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Introduction 
A vine is a graphical tool for labeling constraints in high-dimensional distributions. A regular 
vine is a special case for which all constraints are two-dimensional or conditional two-
dimensional. Regular vines generalize trees, and are themselves specializations of Cantor trees 
(Bedford and Cooke 2002) . Combined with bivariate copulae, regular vines have proven to be a 
flexible tool in high-dimensional dependence modeling. Copulae (Joe 1997, Nelson 2006) are 
multivariate distributions with uniform univariate margins. Representing a joint distribution 
as univariate margins plus copulae allows us to separate the problems of estimating univariate 
distributions from problems of estimating dependence. This is handy in as much as univariate 
distributions in many cases can be adequately estimated from data, whereas dependence 
information is rough hewn, involving summary indicators and judgment (Kraan and Cooke 2000, 
Ale et al 2009). Although the number of parametric multivariate copula families with flexible 
dependence is limited, there are many parametric families of bivariate copulae. Regular vines 
owe their increasing popularity to the fact that they leverage from bivariate copulae and enable 
extensions to arbitrary dimensions. Sampling theory and estimation theory for regular vines are 
well developed (Kurowicka and Cooke 2007, Aas et al 2009), and model inference has left the 
post (Kurowicka and Cook 2006, Kurowicka et al 2007, Aas et al 2009). Regular vines have 
proven useful in other problems such as (constrained) sampling of correlation matrices  
Lewandowski et al 2009, Kurowicka 2014), building non-parametric continuous Bayesian belief 
nets (Hanea 2008, Hanea et al 2010). Software for estimating and sampling regular vines, 
literature and event notices are available at http://www.statistics.ma.tum.de/en/research/vine-
copulamodels. Recent books are (Kurowicka and Joe 2010 and Joe 2014).  
 
Historical Origins 
The first regular vine, avant la lettre, was introduced by (Joe 1994). The motive was to extend 
bivariate extreme value copula to higher dimensions.  To this end he introduced what would later 
be called the D-vine. Joe  (Joe 1996) was interested in a class of n-variate distributions with 
given one dimensional margins, and n(n − 1) dependence parameters, whereby n − 1 parameters 
correspond to bivariate margins, and the others correspond to conditional bivariate margins. In 
the case of multivariate normal distributions, the parameters would be n−1 correlations and 
(n−1)(n−2)/2 partial correlations, which were noted to be algebraically independent in (−1, 1). 
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An entirely different motivation underlay the first formal definition of vines in (Cooke 1997). 
Uncertainty analyses of large risk models, such as those undertaken for the European Union and 
the US Nuclear Regulatory Commission for accidents at nuclear power plants, involve 
quantifying and propagating uncertainty over hundreds of variables (Goossens et al 2000, Harper 
et al 1994). Dependence information for such studies had been captured with Markov trees, 
(Whittaker, 1990) which are trees constructed with nodes as univariate random variables and 
edges as bivariate copulae. For n variables, there are at most n − 1 edges for which dependence 
can be specified. New techniques at that time involved obtaining uncertainty distributions on 
modeling parameters by eliciting experts’ uncertainties on other variables which are predicted by 
the models. These uncertainty distributions are pulled back onto the model’s parameters by a 
process known as probabilistic inversion (Goossens et al 2000,  Kurowicka and Cooke 2006) 
The resulting distributions often displayed a dependence structure that could not be captured as a 
Markov tree. Graphical models called vines were introduced in (Cooke 1997 , Bedford and 
Cooke 2002 and Kurowicka and Cooke 2006).   
 
Regular Vines (R-Vines) 
A vine V on n variables is a nested set of connected trees where the edges in the first tree are the 
nodes of the second tree, the edges of the second tree are the nodes of the third tree, etc. A 
regular vine  or R-vine on n variables is a vine in which two edges in tree j are joined by an edge 
in tree j +1 only if these edges share a common node, j = 1, . . . , n−2. The nodes in the first tree 
are  univariate random variables. The edges are constraints or conditional constraints explained 
as follows. 
 
Recall that an edge in a tree is an unordered set of two nodes.  Each edge in a vine is associated 
with a constraint set, being the set of variables (nodes in first tree) reachable by the set 
membership relation. For each edge, the constraint set is the union of  the constraint sets of the 
edge's two members called its component constraint sets  (for an edge in the first tree, the 
component  constraint sets are empty).  The constraint associated with each edge is now the 
symmetric difference of its component constraint sets conditional on the intersection of its 
constraint sets. One can show that for a regular vine, the symmetric difference of the component 
constraint sets is always a doubleton and that each pair of variables occurs exactly once as 
constrained variables. In other words, all constraints are bivariate or conditional bivariate. 
 
The degree of a node is the number of edges attaching to it. The simplest regular vines have the 
simplest degree structure; the D-Vine assigns every node degree 1 or 2, the C-Vine assigns one 
node in each tree the maximal degree. The following figure shows a C and D vine on 4 variables 
with constraints, and a regular vine on five variables which is neither. For larger vines, other 
graphical representations are employed.  
 
The number of regular vines on n variables grows rapidly in n: there 2n-3 ways of extending a 
regular vine with one additional variable, and there are n(n-1)(n-2)!2(n-2)(n-3)/2/2  labeled regular 
vines on n variables (Morales et al 2008, Cooke et al 2015). 
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      D-Vine on 4 variables                                      C-Vine on 4 variables 

 
 Regular vine on 5 variables 
 
The constraints on a regular vine may be associated with partial correlations or with conditional 
bivariate copula.  In the former case, we speak of a partial correlation vine, and in the latter case 
of a vine copula. 
 
Partial Correlation Vines 
(Bedford and Cooke 2002) show that any assignment of values in the open interval (-1, 1) to the 
edges in any partial correlation vine is consistent, the assignments are algebraically independent, 
and there is a one-to-one relation between all such assignments and the set of correlation 
matrices. In other words, partial correlation vines provide an algebraically independent 
parametrization of the set of correlation matrices, whose terms have an intuitive interpretation.  
Moreover, the determinant of the correlation matrix is the product over the edges of  
(1 - 2

ik ; D(ik)), where ik ; D(ik)  is the partial correlation assigned to the edge with conditioned 
variables i,k  and conditioning variables D(ik). (A similar decomposition characterizes the mutual 
information, which generalizes the determinant of the correlation matrix, (Cooke 1997)).  These 
features have been used in constrained sampling of correlation matrices  (Lewandowski et al 
2009), building non-parametric continuous Bayesian belief nets (Hanea 2008, Hanea et al 2010) 
and addressing problem or extending partially specified matrices to positive definite matrices 
(Kurowicka and Cooke 2003, 2006a). 
 
Vine Copulae or Pair-Copula Construction 
Under suitable differentiability conditions, any multivariate density f1…n on n variables, with 
univariate densities  f1,…fn, may be represented in closed form as a product of univariate 
densities and (conditional) copula densities on any R-vine V (Bedford and Cooke 2001):   
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f1…n = f1…fn e  E(V) ce1,e2 | De (Fe1 | De,  Fe2 | De) 

where edges e = (e1, e2) with conditioning set De are in the edge set E(V) of any regular vine V. 
The conditional copula densities ce1,e2 | De in this representation depend on the cumulative 
conditional distribution functions of the conditioned variables, Fe1 | De,  Fe2 | De, and, potentially, 
on the values of the conditioning variables. When the conditional copulas do not depend on the 
values of the conditioning variables, one speaks of the simplifying assumption of constant 
conditional copulas. Though most applications invoke this assumption, exploring  the modeling 
freedom gained by discharging this assumption has begun (Hobaek-Haff et al 2010, Acar et al 
2012, Stoeber et al 2013) . When bivariate Gaussian copulas are assigned to edges of a vine, then 
the resulting multivariate density is the Gaussian but the parametrization is a partial correlation 
vine rather than a correlation matrix. 

The vine pair-copula construction, based on the sequential mixing of conditional distributions 
has been adapted to discrete variables and mixed discrete/continuous response (Panagiotelis et al. 
2012 and Stoeber et al 2015). Also factor copulae, where latent variables have been added to the 
vine, have been proposed (e.g., Krupskii and Joe 2013). 

Vine researchers have developed algorithms for maximum likelihood estimation and simulation 
of vine copulae, finding truncated vines that summarize the dependence in the data, enumerating 
through vines, etc. Chapter 6 of Joe (2014) summarizes these algorithms in pseudocode. 
 
Parameter Estimation 
For parametric vine copulae, with a bivariate copula family on each edge of a vine, algorithms 
and software are available for maximum likelihood estimation of copula parameters, assuming 
data have been transformed to uniform scores after fitting univariate margins. There are also 
available algorithms (e.g, Brechmann et al, 2012) for choosing good truncated regular vines 
where edges of high-level trees are taken as conditional independence. These algorithms assign 
variables with strong dependence or strong conditional dependence to low order trees in order 
that higher order trees have weak or zero conditional independence. Hence parsimonious 
truncated vines are obtained for a large number of variables. Software with a user interface in R 
are available (e.g., Schepsmeier et al 2014). 
 
Sampling and Conditionalizing 
A sampling order for n variables is a sequence of conditional densities in which the first density 
is unconditional, and the densities for other variables are conditioned on the preceding variables 
in the ordering. A sampling order is implied by a regular-vine representation of the density if 
each conditional density can be written as a product of copula densities in the vine and one 
dimensional margins (Cooke et al 2015). 
 
An implied sampling order is generated by a nested sequence of subvines where each sub-vine in 
the sequence contains one new variable not present in the preceding sub-vine. For any regular 
vine on n variables there are 2n−1 implied sampling orders. Implied sampling orders are a small 
subset of all n! orders but they greatly facilitate sampling. Conditionalizing a regular vine on 
values of an arbitrary subset of variables is a complex operation. However, conditionalizing on 
an initial sequence of an implied sampling order is trivial, one simply plugs in the initial 



5 
 

conditional values and proceeds with the sampling. A general theory of conditionalization does 
not exist at present. 
 
Websites 
http://www. vine-copula.org  
http://www.statistics.ma.tum.de/en/research/vine-copula-models/ 
http://www.birs.ca/events/2013/5-day-workshops/13w5146 
http://www.cias-cufe.org/dependence/ 
http://rogermcooke.net/ 
http://www.ewi.tudelft.nl/en/the-faculty/departments/applied-mathematics/applied-probability/education/risk-
analysis/ 
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