or satisfy any further algebraic constraint.

3.6.2. Sampling an arbitrary Regular Vine

The content of this section is based on Section 6.4.2 of Kurowicka and

Cooke33 . A regular vine on n nodes will have a single node in tree n− 1.

It suffices to show how to sample one of the conditioned variables in this

node, say n, assuming we have sampled all the other variables. We proceed

as follows:

(1) By Lemma 3.2, the variable n occurs in trees 1, . . . , n−1 exactly once as

a conditioned variable. The variable with which it is conditioned in tree

j is called its j-partner. We define an ordering for n as follows: index

the j-partner of variable n as variable j. We denote the conditional

bivariate constraints corresponding to the partners of n as:

(n, 1|∅), (n, 2|Dn
2 ), (n, 3|Dn

3 ), . . . , (n, n− 1|Dn
n−1).

Again by Lemma 3.2, variables 1, . . . , n− 1 appear first as conditioned

variables (to the left of ’|’) before appearing as conditioning variables

(to the right of ‘|’). Also,

0 = #Dn
1 < #Dn

2 < . . . < #Dn
n−1 = n− 2.

(2) Assuming that we have sampled all variables except n, sample one

variable uniformly distributed on the interval (0,1), denoted un. We use
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the general notation Fa|b,C to denote Fa,b|C:Fb|C ; that is the conditional

copula for {a, b|C} conditional on a value of the cumulative conditional

distribution Fb|C . Here, {a, b|C} is the conditional bivariate constraint

corresponding to a node in the vine.

(3) Sample xn as follows:

xn = F−1
n|1,Dn

1

(
F−1
n|2,Dn

2

(
· · ·

(
F−1
n|n−1,Dn

n−1
(un)

)
· · ·

))
. (3.11)

The innermost term of (3.11) is:

F−1
n|n−1,Dn

n−1
= F−1

n,n−1|Dn
n−1:Fn−1|Dn

n−1

= F−1
n,n−1|Dn

n−1:Fn−1,n−2|Dn−1
n−2

:F
n−2|Dn−1

n−2

.

See the article of Joe in this volume for pseudocode for the regular vine.

3.6.3. Density approach sampling

When the vine-copula distribution is given as a density, the density ap-

proach to sampling may be used. Assume that the marginal distributions

in (3.1) are uniform [0,1]. Then (3.1) can be rewritten as∏
e∈E

cij|De
(Fi|De

(xi), Fj|De
(xj)), (3.12)

where, by uniformity, the density fi(xi) = 1. Expression (3.12) may be used

to sample the vine distribution; namely, draw a large number of samples

(x1, . . . , xn) uniformly, and then resample these with probability propor-

tional to (3.12). This is less efficient than the general sampling algorithm

given previously; however it may be more convenient for conditionalization.

3.7. Parametric inference for a specific pair-copula construc-

tion

Aas et al.2 develop a maximum likelihood procedure to estimate parameters

in copulae for D- and C-vines. The procedure can be extended to arbitrary

regular vines, but the algorithms are less transparent.
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For notation to cover the C-vine, D-vine and other vines, let

Ci1i2|m(ui1 , ui2) denote the copula with conditioned set {i1, i2} and con-

ditioning set m. If i1 < i2, then m = {1, . . . , i1 − 1} for the C-vine and

m = {i1 + 1, . . . , i2 − 1} for the D-vine. For the partial derivatives with

respect to uj and uj+i, we use the notation

Ci1|i2:m(ui1 |ui2) =
∂Ci1i2|m

∂ui2

, Ci2|i1:m(ui2 |ui1) =
∂Ci1i2|m

∂ui1

.

The next illustration of notation is for the C-vine in (3.2). If this 3-

dimensional distribution is embedded in a C-vine of dimension 4 or more,

then the conditional distribution F3|12 is needed at the next stage, since

(3.2) involves C23|1. We use the notation F3|12 = F3|2:1 to show that it

depends on C3|2:1. Differentiating (3.2) with respect to x2, x3, and then

dividing by f12(x1, x2) leads to

F3|2:1(x3|x2, x1) = C3|2:1
(
F3|1(x3|x1)|F2|1(x2|x1)

)
.

Expressions like this must be computed for the likelihood of a C-vine (more

generally, a regular vine).

Note that when estimating the parameters here, we assume that the

conditional bivariate copulae are constant over the values of the condition-

ing variables. In the general representation of any multivariate distribution

in (3.1) or (3.8), the conditional bivariate copula can vary over the values

of the conditioning variables.

Assume that we observe n variables at T time points, or more generally

a random sample of size T . Let xi = (xi,1, . . . , xi,T ), i = 1, . . . , n, denote

the ith observation vector in the data set. First, we assume for simplicity

that the T observations of each variable are independent over time. This is

not a limiting assumption, since in the presence of temporal dependence,

univariate time-series models can be fitted to the margins and the analysis

could henceforth proceed with the residuals.

It is important to emphasize that unless the margins are known (which

they never are in practice), the estimation method presented below then

must rely on the normalized ranks of the data, or on a two-stage procedure
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where univariate margins have been estimated first and then transformed

to uniform. Normalized ranks are only approximately uniform and inde-

pendent, meaning that what is being maximized is a pseudo-likelihood. A

two-stage procedure is better if inferences on tail probabilities are needed;

the theory of estimating equations applied for the inference in this case.

3.7.1. Inference for a C-vine

In this subsection, we provide an algorithm for computing the log-likelihood

of a parametric C-vine where there is a parameter θj,i associated with the

bivariate copula Cj,j+i|1···j−1(uj , uj+i), for i = 1, . . . , n−j, j = 1, . . . , n−1.
Here j is the index for the tree level of the vine.

Further, let Θj,i be the set of parameters in the copula density

cj,j+i|1,...,j−1(Fj|1:2···j−1, Fj+i|1:2···j−1). Note that Fj+i|1:2···j−1 depends re-

cursively on θℓ,k, k = 1, . . . , j − ℓ and j + i− ℓ, ℓ = 1, . . . , j − 1.

For the canonical vine, the log-likelihood (for the copula parameters, as-

suming univariate margins have been estimated or transformed to uniform),

is given by

∑n−1
j=1

∑n−j
i=1

∑T
t=1 log

[
cj,j+i|1···j−1

{
Fj|j−1:1···j−2(xj,t|x(j−1)

t ),

Fj+i|j−1:1···j−2(xj+i,t|x(j−1)
t )

}] (3.13)

where x
(j−1)
t = (x1,t, . . . , xj−1,t). For each copula in the sum (3.13) there

is at least one parameter to be determined. The number depends on which

copula type is used. The log-likelihood must be numerically maximized

over all parameters. If parametric univariate margins are also estimated,

say, fi(·;αi), i = 1, . . . , n, then the added contribution to (3.13) is

n∑
i=1

T∑
t=1

log fi(xi,t;αi).

Algorithm 3.1 evaluates the likelihood for the canonical vine. The outer

for-loop corresponds to the outer sum in (3.13), corresponding to the tree

level of the vine. This for-loop consists in turn of two other for-loops.



August 26, 2010 14:4 World Scientific Review Volume - 9in x 6in HandbookVCM

28 R.M. Cooke, H. Joe and K. Aas

The first of these corresponds to the sum over i in (3.13). In the other,

the conditional distribution functions needed for the next run of the outer

for-loop are computed. In the algorithm,

Lj,j+i(y,v,Θ) =
T∑

t=1

log
{
cj,j+i|1···j−1(yt, vt,Θ)

}
, (3.14)

is the contribution to the log-likelihood from the copula cj,j+i|1···j−1.

Algorithm 3.1.

1: log-likelihood ← 0

2: for i← 1, . . . , n do

3: v0,i ← xi (vectorized over t)

4: end for

5: for j ← 1, . . . , n− 1 do (tree level j)

6: for i← 1, . . . , n− j do

7: log-likelihood ← log-likelihood + Lj,j+i(vj−1,1,vj−1,i+1,Θj,i)

8: end for

9: if j == n− 1 then

10: Stop

11: end if

12: for i← 1, . . . , n− j do

13: vj,i ← Cj+i|j:1···j−1(vj−1,i+1|vj−1,1; Θj,i) (vectorized over t)

14: end for

15: end for

Starting values of the parameters needed in the numerical maximisation

of the log-likelihood may be determined as follows:

(a) Estimate the parameters of the copulae in tree 1 from the original data.

(b) Compute observations (i.e., conditional distribution functions) for tree

2 using the copula parameters from tree 1 and the conditional distri-

butions.

(c) Estimate the parameters of the copulae in tree 2 using the observations

from (b).
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(d) Compute observations for tree 3 using the copula parameters at level 2

and the conditional distributions.

(e) Estimate the parameters of the copulae in tree 3 using the observations

from (d).

(f) etc.

Note that each estimation here is easy to perform, since the data set is only

of dimension 2 in each step.

3.7.2. Inference for a D-vine

Similar to the preceding subsection, for the D-vine, the log-likelihood is

given by

n−1∑
j=1

n−j∑
i=1

T∑
t=1

log
[
ci,i+j|i+1···i+j−1

{
Fi|i+j−1:i+1···i+j−2(xi,t|x(i,j−1

t ),

Fi+j|i+1:i+2···i+j−1(xi+j,t|x(i,j−1
t )

}]
,

where x
(i,j−1)
t = (xi+1,t, . . . , xi+j−1,t). The D-vine log-likelihood

must also be numerically optimised. Algorithm 3.2 evaluates

the likelihood. Θj,i is the set of parameters of copula density

ci,i+j|i+1,...,i+j−1(Fi|i+j−1:i+1···i+j−2, Fi+j|i+1:i+2···i+j−1). Note that the

algorithm requires 2(n − j − 1) conditional distributions at step j for

j = 1, . . . , n − 1. For j = 1, Ci|i+1, Ci+1|i, i = 1, . . . , n − 1 are all needed

except for C2|1 and Cn−1|n. A similar pattern holds for j > 1. In the

notation in Algorithm 3.2, v′j,i is used in the tree level j when the condi-

tional distribution is Ci|i+j:i+1···i+j−1 and vj,i is used when the conditional

distribution is Ci+j|i:i+1···i+j−1.

Similar to the C-vine, in the D-vine algorithm,

Li,i+j(y,v,Θ) =
T∑

t=1

log
{
ci,i+j|i+1···i+j−1(yt, vt,Θ)

}
is the contribution to the log-likelihood from the copula ci,i+j|i+1···i+j−1.

Algorithm 3.2.



August 26, 2010 14:4 World Scientific Review Volume - 9in x 6in HandbookVCM

30 R.M. Cooke, H. Joe and K. Aas

1: log-likelihood ← 0

2: for i← 1, . . . , n do

3: v0,i ← xi (vectorized over t)

4: end for

5: for i← 1, . . . , n− 1 do

6: log-likelihood ← log-likelihood+ Li,1+i(v0,i,v0,i+1,Θ1,i)

7: end for

8: v′
1,1 ← C1|2(v0,1|v0,2; Θ1,1) (vectorized over t; similarly below)

9: for k ← 1, . . . , n− 3 do

10: v1,k+1 ← Ck+2|k+1(v0,k+2|v0,k+1; Θ1,k+1)

11: v′
1,k+1 ← Ck+1|k+2(v0,k+1|v0,k+2; Θ1,k+1)

12: end for

13: v1,n−1 ← Cn|n−1(v0,n|v0,n−1; Θ1,n−1)

14: for j ← 2, . . . , n− 1 do (tree level j)

15: for i← 1, . . . , n− j do

16: log-likelihood ← log-likelihood+ Li,i+j(v
′
j−1,i,vj−1,i+1,Θj,i)

17: end for

18: if j == n− 1 then

19: Stop

20: end if

21: v′
j,1 ← C1|j+1:2···j(v

′
j−1,1|vj−1,2; Θj,1)

22: if n > 4 then

23: for i← 1, 2, . . . , n− j − 2 do

24: vj,i+1 ← Ci+j+1|i+1:i+2···i+j(vj−1,i+2|v′
j−1,i+1; Θj,i+1)

25: v′
j,i+1 ← Ci+1|i+j+1:i+2···i+j(v

′
j−1,i+1|vj−1,i+2; Θj,i+1)

26: end for

27: end if

28: vj,n−j ← Cn|n−j:n−j+1···n−1(vj−1,n−j+1|v′
j−1,n−j ; Θj,n−j)

29: end for

Note that, similar to other algorithms for C-vines and D-vines, the D-

vine algorithm for the likelihood calculation is more complicated than that
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for the C-vine. Other comments for the C-vine inference also apply to

D-vine inference.

3.8. Model Inference

Model inference relates to the problem of choosing a regular vine to model

a multivariate data set. If the conditional copulae are not constant, then

any regular vine can be used to describe any multivariate distribution. Fol-

lowing Joe23 , the motive underlying the vine copula approach to modeling

is to have a flexible low parameter set of models. In the first instance, this

has led to the restriction to constant conditional copulae. When a joint

distribution is defined by one particular regular vine with constant condi-

tional copulae, these copulae will not in general remain constant when a

different regular vine is used.

In Section 3.7 we described how to do inference for some specific pair-

copula decompositions. However, this is only a part of the full estimation

problem. Full inference for a pair-copula decomposition should in principle

consider (a) the selection of a regular vine, (b) the choice of (conditional)

copula types, and (c) the estimation of the copula parameters. For smaller

dimensions (say 3 and 4), one may estimate the parameters of all possible

factorizations using the procedure described in Section 3.7 and compare the

resulting log-likelihoods, Akaike information criterion (AIC) values, or out-

of-sample predictions. This is in practice infeasible for higher dimensions,

in view of Theorem 3.1. Heuristic strategies are required to choose which

decompositions to investigate. In this section, we review two approaches

that have been suggested for choosing the ‘best’ regular vine; the first is a

modified version of the sequential estimation procedure outlined in Section

3.7, while the other is based on the mutual information.

3.8.1. Sequential selection

In this approach, one first has to decide whether to use a C- or D-vine.

D-vines may be more appropriate than C-vines in situations where a dis-



August 26, 2010 14:4 World Scientific Review Volume - 9in x 6in HandbookVCM

32 R.M. Cooke, H. Joe and K. Aas

tinguished variable of maximal degree at each echelon cannot readily be

identified. The next step is to decide the order of the variables. One possi-

bility that has turned out to be promising in practice is to base this decision

on the strength of dependence between the variables, ordering the variables

such that the copulae to be fitted in tree 1 in the decomposition are those

associated with the strongest dependence.

Given data and an assumed pair-copula decomposition, it is necessary

to specify the parametric shape of each pair-copula. For example, for the

decomposition in Section 3.7 we need to decide which copula type to use

for C12(·, ·), C23(·, ·) and C13|2(·, ·). The pair-copulae do not have to belong

to the same family. The resulting multivariate distribution will be valid if

we choose for each pair of variables the parametric copula that best fits the

data. If we choose not to stay in one predefined class, we need a way of

determining which copula to use for each pair of (transformed) observations.

We propose to use a modified version of the sequential estimation procedure

outlined in Section 3.7:

(1) Determine which copula types to use in tree 1 by plotting the original

data, and checking for tail dependence or asymmetries (these are the

patterns that make the multivariate normal copula inadequate).

(2) Estimate the parameters of the selected copulae using the original data.

(3) Transform observations as required for tree 2, using the copula param-

eters from tree 1 and the conditional functions in Section 3.7.

(4) Determine which copula types to use in tree 2 in the same way as in

tree 1.

(5) Iterate.

The observations used to select the copulae at a specific level depend

on the specific pair-copulae chosen up-stream in the decomposition. This

selection mechanism does not guarantee a globally optimal fit. Having

determined the appropriate parametric shapes for each copulae, one may

use the procedures in Section 3.7 to estimate their parameters.
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3.8.2. Information Based Model Inference

A different approach to model learning inspired by Whittaker47 was devel-

oped in Kurowicka and Cooke33 , based on the factorization of the deter-

minant in Theorem 3.4. We sketch here a more general approach based

on the mutual information. Following Joe21,25 , the mutual information

is taken as a general measure of dependence. The strategy is to choose

a regular vine which captures the mutual information in a small number

of conditional bivariate terms, and to find a copula which renders these

mutual information values. Before describing the approach, we give some

definitions.

3.8.2.1. Definitions and Theorems

Definition 3.5 (Relative information, Mutual information). Let f

and g be densities on Rn with f absolutely continuous with respect to g;

• the relative information of f with respect to g is

I(f |g) =
∫
1

· · ·
∫
n

f(x1, . . . , xn) ln
(f(x1, . . . , xn)

g(x1, . . . , xn)

)
dx1 . . . dxn

• the mutual information of f is

MI(f) = I(f | Πn
i=ifi)

where fi is the ith univariate marginal density of f and

Πn
i=1f(x1, . . . , xn) is the independent distribution with univariate mar-

gins {fi}.

Relative information is also called the Kullback-Leibler information and

the directed divergence. The mutual information is also called the infor-

mation proper. The mutual information will be used to capture general

dependence in a set of multivariate data. We do not possess something

like an ‘empirical mutual information’. It must rather be estimated with

kernel estimators, as suggested in Joe21 . For some copulae, the mutual

information can be expressed in closed form33 :
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Theorem 3.5. Let g be the elliptical copula with correlation ρ, then the

mutual information of g is

1 + ln 2 + ln(π
√

1− ρ2 ).

Let h be the diagonal band copula with vertical bandwidth parameter 1− α,

then the mutual information of h is

− ln(2|α|(1− |α|)).

Note that the mutual information of the elliptical copula with zero corre-

lation is not zero, reflecting the fact that zero correlation in this case does

not entail independence.

Theorem 3.6 (Whittaker47). Let f be a joint normal density with mean

vector zero, then

MI(f) = −1
2 ln(D),

where D is the determinant of the correlation matrix.

For a bivariate normal, Theorem 3.6 says that MI(f) = −(1/2) ln(1−
ρ2). Substituting the appropriate conditional bivariate normal distributions

in the right hand side of (3.15) we find MI(f) = −1/2
∑

e∈E(V) ln(1 −
ρ2e1,e2;De

), which agrees with Theorem 3.4.

The determinant of a correlation matrix indicates the ‘amount of lin-

earity’ in a joint distribution. It takes the value 1 if the variables are

uncorrelated, and the value zero if there is a linear dependence. Theorem

3.6 suggest that

e−2MI(f),

is the appropriate generalization of the determinant to capture general de-

pendence.

Proposition 3.3. e−2MI(f) = 1 if and only if f = Πfi and e−2MI(f) = 0

if f has positive mass on a set of Πfi measure zero.
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Theorem 3.7 (Cooke9 , Bedford and Cooke5). Let g be an

n-dimensional density satisfying the bivariate vine specification (F,V, B)

with density g and one-dimensional marginal densities g1, . . . , gn; then

I
(
g |

n∏
i=1

gi

)
=

∑
e∈E(V)

EDe
I(ge1,e2|De

| ge1|De
· ge2|De

). (3.15)

If De is vacuous, then by definition

EDeI(ge1,e2|De
| ge1|De

· ge2|De
) = I(ge1,e2 | ge1 · ge2).

3.8.2.2. Strategy for model inference

Theorem 3.7 may be rewritten as

MI(f) =
∑

{i,j|K(ij)}∈V

bij;K(ij), (3.16)

where K(ij) is conditioning set for the node in V with conditioned set

{i, j}. The terms bij;K(ij) will depend on the regular vine which we choose

to represent the dependence structure, however the sum of these terms must

satisfy (3.16). We seek a regular vine for which the terms bij;K(ij) in (3.16)

are as ’spread out’ as possible. In other words, we wish to capture the

total dependence MI(f) in a small number of terms, with the remaining

terms being close to zero. This concept is made precise with the notion of

majorization39 .

Definition 3.6. Let x,y ∈ Rn be such that
∑n

i=1 xi =
∑n

i=1 yi; then x

majorizes y if for all k; k = 1, . . . , n

k∑
j=1

x(j) ≤
k∑

j=1

y(j), (3.17)

where x(1) ≤ · · · ≤ x(j) ≤ · · · ≤ x(n) are the increasing arrangement of the

components of x, and similarly for {y(j)} and y.

In view of (3.16) the model inference problem may be cast as the prob-

lem of finding a regular vine whose terms bij;K(ij) are non-dominated in



August 26, 2010 14:4 World Scientific Review Volume - 9in x 6in HandbookVCM

36 R.M. Cooke, H. Joe and K. Aas

the sense of majorization. In that case, setting the smallest mutual infor-

mations equal to zero will change the overall mutual information as little

as possible. Pairs of variables whose (conditional) mutual information is

zero, are (conditionally) independent. Finding non-dominated solutions

may be difficult, but a necessary condition for non-dominance can be found

by maximizing any Schur convex function.

Definition 3.7. A function ϕ : Rn → R is Schur convex if ϕ(x) ≥ ϕ(y)

whenever x majorizes y.

Schur convex functions have been studied extensively. A sufficient con-

dition for Schur convexity is given by Marshall and Olkin39 .

Proposition 3.4. If ϕ : Rk → R may be written as

ϕ(x) =
∑

φ(xi) with φ convex, then ϕ is Schur convex.

Vine Inference Strategy: The following strategy for model inference

suggests itself:

(1) Choose a Schur convex function ϕ : Rn(n−1)/2 → R;
(2) Find a regular vine V(n) whose vector bij;K(ij) maximizes ϕ;

(3) Set the mutual informations in V(n) equal to zero for which the terms

bij;K(ij) are smallest;

(4) Associate copulae with the nodes in the vine, such that the non-zero

mutual information values are preserved.

A different strategy for model inference is proposed in Chapter ??.

3.9. Applications

This section references applications in the wide sense, including uses of

vine-copula representations of multivariate distributions for mathematical

and modeling purposes, as well as applications to analysis of multivariate

data.
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3.9.1. Multivariate data analysis

Due to their high flexibility, yet simple structure, pair-copula construc-

tions/vines are becoming increasingly popular for constructing continu-

ous multivariate distributions. While built exclusively from pair-copulae,

they can model a wide range of complex dependencies. Lately, a num-

ber of publications on applications of pair-copula constructions have ap-

peared in the literature. Most of the publications treat financial ap-

plications1,2,8,11,12,19,40,45 , while Kolbjornsen and Stien43 present a non-

parametric petroleum related application of pair-copula constructions. For

more details on some of these applications, see the application chapters

(beginning with Chapter ??) of this book.

The studies of Berg and Aas1 and Fischer et al.12 also compare pair-

copula constructions with other multivariate models, e.g., n-dimensional

parametric copulae and hierarchical Archimedean constructions24 , and

conclude with the superiority of the pair-copula constructions. In Chapter

?? of this book, a short version of the first-mentioned paper is given.

Biller7 uses vine copulae for copula-based multivariate time-series input

models, and compares with Vector-Autoregressive-To-Anything (VARTA).

3.9.2. Non-parametric Bayesian Belief Nets

Bayesian Belief Nets10,20,44,46 (BBNs) are directed acyclic graphs. The

nodes of the graph represent univariate random variables, which can be

discrete or continuous, and the arcs represent directed influences. BBNs

provides a compact representation of high-dimensional uncertainty distri-

butions over a set of variables (X1, . . . , Xn) and encode the probability

density of these variables by specifying a set of conditional independence

statements in a form of an acyclic directed graph and a set of probability

functions. In their most popular form, BBNs were introduced in the 1980’s

as a knowledge representation formalism to encode and use the information

acquired from human experts in automated reasoning systems to perform

diagnostic and prediction44 .
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Until recently, most BBNs were discrete. Moreover, there were only two

ways of dealing with continuous BBNs. One was to discretize the continuous

variables and work with the corresponding discrete model, while the other

was to assume joint normality. Both these methods have serious drawbacks.

Therefore, non-parametrice BBNs (NPBBNs) were introduced in Kurow-

icka and Cooke32 and extended in Hanea16 . In the NPBBNs, nodes are

associated with arbitrary continuous invertible distributions and arcs with

(conditional) rank correlations that are realized by a chosen copula. No

joint distribution is assumed, which makes this BBN non-parametric. Non-

parametric BBNs have seen several applications to date, the most notable

is a very large model of civil aviation transport safety3 . There is a close

relationship between regular vines and NPBBNs. Chapter ?? in this book

provide some insights into the differences and similarities between the two

types of models.

In a BBN, the arcs of a directed graph can be associated with condi-

tional copula, where the conditioned variables are the source and sink of the

arc, and the conditioning variables are a subset of the other parents of the

sink node. These conditional copulae, together with the one-dimensional

marginal distributions and the conditional independence statements im-

plied by the BBN graph uniquely determine the joint distribution, and

every such specification is consistent32,33 . This requires a copula type for

which zero correlation implies independence. The proof pivots on repre-

senting the parents of a child node as a D-vine. When the number of non-

independent conditional copulae is not too large, BBNs provide a much

more perspicuous representation of the dependence structure than regular

vines. In a regular vine all edges must be drawn, even if the conditional

copula is independent.
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