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Abstract

A new graphical model, called a vine, for dependent random variables is
introduced. Vines generalize the Markov trees often used in modelling high-
dimensional distributions. They differ from Markov trees and Bayesian belief
nets in that the concept of conditional independence is weakened to allow for
various forms of conditional dependence.

Vines can be used to specify multivariate distributions in a straightfor-
ward way by specifying various marginal distributions and the ways in which
these marginals are to be coupled. Such distributions have applications in
uncertainty analysis where the objective is to determine the sensitivity of a
model output with respect to the uncertainty in unknown parameters. Ex-
pert information is frequently elicited to determine some quantitative char-
acteristics of the distribution such as (rank) correlations. We show that it
is simple to construct a minimum information vine distribution, given such
expert information. Sampling from minimum information distributions with
given marginals and (conditional) rank correlations specified on a vine can
be performed almost as fast as independent sampling. A special case of the
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Fig. 1. A belief net, a Markov tree, and a vine

vine construction generalizes work of Joe and allows the construction of a
multivariate normal distribution by specifying a set of partial correlations on
which there are no restrictions except the obvious one that a correlation lies
between −1 and 1.

1. Introduction Graphical dependency models have gained popular-
ity in recent years following the generalization of the simple Markov trees to
belief networks and influence diagrams. The main applications of these graph-
ical models has been in problems of Bayesian inference with an emphasis on
Bayesian learning (Markov trees and belief nets), and in decision problems
(influence diagrams). Markov trees have also been used within the area of
uncertainty analysis to build high-dimensional dependent distributions.

Within uncertainty analysis, the problem of easily specifying a coupling
between two groups of random variables is prominent. Often, only some infor-
mation about marginals is given (for example, some quantiles of a marginal
distribution); extra information has to be obtained from experts, frequently
in the form of correlation coefficients. In [3, 20, 21, 4], Markov trees are used
to specify distributions used in uncertainty analysis (alternative approaches
are found in [10, 11]). They are suitable for rapid Monte Carlo simulation,
thus reducing the computational burden of sampling from a high dimensional
distribution. The bivariate joint distributions required to determine such a
model exactly are chosen to have minimum information with respect to the
independent distribution with the same marginals, under the conditions of
having the correct marginals and the given rank correlation specified by an
expert. The use of the minimum information principle to motivate the use of
a distribution with given correlation coefficient fits into the long-standing tra-
dition established by Jaynes (see [12, 9]) in which subjective distributions are
specified using moment information from an expert by maximizing entropy.

In this paper we show that the conditional independence property used in
Markov trees and belief nets can be weakened without compromising ease of
simulation. A new class of models called vines is introduced in which an expert
can give input in terms of, for example, conditional rank correlations. Figure
1 shows examples of (a) a belief net, (b) a Markov tree, and (c) a vine on three
elements. In the case of the belief net and the Markov tree, variables 1 and 3
are conditionally independent given variable 2. In the vine, in contrast, they
are conditionally dependent, with a conditional correlation coefficient that
depends on the value taken by variable 2. An important aspect is the ease
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with which the required information can be supplied by the expert - there
are no joint restrictions on the correlations given (by contrast, for product
moment correlations, the correlation matrix must always be positive definite).
Our main result shows precisely how to obtain a minimum information vine
distribution satisfying all the specifications of the expert.

Besides introducing the notion of a vine as a graphical model for condi-
tional dependence, the paper shows how to construct joint distributions satis-
fying the conditional dependence specifications in a vine. The major element
of this construction is the inductive generation of multivariate distributions
with given marginals.

Sections 2 and 3 collect results for bivariate tree specifications. Section 4
introduces a more general type of specification in which conditional marginal
distributions can be stipulated or qualified. The tree structure for bivariate
constraints generalizes to a “vine” structure for conditional bivariate con-
straints. A vine is a sequence of trees such that the edges of tree Ti are
the nodes of Ti+1. Minimum information results show that complicated con-
ditional independence properties can be obtained from vine specifications
in combination with information minimization. Sampling from minimum in-
formation distributions given marginal and (conditional) rank correlations
specified on a vine can be performed at a speed comparable to independent
sampling.

A vine is a convenient tool with a graphical representation that makes
it easy to describe which conditional specifications are being made for the
joint distribution. The existence of distributions satisfying these constraints
is proven more easily by generalizing the construction to Cantor trees, as is
done in Section 5. The existence of joint distributions satisfying Cantor tree
specifications is shown, and a formula for the information of such a distri-
bution (relative to the independent distribution with the same marginals)
is proven. This section also contains a particular way of constructing joint
distributions from given, overlapping, marginals. Section 6 shows that the
regular vines are special cases of Cantor tree constructions, and that Cantor
trees can be represented graphically by vines. Finally, Section 7 gives specific
results for rank and partial correlation specifications. It is shown that for
these hierarchical constructions there are no restrictions on rank or partial
correlation specifications, except for the obvious one that correlation must be
between −1 and 1. In particular, a joint normal distribution can be specified
without worrying about positive definiteness considerations.

Sections 2 to 4 are based on, or developed directly from [5].
The general topic addressed in this paper, that of specifying a distribution

with given marginals, has been addressed elsewhere. In particular, Li et al [18,
19] develop alternative ways of coupling distibutions on overlapping sets of
variables. Joe [13, 14] gives a number of methods for generating distributions
with given marginals. In particular the construction of Section 4.5 in [14]
corresponds to the most simple type of vine as shown in Figure 2. In the
appendix to [13] he uses this same type of simple vine structure to specify a
multivariate normal distribution - a construction that we call the standard
vine, and that we generalize. Other authors have looked at alternative ways
of specifying multivariate distributions. For example [1] gives a survey of
methods in which conditional distributions are used to define, or at least
partially specify, the multivariate distribution.
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2. Definitions and Preliminaries We consider continuous prob-
ability distributions F on R

n equipped with the Borel sigma algebra B.
The one-dimensional marginal distribution functions of F are denoted Fi

(1 ≤ i ≤ n), the bivariate distribution functions are Fij (1 ≤ i �= j ≤ n), and
Fi|j denotes the distribution of variable i conditional on j. The same subscript
conventions apply to densities f and laws µ. Whenever we use the relative
information integral, the absolute continuity condition mentioned below is
assumed to hold.

Definition 1 relative information.

Let ν and µ be probability measures on a probability space such that ν is
absolutely continuous with respect to µ with Radon-Nikodym derivative dν

dµ
,

then the relative information or Kullback-Liebler divergence, I(ν|µ) of ν with
respect to µ is

I(ν|µ) =

∫
log(

dν

dµ
(x)) dν(x) .

When ν is not absolutely continuous with respect to µ we define I(ν|µ) = ∞.

In this paper we shall construct distributions that are as “independent”
as possible given the constraints. Hence we will usually consider the rela-
tive information of a multivariate distribution with respect to the unique
independent multivariate distribution having the same marginals.

Relative information I(ν|µ) can be interpreted as measuring the degree
of “uniformness” of ν (with respect to µ). The relative information is always
non-negative and equals zero if and only if µ = ν. See for example [17] and
[8].

Definition 2 rank or Spearman correlation.

The rank correlation r(X1, X2) of two random variables X1 and X2 with joint
probability distribution F12 and marginal probability distributions F1 and F2

respectively, is given by

r(X1, X2) = ρ(F1(X1), F2(X2)).

Here ρ(U, V ) denotes the ordinary product moment correlation given by

ρ(U, V ) = cov(U, V )/
√

var(U)var(V ),

and defined to be 0 if either U or V is constant. When Z is a random vector
we can consider the conditional product moment correlation of U and V ,
ρZ(U, V ), which is simply the product moment correlation of the variables
when conditioned on Z. The conditional rank correlation of X1 and X2 given
Z is

rZ(X1, X2) = r(X̃1, X̃2),

where (X̃1, X̃2) has the distribution of (X1, X2) conditioned on Z.

The rank-correlation has some important advantages over the ordinary
product-moment correlation:

• The rank correlation always exists.
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• Independent of the marginal distributions FX and FY it can take any
value in the interval [−1, 1] whereas the product-moment correlation
can only take values in a sub-interval I ⊂ [−1, 1] where I depends on
the marginal distributions FX and FY ,

• It is invariant under monotone increasing transformations of X and Y .

These properties make the rank correlation a suitable measure for devel-
oping canonical methods and techniques that are independent of marginal
probability distributions.

The rank correlation is actually a measure of the dependence of the copula
between two random variables.

Definition 3 copula. The copula of two continuous random variables
X and Y is the joint distribution of (FX(X), FY (Y )).

Clearly, the copula of (X, Y ) is a distribution on [0, 1]2 with uniform
marginals. More generally, we call any Borel probability measure µ a copula
if µ([0, 1]2) = 1 and µ has uniform marginals.

An example of a copula is the minimum information copula with given
rank correlation. This copula has minimum information with respect to the
uniform distribution on the square, amongst all those copulae with the given
rank correlation. The functional form of the density and an algorithm for
approximating it arbitrarily closely are described in [22]. A second example
is the normal copula with correlation ρ, obtained by taking (X, Y ) to be joint
normal with product moment correlation ρ in the definition of a copula given
above.

Definition 4 tree. A tree T = {N, E} is an acyclic graph, where N is
its set of nodes, and E is its set of edges (unordered pairs of nodes).

Note that we do not assume that T is connected. We begin by defining a
tree structure that allows us to specify certain characteristics of a probability
distribution.

Definition 5 bivariate tree specification.

(F,T,B) is an n-dimensional bivariate tree specification if:

1. F = (F1, . . . , Fn) is a vector of one-dimensional distribution functions,

2. T is a tree with nodes N = {1, . . . , n} and edges E

3. B = {B(i, j)|{i, j} ∈ E}, where B(i, j) is a subset of the class of copula
distribution functions.

Definition 6 tree dependence. 1. A multivariate probability dis-
tribution G on R

n satisfies, or realizes, a bivariate tree specification
(F , T, B) if the marginal distributions of G are Fi (1 ≤ i ≤ n) and if for
any {i, j} ∈ E the bivariate copula Cij of G is an element of B(i, j).

2. G has tree dependence of order M for T if whenever m ≥ M and i, j ∈ N
are joined by edges {i, k1}, . . . , {km, j} ∈ E we have that Xi and Xj are
conditionally independent given any M of k�, 1 ≤ � ≤ m; and if Xi and
Xj are independent when there are no such k1, . . . , km (i, j ∈ N).
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3. G has Markov tree dependence for T if G has tree dependence order M
for every M > 0.

One approach, implemented for example in [16], is to take B(i, j) to be
the family of all copulae with a given rank correlation. This gives a rank
correlation tree specification.

Definition 7 rank correlation tree specification.

(F, T, t) is an n-dimensional rank correlation tree specification if:

1. F = (F1, . . . , Fn) is a vector of one-dimensional distribution functions,

2. T is a tree with nodes N = {1, . . . , n} and edges E.

3. The rank correlations of the bivariate distributions Fij , {i, j} ∈ E, are
specified by t = {tij |tij ∈ [−1, 1], {i, j} ∈ E, tij = tji, tii = 1}.

The following three results are proved in [21]. The first is similar to results
about influence diagrams [24], the second uses a construction of [6].

Theorem 1. Let (F , T, B) be a n-dimensional bivariate tree specification
that specifies the marginal densities fi, 1 ≤ i ≤ n and the bivariate densities
fij, {i, j} ∈ E the set of edges of T . Then there is a unique density g on R

n

with marginals f1, . . . , fn and bivariate marginals fij for {i, j} ∈ E such that
g has Markov tree dependence described by T. The density g is given by

g(x1, . . . , xn) =

∏
(i,j)∈E fij(xi, xj)∏
i∈N (fi(xi))d(i)−1

,(2.1)

where d(i) denotes the degree of node i; that is, the number of neighbours of
i in the tree T .

The following theorem states that a rank correlation tree specification is
always consistent.

Theorem 2.

Let (F , T, t) be an n-dimensional rank correlation tree specification, then
there exists a joint probability distribution G realizing (F , T, t) with G Markov
tree dependent.

Theorem 2 would not hold if we replaced rank correlations with product
moment correlations in Definition 7. For arbitrary continuous and invert-
ible one-dimensional distributions and an arbitrary ρ ∈ [−1, 1], there need
not exist a joint distribution having these one-dimensional distributions as
marginals with product moment correlation ρ.

The multivariate probability distribution function FX of any random vec-
tor X can be obtained as the n-dimensional marginal distribution of a real-
ization of a bivariate tree specification of an enlarged vector (X,L).

Theorem 3. Given a vector of random variables X = (X1, . . . , Xn) with
joint probability distribution FX(x), there exists an (n+1)-dimensional bivari-
ate tree specification (G, T, B) on random variables (Z1, . . . , Zn, L) whose dis-
tribution GZ,L is Markov tree dependent, such that

∫
GZ,L(x, �) d� = FX(x).
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3. Relative information of Markov Tree Dependent Distri-
butions From Theorem 1 it follows by a straightforward calculation that
for the Markov tree dependent density g given by the theorem,

I(g|
∏
i∈N

fi) =
∑

{i,j}∈E

I(fij |fifj) .

If the bivariate tree specification does not completely specify the bivariate
marginals fij , {i, j} ∈ E, then more than one Markov tree dependent re-
alization may be possible. In this case relative information with respect to
the product distribution

∏
i∈N fi is minimized, within the class of Markov

tree dependent realizations, by minimizing each bivariate relative information
I(fij |fifj), {i, j} ∈ E.

In this section we show that Markov tree dependent distributions are op-
timal realizations of bivariate tree specifications in the sense of minimizing
relative information with respect to the independent distribution with the
same marginals. In other words, we show that a minimal information re-
alization of a bivariate tree specification has Markov tree dependence. This
follows from a very general result (Theorem 4) stating that relative minimum
information distributions (relative to independent distributions), subject to a
marginal constraint on a subset of variables, have a conditional independence
property given that subset.

To prove this theorem, we first formulate three lemmas. We assume in
this analysis that the distributions have densities. Throughout this section,
Z, Y and X are finite dimensional random vectors having no components
in common. To recall notation, gX,Y,Z(x, y, z) is a density with marginal
densities gX(x), gY (y), gZ(z), and bivariate marginals gX,Y , gX,Z and gY,Z .
We write gX|Y for the conditional density of X given Y .

Lemma 1. Let gX,Y,Z be a density and define

g̃X,Y,Z(x, y, z) = gX(x)gY |X(x, y)gZ|X(x, z)

Then g̃X,Y,Z satisfies

g̃X = gX , g̃Y = gY , g̃Z = gZ ,

g̃X,Y = gX,Y , g̃X,Z = gX,Z

and makes Y and Z conditionally independent given X.

Proof: The proof is a straightforward calculation. �

Lemma 2. With g as above, let pX(x) be a density. Then∫
gY (y)I(gX|Y |pX) dy ≥ I(gX |pX),

with equality holding if and only if X and Y are independent under g; that is,
if gX|Y (x, y) = gX(x).
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Proof: By definition,∫
gY (y)I(gX|Y |pX) dy ≥ I(gX |pX)

is equivalent to∫ ∫
gY (y)gX|Y (x, y) log

gX|Y (x, y)

pX(x)
dxdy ≥

∫
gX(x) log

gX(x)

pX(x)
dx

and hence to∫ ∫
gX,Y (x, y) log gX|Y (x, y) dxdy ≥

∫ ∫
gX,Y (x, y) log gX(x) dxdy .

This can be rewritten as∫ ∫
gX,Y (x, y) log

gX|Y (x, y)

gX(x)
dxdy ≥ 0

or equivalently ∫ ∫
gX,Y (x, y) log

gX,Y (x, y)

gX(x)gY (y)
dxdy ≥ 0 .(3.2)

The left side of the last inequality equals I(gX,Y |gXgY ). Inequality 3.2 always
holds and it holds with equality if and only if gX,Y = gXgY (see [17]). �

Remark: The quantity on the left side of Equation 3.2 is also called mutual
information.

Lemma 3. Let gX,Y,Z(x, y, z) and g̃X,Y,Z(x, y, z) be two probability den-
sities defined as in Lemma 1. Then

i) I(gX,Y,Z |gXgY gZ) ≥ I(g̃X,Y,Z |gXgY gZ) ,

ii) I(g̃X,Y,Z |gXgY gZ) = I(gX,Y |gXgY ) + I(gX,Z |gXgZ) .

Equality holds in (i) if and only if g = g̃.

Proof: By definition we have

I(gX,Y,Z |gXgY gZ) =

∫ ∫ ∫
gX,Y,Z(x, y, z) log

gX,Y,Z(x, y, z)

gX(x)gY (y)gZ(z)
dxdydz

which by conditionalization is equivalent with∫ ∫ ∫
gX,Y,Z(x, y, z) log

gX,Y (x, y)gZ|X,Y (x, y, z)

gX(x)gY (y)gZ(z)
dxdydz =

= I(gXY |gX , gY ) +

∫ ∫ ∫
gX,Y,Z(x, y, z) log

gZ|X,Y (x, y, z)

gZ(z)
dxdydz.

The second term can be written as∫ ∫ ∫
gX,Y (x, y)gZ|XY (z) log

gZ|X,Y (x, y, z)

gZ(z)
dzdxdy =

=

∫ ∫
gX,Y (x, y)I(gZ|XY |gZ)dxdy =

=

∫
gX

∫
gY |X(x, y)I(gZ|XY |gZ)dydx ≥

∫
gXI(gZ|X |gZ) dx =

=

∫ ∫
gXgZ|X log

gZ|X(z)gX(x)

gZ(z) gX(x)
dzdx = I(gXZ |gX gZ)
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where Lemma 2 is used for the inequality. Hence

I(gX,Y,Z |gXgY gZ) ≥ I(gXY |gXgY ) + I(gXZ |gXgZ)(3.3)

with equality if and only if Z and Y are independent given X, which holds
for g̃ (Lemma 1). �

We may now formulate

Theorem 4. Assume that gX,Y is a probability density with marginals
fX and fY that uniquely minimizes I(gX,Y |fXfY ) within the class of dis-
tributions B(X, Y ) Assume similarly that gX,Z is a probability density with
marginals fX and fZ that uniquely minimizes I(gX,Z |fXfZ) within the class of
distributions B(X, Z). Then gX,Y,Z := gY |XgZ|XgX is the unique probability
density with marginals fX , fY and fZ that minimizes I(gX,Y,Z |fXfY fZ) with
marginals gX,Y and gX,Z constrained to be members of B(X, Y ) and B(X, Z)
respectively.

Proof: Let fX,Y,Z be a joint probability density with marginals fX , fY ,
fZ , whose two dimensional marginals satisfy the constraints B(X, Y ) and
B(X, Z). Assume that f satisfies I(fX,Y,Z |fXfY fZ) ≤ I(gX,Y,Z |fXfY fZ).
Then by Lemma 1 and Lemma 3(i) we may assume without loss of generality
that fX,Y,Z = f̃X,Y,Z := fXY fZ|X . By Lemma 3(ii) we have

I(f̃X,Y,Z |fXfY fZ) = I(fX,Y |fXfY ) + I(fX,Z |fXfZ).

But

I(fX,Y |fXfY ) + I(fX,Z |fXfZ) ≥ I(gX,Y |fXfY ) + I(gX,Z |fXfZ) =

= I(gX,Y,Z |fXfY fZ) ≥

≥ I(f̃X,Y,Z |fXfY fZ) =

= I(fX,Y |fXfY ) + I(fX,Z |fXfZ).

By the uniqueness of gX,Z and gX,Y , this entails gX,Y,Z = fX,Y,Z . �

Corollary 1. Let (F , T, B) be a bivariate tree specification. For each
(i, j) ∈ E, let there be a unique density g(xi, xj) which has minimum infor-
mation relative to the product measure fifj under the constraint B(i, j). Then
the unique density with minimum information relative to the product density∏

i∈N fi under constraints B(i, j), {i, j} ∈ E is obtained by taking the unique
Markov tree dependent distribution with bivariate marginals g(xi, xj), for each
{i, j} ∈ E.

Proof: Using the notation of Theorem 1, the proof is by induction on n.
For n = 2 there is nothing to prove. For n = 3 the result follows from
Lemma 3(ii).
Assume now that we have a tree with n+1 nodes. Assume also that there is a
node with degree 1 (otherwise all nodes have degree 0, there are no constraints
and the result holds trivially). Let Z be the variable corresponding to this
node, X the variable corresponding to its unique neighbour, and Y the vector
of variables corresponding to the other n−1 nodes. Applying the Lemma 3(i)
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we see that the information is minimized by the distribution making Y and
Z conditionally independent given X. Since by induction the marginal gXY is
minimally informative, Lemma 3(ii) implies that gXZ also must be minimally
informative as claimed. �

If B(i, j) fully specifies g(xi, xj) for {i, j} ∈ E, then the above corollary says
that there is a unique minimum information density given (F , T, B) and this
density is Markov tree dependent.

4. Regular vines Tree specifications are limited by the maximal num-
ber of edges in the tree. For trees with n nodes, there are at most n−1 edges.
This means we can constrain at most n− 1 bivariate marginals. By compar-
ison there are n(n − 1)/2 potentially distinct off-diagonal terms in a (rank)
correlation matrix. We seek a more general structure for partially specifying
joint distributions and obtaining minimal information results. For example,
consider a density in three dimensions. In addition to specifying marginals
g1, g2, and g3, and rank correlations r(X1, X2), r(X2, X3), we also specify the
conditional rank correlation of X1, and X3 as a function of the value taken
by X2:

rx2 = r(X1, X3|X2 = x2).

For each value of X2 we can specify a conditional rank correlation in [−1, 1]
and find the minimal information conditional distribution, provided the con-
ditional marginals are not degenerate 1. This will be called a regular vine
specification, and will be defined presently. Sampling such distributions on a
computer is easily implemented; we simply use the minimal information dis-
tribution under a rank correlation constraint, but with the marginals condi-
tional on X2. Figures 2 and 3 show regular vine specifications on 5 variables.
Figure 2 corresponds to the structure studied by Joe [13]. Each edge of a
regular vine is associated with a restriction on the bivariate or conditional
bivariate distribution shown adjacent to the edge.
Note that the bottom level restrictions on the bivariate marginals form a tree
T1 with nodes 1, . . . , 5. The next level forms a tree T2 whose nodes are the
edges E1 of T1, and so on. There is no loss of generality in assuming that
the edges Ei, i = 1, . . . , n − 1 have maximal cardinality n − i, as we may
“remove” any edge by associating with it the vacuous restriction.
A regular vine is a special case of a more general object called a vine. A vine
is used to place constraints on a multivariate distribution in a similar way
to that in which directed acyclic graphs are used to constrain multivariate
distributions in the theory of Bayesian belief nets. In this section we define
the notion of a regular vine. The more general concept of a vine will be
developed in the next section, together with existence and uniqueness results
for distributions satisfying vine constraints.

Definition 8 regular vine, vine. V is a vine on n elements if

1. V = (T1, ..., Tm)

2. T1 is a tree with nodes N1 = {1, . . . , n} and a set of edges denoted E1,

1We ignore measurability constraints here, but return to discuss them later.
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Fig. 2. A regular vine

Fig. 3. Another regular vine
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3. For i = 2, . . . , m, Ti is a tree with nodes Ni ⊂ N1 ∪ E1 ∪ E2 . . . ∪ Ei−1

and edge set Ei.

A vine V is a regular vine on n elements if

1. m = n,

2. Ti is a connected tree with edge set Ei and node set Ni = Ei−1, with
#Ni = n − (i − 1) for i = 1, . . . , n, where #Ni is the cardinality of the
set Ni.

3. The proximity condition holds: For i = 2, . . . , n − 1, if a = {a1, a2}
and b = {b1, b2} are two nodes in Ni connected by an edge (recall
a1, a2, b1, b2 ∈ Ni−1), then #a ∩ b = 1.

It will be convenient to introduce some labeling corresponding to the edges
and nodes in a vine, in order to specify the constraints. In order to do this
we first introduce a piece of notation to indicate which nodes of a tree with
a lower index can be reached from a particular edge.

The edge set Ei consists of edges ei ∈ Ei which are themselves unordered
pairs of nodes in Ni. Since Ni ⊂ E0 ∪ E1 ∪ E2 . . . ∪ Ei−1 (where we write
N1 = E0 for convenience), there exist ej ∈ Ej and ek ∈ Ek (j, k < i) for
which

ei = {ej , ek}.

Definition 9. For any ei ∈ Ei the complete union of ei is the subset

Aei = {j ∈ N1 = E0|∃1 ≤ i1 ≤ i2 ≤ . . . ≤ ir = i, and eik ∈ Eik , (k = 1, . . . , r),

with j ∈ ei1 , eik ∈ eik+1(k = 1, . . . , r − 1)}.

For a regular vine and an edge ei ∈ Ei the j-fold union of ei (0 < j ≤ i − 1)
is the subset

Uei(j) = {ei−j ∈ Ei−j |∃ edges ek ∈ Ek, (k = i − j + 1, . . . , i − 1),

with ek ∈ ek+1(k = i − j, . . . , i − 1)}.

For j = 0 define Uei(0) = {ei}.

We can now define the constraint sets.

Definition 10 constraint set. For e = {j, k} ∈ Ei, i = 1, . . . , m − 1,
the conditioning set associated with e is

De = Aj ∩ Ak,

and the conditioned sets associated with e are

Ce,j = Aj − De, and Ce,k = Ak − De.

The constraint set for V is

CV = {(Ce,j , Ce,k, De)|i = 1, . . . , m − 1, e ∈ Ei, e = {j, k}}.
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Fig. 4. Counting edges

Note that Ae = Aj ∪ Ak = Ce,j ∪ Ce,k ∪ De when e = {j, k}. For e ∈ Em the
conditioning set is empty.

The constraint set is shown for the regular vines in Figures 2 and 3. At each
edge e ∈ Ei, the terms Ce,j and Ce,k are separated by a comma and given to
the left of the “|” sign, while De appears on the right. For example, in Figure
2, the tree T5 contains just a single node labeled 1, 5|234. This node is the
only edge of the tree T4 where it joins the two (T4-)nodes labeled 1, 4|23 and
2, 5|34.

In the rest of this section we shall discuss properties of regular vines. The
existence of distributions corresponding to regular vines will be dealt with in
a later section on vines.

Lemma 4. Let V be a regular vine on n elements, and let e ∈ Ei. Then
#Ue(j) = j + 1 for j = 0, 1, . . . , i.

Proof: The statement clearly holds for j = 0 and j = 1. By the proximity
property it follows immediately that it holds for j = 2. We claim that in
general

#Ue(j) = 2#Ue(j − 1) − #Ue(j − 2), j = 2, 3, . . . ,

after which the result follows by induction. To see this we represent the Ue(j)
as a complete binary tree whose nodes are in a set of nodes of V. The repeated
nodes are underscored, and children of underscored nodes are underscored.
Because of proximity, nodes with a common parent must have a common
child. Letting X denote an arbitrary node we have the situation shown in
Figure 4.

Evidently the number of newly underscored nodes on echelon k (that is, nodes
which are not children of an underscored node) is equal to the number of non-
underscored nodes in echelon k − 2. Hence, the number of non-underscored
nodes in echelon k is 2#Ue(k − 1) − #Ue(k − 2). �

Lemma 5. If V is a regular vine on n elements then for all i = 1, . . . , n−1,
and all e ∈ Ei the conditioned sets associated with e are singletons, #Ce,j = 1.
Furthermore, #Ae = i + 1, and #De = i − 1.
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Proof: By Lemma 4 we have #Ae = i + 1. The proof of the other claims
is by induction on i = 1, . . . , n − 1. The statements clearly hold for i = 1.
Suppose they hold for m, 1 ≤ m < i. Let e = {j, k}, where j = {j1, j2} and
k = {k1, k2}. By the proximity property one of j1, j2 equals one of k1, k2, say
j1 = k1. We have

Ae = Aj1 ∪ Aj2 ∪ Ak1 ∪ Ak2 .

By induction,

#Dj = #(Aj1 ∩ Aj2) = i − 2,

and #Aj1 = #Aj2 = i − 1 and

#Aj = #(Aj1 ∪ Aj2) = i.

Hence Aj2 − Aj1 contains exactly one element, and similarly for Ak2 − Ak1 .
Moreover, these two elements must be distinct, since otherwise Aj = Ak,
which would imply that #Ae = i in contradiction of Lemma 4. Hence

#Ae = #(Aj ∪ Ak) = i + 1, #De = i − 1, and De = Aj1 = Ak1 .

�

Lemma 6. Let V be a regular vine on n elements and j, k ∈ Ei. Then
Aj = Ak implies j = k.

Proof: Suppose not. Then there is a largest x such that Uj(x) �= Uk(x)
and Uj(x + 1) = Uk(x + 1). Since #Uj(x + 1) = x + 2 there can be at
most x + 1 edges between the elements of Uj(x + 1) in the tree Ti−x−1. But
since #Uj(x) = #Uk(x) = x + 1 we must have that Uj(x) = Uk(x) because
otherwise this would contradict Ti−x−1 being a tree. �

Using a regular vine we are able to partially specify a joint distribution as
follows:

Definition 11 regular vine specification. (F ,V, B) is a regular
vine specification if

1. F = (F1, . . . , Fn) is a vector of continuous invertable distribution func-
tions.

2. V is a regular vine on n elements

3. B = {Be(d)|i = 1, . . . n − 1; e ∈ Ei} where Be(d) is a collection of
copulae and d is a vector of values taken by the variables in De.

The idea is that given the values taken by the variables in the constraint set
De, the copula of the variables XCe,j and XCe,k must be a member of the
specified collection of copulae.

Definition 12 regular vine dependence. A joint distribution F on
variables X1, . . . , Xn is said to realise a regular vine specification (F ,V, B)
or exhibit regular vine dependence if for each e ∈ Ei, the copula of XCe,j and
XCe,k given XDe is a member of Be(XDe), and the marginal distribution of
Xi is Fi (i = 1, . . . , n).
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We shall see later that regular vine dependent distributions can be con-
structed. However, in order to construct distributions (as opposed to simply
constrain distributions as we do in the above definition) it is necessary to
make an additional measurability assumption. This is that for any edge e, for
any Borel set B ⊂ [0, 1]2, the copula measure of B given XDe is a measurable
function of XDe . A family of conditional copulae indexed by XDe with this
property is called a regular conditional copulae family.

A convenient way, but not the only way, to constrain the copulae in practice
is to specify rank correlations and conditional rank correlations. In this case
we talk about a rank correlation vine specification. Another way to constrain
the copulae is by specifying a partial correlation. This will be discussed in
Section 7.

The existence of regular vine distributions will follow from more general result
given in the next section, but we illustrate briefly how such a distribution is
determined using the regular vine in Figure 2 as an example. We make use
of the expression

g12345 = g1g2|1g3|12g4|123g5|1234.

The marginal distribution of X1 is known, so we have g1. The marginals of
X1 and X2 are known, and the copula of X1, X2 is also known, so we can
get g12, and hence g2|1. In order to get the third term g3|12 we determine
g3|2 similarly to g2|1. Next we calculate g1|2 from g12. With g1|2, g3|2, and
the conditional copula of X1, X3 given X2 we can determine the conditional
joint distribution g13|2, and hence the conditional marginal g3|12. Progressing
in this way we obtain g4|123 and g5|1234.
We note that a regular vine on n elements is uniquely determined if the nodes
N1 have degree at most 2 in T1. If T1 has nodes of degree greater than 2, then
there is more than one regular vine. Figure 2 shows a regular vine that is
uniquely determined, the regular vine in Figure 3 is not uniquely determined.
The edge labelled [25|3] could be replaced by an edge [45|3].

For regular vines it is possible to compute a useful expression for the in-
formation of a distribution in terms of the information of lower dimensional
distributions. The results needed to do this are contained in the following
lemma.

Recalling our standard notation, and moving from densities to general Borel
probability measures, µ is a Borel probability measure on R

n, µ1,..k de-
notes the marginal over x1, ...xk, µ1,..k−1|k,..n denotes the marginal over
x1, ...xk−1 conditional on xk, ...xn. Finally, E1,...k denotes expectation taken
over x1, ...xk taken with respect to µ1,..,k.

The following lemma contains useful facts for computing with relative infor-
mation for multivariate distributions. The proof is similar in spirit to the
proofs of the previous section, and will be indicated summarily here.

Lemma 7. Suppose that I(µ|
∏n

i=1 µi) < ∞, then:

1.

I(µ|
n∏

i=1

µi) = I(µk,...n|
n∏

i=k

µi) + Ek,...nI(µ1,...k−1|k,...n|
k−1∏
i=1

µi).
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2.

I(µ|
n∏

i=1

µi) =

n−1∑
j=1

E1,...jI(µj+1|1,...j |µj+1).

3.

E2,...nI(µ1|2...n|µ1) + E1...n−1I(µn|1...n−1|µn) =

= E2,...n−1

(
I(µ1,n|2,...n−1|µ1|2,...n−1µn|2,...n−1) + I(µ1,n|2,...n−1|µ1µn)

)

4.

2I(µ|
n∏

i=1

µi) = I(µ2,...n|
n∏

i=2

µi) + I(µ1,...n−1|
n−1∏
i=1

µi)+

+E2,...n−1I(µ1,n|2,...n−1|µ1|2,...n−1µn|2,...n−1) + I(µ|µ1µnµ2,...n−1)

5.

I(µ|
n∏

i=1

µi) = I(µ2,...n|
n∏

i=2

µi) + I(µ1,...n−1|
n−1∏
i=1

µi)

−I(µ2,...n−1|
n−1∏
i=2

µi) + E2,...n−1I(µ1,n|2,...n−1|µ1|2,...n−1µn|2,...n−1).

Proof: We indicate the main steps, leaving the computational details to the
reader. Since I(µ|

∏n
i=1 µi) < ∞ there is a density g for µ with respect to∏n

i=1 µi. We use the usual notation for the marginals etc of g.

1. For µ on the left hand side fill in g = g1,...k−1|k,...ngk,...n.

2. This follows from the above by iteration.

3. The integrals on the left hand side can be combined, and the logarithm
under the integral has the argument:

gg

g2,...ng1,...n−1g1gn
.

This can be re-written as

g1,n|2,...n−1

g1|2,...n−1gn|2,...n−1

g1,n|2,...n−1

g1gn
.

Writing the log of this product as the sum of logarithms of its terms,
the result on the right hand side is obtained.

4. This follows from the first and the previous statement by noting

E2,...n−1I(µ1,n|2,...n−1|µ1µn) = I(µ|µ1µnµ2,...n−1).

5. This follows from the previous two statements by noting

I(µ|
n∏

i=1

µi) = I(µ|µ1µnµ2,...n−1) + I(µ2,...n−1|
n−1∏
i=2

µi).
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�

As an example consider the regular vine shown in Figure 2. We have,

I(µ12345|µ1 . . . µ5) = I(µ1...4|
4∏

i=1

µi) + I(µ2...5|
5∏

i=2

µi)

−I(µ2...4|
4∏

i=2

µi) + E2...4I(µ1,5|2...4|µ1|2...4µ5|2...4)

= I(µ123|
3∏

i=1

µi) + I(µ234|
4∏

i=2

µi) + I(µ345|
5∏

i=3

µi) +

−I(µ23|µ2µ3) − I(µ34|µ3µ4) +

E23I(µ1,4|23|µ1|23µ5|23) + E34I(µ2,5|34|µ2|34µ5|34) +

E234I(µ1,5|234|µ1|234µ5|234)

= I(µ12|µ1µ2) + I(µ23|µ2µ3) + I(µ34|µ3µ4) + I(µ45|µ4µ5) +

E2I(µ13|2|µ1|2µ3|2) + E3I(µ24|3|µ2|3µ4|3) + E4I(µ35|4|µ3|4µ5|4) +

E23I(µ1,4|23|µ1|23µ5|23) + E34I(µ2,5|34|µ2|34µ5|34) +

E234I(µ1,5|234|µ1|234µ5|234)

This expression shows that if we take a minimal information copula satisfying
each of the (local) constraints, then the resulting joint distribution is also
minimally informative. The calculation can be generalized to all regular vines,
as is shown in the next result. As it is a special case of a more general result,
the Information Decomposition Theorem, to be given in the next section, we
give no proof.

Theorem 5. Let µ be a Borel probability measure on R
n satisfying the

regular vine specification (F ,V, B), and suppose that for each i, e = {j, k} ∈
Ei, and d ∈ De, µCe,j ,Ce,k|d is a Borel probability measure minimizing

I(µCe,j ,Ce,k|d|µCe,j |dµCe,k|d).(4.4)

Then µ satisfies (F ,V, B) and minimizes

I(µ|
n∏

i=1

µi).(4.5)

Furthermore, if any of the µCe,j ,Ce,k|d uniquely minimizes the information
term in Expression 4.4 (for all values d of De), then µ minimizes the infor-
mation term in Expression 4.5.

5. Cantor specifications and the Information Decomposition
Theorem The definition of a regular vine can be generalized to that of a
vine to allow a wider variety of constraints than is possible with a regular
vine. The main problem we then face, however, is that arbitrary specifications
might not be consistent. The situation is analogous to that for a product-
moment correlation matrix where the entries can be taken arbitrarily between
−1 and 1 but have to satisfy the additional (global) constraint of positive
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Fig. 5. Inconsistent vine representation

Fig. 6. Another inconsistent vine representation

definiteness. We wish to define a graphical structure so that one can build
a multivariate distribution by specifying functionally independent properties
encoded by each node on a vine. Furthermore, we wish to define a general
structure that allows the decomposition of the information in a similar way
to that given in Theorem 5.

An example of the problems that can arise when one attempts to generalize
the definition of a regular vine is shown in Figure 5. This figure shows a
vine with a cycle of constraints giving, for example, two specifications of the
distribution of (X1, X2, X4) which need not be consistent. This example is
a vine under the definition given in the last section: Take T1 with edge set
{e1 = {1, 2}, e2 = {2, 4}, e3 = {2, 3}}, T2 with edge set {{e1, e3}, {e1, e2}},
and T3 with edge set {{e2, e3}}. An example that allows an inconsistent
specification but that contains no cycles is given in Figure 6. Here, the joint
distribution of (X2, X3, X5) is specified in two distinct ways, by the 2, 5|3
and the 24, 56|3 branch.

We shortly give another approach to building joint distributions that will
avoid this problem, and which allow us to build vines sustaining distributions.
This second approach is a “top-down” construction called a Cantor tree (as
compared with the “bottom-up” vine construction).
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We first give a general definition of a coupling that enables us to define joint
distributions for pairs of random vectors. Recall that the usual definition
of a copula is as a distribution on the unit square with uniform marginals.
A copula is used to couple two random variables in such a way that the
marginals are preserved. Precisely, if X1 and X2 are random variables with
distribution functions FX1 and FX2 , and if C is the distribution function of
a copula then

(x1, x2) 
→ C(FX1(x1), FX2(x2))(5.6)

is a joint distribution function with marginals FX1 and FX2 .

Definition 13. Let (S,S) and (T, T ) be two measurable spaces, and
P(S,S) and P(T, T ) the sets of probabilities on these spaces. A coupling is a
function

C : P(S,S) × P(T, T ) → P(S × T,S ⊗ T )

(where S⊗T denotes the product sigma-algebra), with the property that for any
µ ∈ P(S,S), ν ∈ P(T, T ) the marginals of C(µ, ν) are µ and ν respectively.

Genest et al [7] show that the natural generalization of Equation 5.6, in which
the Xi are replaced by vectors Xi (and FXi by multivariate distribution func-
tions), cannot work unless C is the independent copula because the function
defined in this way is not in general a multivariate distribution function.
Hence we have to find a different way of generalizing the usual construction
of a copula. Here we give one approach. There are other approaches, for ex-
ample discussed in [18] and [19]. We assume that all spaces are Polish, to be
able to decompose measures into conditional measures.

Definition 14. Let µ1 and µ2 be probability distributions supported on
probability spaces V1 and V2, and let ϕi : Vi → R (i = 1, 2) be Borel measurable
functions. If c is a copula then the (ϕ1, ϕ2, c)-coupling for µ1 and µ2 is the
probability distribution µ on V1 × V2 defined as follows: Let Fi be the distri-
bution function of the probability µi ◦ϕ−1

i , and denote by µi|u the conditional
probability distribution of µi given Fiϕi = u. Then µ is the unique probability
measure such that∫

f(v1, v2) dµ(v1, v2) =

∫ ∫ ∫
f(v1, v2) dµ1|u1(v1)dµ2|u2(v2)dc(u1, u2),

for any characteristic function f of a measurable set B ⊂ V1 × V2.

Remark: An alternative way to construct a random vector (X1, X2) with
distribution µ is as follows: Define (U1, U2) to be random variables in the unit
square with distribution c. Let Fi be the distribution function of a random
variable ϕi(Yi) where Yi has distribution µi. Then, given Ui = ui, define Xi

to be independent of X3−i and U3−i with the distribution of Yi conditional
on Fiϕi(Yi) = ui (i = 1, 2). This is shown in the Markov tree in Figure 7.

It is easy to see that the marginals of the (ϕ1, ϕ2, c)-coupling are µ1 and µ2.
We have therefore defined a coupling in the sense of Definition 13.
Clearly we could take ϕi to be the distribution function of µi when Vi is
a subset of Euclidean space. When additionally V1, V2 ⊂ R, the definition
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Fig. 7. Markov tree for coupling

reduces to the usual definition of a copula. The above definition is important
for applications because ϕi might be a physically meaningful function of a set
of random variables. The definition could be generalized to allow ϕi(xi) to
be a random variable rather than constant. For simulation purposes however
it is practical to take deterministic ϕi, as this allows pre-computation of the
level sets of ϕi, and hence of the conditional distributions of Xi given Ui.
One of the motivations for this approach is that the random quantities may
represent physical quantities (for example, temperature, pressure etc). Phys-
ical laws, for example the ideal gas law

PV = nRT,

where P is pressure, V is volume, n is number of moles, T is temperature, and
R is the ideal gas constant can be used to give an approximate relationship
between variables. Suppose that two vessels of uncertain volume containing
an uncertain number of moles of an ideal gas under unknown pressure are
placed in the same building. In this case the temperatures of the two vessels
would be highly correlated, and one might build a subjective probability
model in which the distributions on the quantities Pi, Vi, and ni for vessel
i (i = 1, 2) are coupled via a copula model for the temperatures Ti. The
functions ϕi would be

Ti = ϕi(Pi, Vi, ni) =
PiVi

niR
.

We shall also need the notion of a conditional coupling. We suppose that VD

is a probability space and that d ∈ VD.

Definition 15. The (ϕ1|d, ϕ2|d, cd)-family of conditional couplings of
families of marginal distributions (µ1|d, µ2|d) on the product probability space
V1 × V2, is the family of couplings indexed by d ∈ VD given by taking the
(ϕ1|d, ϕ2|d, cd)-coupling of µ1|d and µ2|d for each d.
We say that such a family of conditional couplings is regular if ϕi|d(xi) is a
measurable function of (xi, d) (i = 1, 2), and if the family of copulae cd is a
regular family of conditional probabilities (that is, for all Borel sets B ⊂ [0, 1]2,
the mapping d 
→ cd(B) is measurable).
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The next lemma uses the notation of Definitions 14 and 15. It shows that we
really have defined a (family of) couplings, and under what circumstances we
can define a probability measure over V1 × V2 × VD that has the appropriate
marginals.

Lemma 8.

1. For any d, the marginal distribution of the (ϕ1|d, ϕ2|d, cd)-coupling mea-
sure on Vi is µi|d, (i = 1, 2).

2. Suppose that we are given

(a) joint distributions µ1,d and µ2,d on V1×VD and V2×VD respectively
with the same marginal µd on VD, and

(b) a regular family (ϕ1|d, ϕ2|d, cd) of conditional couplings.

Then there is a joint distribution µ1,2,d,u1,u2 on V1×V2×VD×[0, 1]×[0, 1],
such that µi,d are marginals (i = 1, 2) and that the induced conditional
distribution µu1,u2|d = cd for almost all d.

Proof:

1. This follows easily immediately from the remark after Definition 14.

2. Define a random vector (xi, d) with distribution µi,d, and then simply
define µi,d,ui to be the distribution of (xi, d, Fi|d(ϕi|d(xi))), where Fi|d
is the conditional distribution function for ϕi|d(xi) given d. We can now
form the conditional probabilities µi|d,ui

and the marginal µd, and then
define

µ1,2,d,u1,u2 = µ1|d,u1µ2|d,u2cdµd.

�

Definition 16 Cantor tree. A Cantor tree on a set of nodes N is a
finite set of subsets of N , {A∅, A1, A2, A11, A12, A21, A22, . . .} such that the
following properties hold:

1. A∅ = N .

2. (Union property) Ai1...in = Ai1...in1∪Ai1...in2, with Ai1...in1−Ai1...in2 �=
∅ and Ai1...in2 − Ai1...in1 �= ∅ for all i1 . . . in.

3. (Weak intersection property) Di1...in := Ai1...in1 ∩ Ai1...in2 is equal
to Ai1...in1in+2...im , and Ai1...in2i′n+2...i′

m′ for some in+2 . . . im and

i′n+2 . . . i′m′ .

4. (Unique decomposition property) If Ai1...in = Aj1...jk then for all
t1 . . . tm,

Ai1...int1...tm = Aj1...jkt1...tm .

5. (Maximal word property) We say that i1 . . . in1 and i1 . . . in2 are max-
imal if Di1...in = ∅. For any two maximal words i1 . . . in and j1 . . . jk,
we have

Ai1...in ∩ Aj1...jk �= ∅ implies Ai1...in = Aj1...jk ,

and #Ai1...in = 1.
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Fig. 8. Cantor tree

The name Cantor tree has been chosen because the sets are labeled ac-
cording to a Cantor set type structure, the binary tree. This is illustrated
in Figure 8. In order to make the notation more suggestive concerning
the relation between Cantor trees and vines, we introduce the notation
Ci1...inj = Ai1...inj − Di1...in for j = 1, 2.

Definition 17 Cantor tree specification. A Cantor tree specifica-
tion of a multivariate distribution with n variables is a Cantor tree on N =
{1, . . . , n} such that the following properties hold:

1. (Marginal specification) If j1 . . . jk is maximal then the joint distribution
of Xi (i ∈ Aj1...jk) is specified.

2. (Conditional coupling specification) For each i1 . . . in the conditional
coupling of the variables XCi1...in1 and XCi1...in2 given the variables
XDi1...in

is required to be in a given set of conditional couplings
Bi1...in(XDi1...in

).

3. (Unique decomposition property) If Ai1...in = Aj1...jk the conditional
coupling or marginal specifications are identical.

Definition 18 Cantor tree dependence. We say that a distribution
F realizes a Cantor tree specification, or exhibits Cantor tree dependence, if
it satisfies all constraints, that is for all i1 . . . in, the conditional coupling of
Ci1...in1 and Ci1...in2 given Di1...in is a member of the set specified by Bi1...in ,
and the marginals of F are those given in the Cantor tree specification.

Notation: We say that Ai1...in is at level n. We write B ≤ C if B =
Ai1...inin+1...im and C = Ai1...in , and say that B is in the decomposition of
C (note that if B ≤ C then B ⊆ C but that the reverse does not have to
hold). If B ≤ C and B �= C then we write B < C.

We begin by showing that the regular vines of Figures 2 and 3 can be modelled
by a Cantor tree.
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Example 1. Here we have N = {1, 2, 3, 4, 5}. The table gives, on each
line, a word ∗, followed by the sets A∗, C∗,1, C∗,2, and D∗.

∗ A∗ C∗,1 C∗,2 D∗
∅ 12345 1 5 234

1 1234 1 4 23
2 2345 5 2 34

11 123 1 3 2
12 234 2 4 3
21 345 3 5 4
22 234 2 4 3

111 12 1 2 ∅
112 23 2 3 ∅
121 23 2 3 ∅
122 34 3 4 ∅
211 34 3 4 ∅
212 45 4 5 ∅
221 23 2 3 ∅
222 34 3 4 ∅

The constraints here are precisely the same as those determined by the regular
vine in Figure 2.

Example 2. This is an example with N = {1, 2, 3, 4, 5}.

∗ A∗ C∗,1 C∗,2 D∗
∅ 12345 1 5 234
1 1234 1 4 23
2 2345 4 5 23

11 123 1 3 2
12 234 2 4 3
21 234 2 4 3
22 235 2 5 3

111 12 1 2 ∅
112 23 2 3 ∅
121 23 2 3 ∅
122 34 3 4 ∅
211 23 2 3 ∅
212 34 3 4 ∅
221 23 2 3 ∅
222 35 3 5 ∅

This corresponds to the vine in Figure 3.

Not all Cantor tree constructions are realizable by regular vines. The point
is that the sets Ai1...in1 − Ai1...in2 need not be singletons, as in the next
example.

Example 3. This is an example with N = {1, 2, 3, 4, 5}. A vine corre-
sponding to this example is shown in Figure 9.
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Fig. 9. Vine representation of Example 3

∗ A∗ C∗,1 C∗,2 D∗
∅ 12345 12 5 34
1 1234 12 4 3
2 345 5 3 4

11 123 1 3 2
12 34 3 4 ∅
21 45 4 5 ∅
22 34 3 4 ∅

111 12 1 2 ∅
112 23 2 3 ∅

As seems reasonable from the first two examples given above, the constraints
determined by a regular vine can always be written in terms of a Cantor
tree specification. This will be proven in the next section. Hence Cantor
tree specifications are more general than regular vines. We shall show soon
however that all Cantor trees can be graphically represented by vines (though
not necessarily regular vines). First, however, we prove some results about
the existence of Cantor tree dependent distributions.

Lemma 9. Suppose distributions µAi1...in1 and µ′
Ai1...in2

are given and

that the marginals µDi1...in
and µ′

Di1...in
are equal. Suppose also that a regular

family of conditional couplings (ϕ1|d, ϕ2|d, cd) is given (indexed by the elements
d of Di1...in).
Then there is a unique distribution µAi1...in

which marginalizes to µAi1...in1

and µ′
Ai1...in2

and which is consistent with the family of conditional couplings.

Proof: This follows directly from Lemma 8 by integrating out the variables
u1, u2. �

Theorem 6. Any Cantor tree specification, whose coupling restrictions
permit a regular family of couplings for each word i1 . . . in, is realised by a
Cantor tree dependent distribution over the variables {Xi|i ∈ N}.

Proof: The proof is by induction from the ends of the tree. At any level
i1 . . . in in the tree, we assume by induction that the marginals µAi1...in1 and
µ′

Ai1...in2
are given. By the weak intersection property, the marginal on the
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intersection Di1...in has already been calculated earlier in the induction, and
by the unique decomposition property the marginals µDi1...in

and µ′
Di1...in

are equal.
The induction argument works whenever Di1...in �= ∅. If Di1...in = ∅ the
maximal word property and the unique decomposition property imply a con-
sistent specification. This proves the theorem. �

Remark: We have defined Cantor trees in such a way that the underlying
trees are binary, that is, the tree splits in two at each branching point. As
a referee pointed out, this is not a necessary requirement. One could easily
define a construction with higher order branching. This would involve having
several sets C∗,1, . . . , C∗,k, all with the same set D∗, for any word ∗. The
definition of a Cantor tree is adapted in the obvious way.

We now show that there is a simple expression for the information of a
distribution realising a Cantor tree specification. Recall that when A1 and
A2 are specified we use the notation C1 = A1 − A2, C2 = A2 − A1, and
D = A1 ∩ A2.

Lemma 10.

I(µ|
∏

µi) = I(µA1 |
∏
A1

µi) + I(µA2 |
∏
A2

µi)

−I(µD|
∏
D

µi) + EDI(µC1C2|D|µC1|DµC2|D).

This follows in the same way as Lemma 7(5).

Theorem 7 Information Decomposition Theorem. For a Cantor
tree dependent distribution µ, we have

I(µ|
∏

µi) =
∑

{Ai1...in ,Di1...in}
EDi1...in

I(µCi1...in1Ci1...in2|Di1...in
|µCi1...in1|Di1...in

µCi1...in2|Di1...in
).

The index of the summation sign says that the terms in the summation
occur once for each {Ai1...in , Di1...in}, that is, the collection of pairs Aj1...jk ,
Dj1...jk with Ai1...in = Aj1...jk and Di1...in = Dj1...jk contributes just one
term to the summation. When the conditioning set Di1...in is empty then the
conditional information term is constant and the expectation operation gives
(by convention) that constant value.
Proof: Consider first the expression obtained by applying Lemma 10 repeat-
edly from the top of the tree. We have

I(µ|
∏

µi) = I(µA1 |
∏
A1

µi) + I(µA2 |
∏
A2

µi)

−I(µD|
∏
D

µi) + EDI(µC1C2|D|µC1|DµC2|D)

= I(µA11 |
∏
A11

µi) + I(µA12 |
∏
A12

µi)

−I(µD1 |
∏
D1

µi) + ED1I(µC11C12|D1 |µC11|D1µC12|D1)
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+I(µA21 |
∏
A21

µi) + I(µA22 |
∏
A22

µi)

−I(µD2 |
∏
D2

µi) + ED2I(µC21C22|D2 |µC21|D2µC22|D2)

−I(µD|
∏
D

µi) + EDI(µC1C2|D|µC1|DµC2|D)

We expand in this way until we reach terms for which Di1...in = ∅.
In carrying out this expansion we obtain negative terms of the form

−I(µDi1...in
|

∏
Di1...in

µi).

The weak intersection property says however that every non-empty
Di1...in is equal to two Aj1...jk later in the expansion. Hence the
−I(µDi1...in

|
∏

Di1...in
µi) term is added to a

2I(µDi1...in
|

∏
Di1...in

µi)

term arising later in the expansion of the summation.
We now claim that each term arising in the expansion has multiplicity equal
to one. Suppose we have two words i1 . . . in and j1 . . . jk with Ai1...in =
Aj1...jk and Di1...in = Dj1...jk . Write i1 . . . im for the longest words com-
mon to i1 . . . in and j1 . . . jk, that is, i� = j� for � = 1, . . . , m and (without
loss of generality) im+1 = 1 �= 2 = jm+1. Then Ai1...in ⊆ Ai1...im1 and
Aj1...jk ⊆ Ai1...im2. Hence Ai1...in ⊆ Di1...im , and, by Lemma 11 below,
Ai1...in is in the decomposition of Di1...im . The same holds for Aj1...jk . This
shows that one of the two terms in the summation arising from Ai1...in and
Aj1...jk will be cancelled by a negative term occurring in the expansion of
the −I(µDi1...im

|
∏

Di1...im
µi) term.

Note that if there are three words with identical Ai1...in then they cannot
all share a common longest word, so the argument of the previous paragraph
can be used inductively to show that the extra terms are cancelled out.
This proves the theorem. �

Lemma 11. Suppose B < Ai1...in and B ⊆ Di1...in . Then B ≤ Di1...in .

Proof: The statement will be proved by backwards induction on n. When
B = Di1...in the lemma is obvious, so we assume from now on that B �=
Di1...in .
When i1 . . . in is a maximal word or i1 . . . inin+1 is maximal then the state-
ment holds trivially.
Now take a general n. For ease of notation we denote Di1...in simply
by D. Since we have B < Ai1...in and D < Ai1...in , there are words
i1 . . . inbn+1 . . . bn′ and i1 . . . indn+1 . . . dn′′ such that

B = Ai1...inbn+1...bn′ and D = Ai1...indn+1...dn′′ .

Amongst all such possible words choose a pair with the longest common
starting word i1 . . . inin+1 . . . im. Clearly m ≥ n. In fact, m ≥ n + 1 since
B ≤ Ai1...inin+1 and by the properties of a Cantor tree, D ≤ Ai1...inin+1 .
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We now have that B ≤ Ai1...im and D ≤ Ai1...im . Since B ⊂ D we must have
B < Ai1...im . Assume for a contradiction that B �≤ D, then also D < Ai1...im .
The maximality of m then implies that (without loss of generality)

B ≤ Ai1...im1, D �≤ Ai1...im1

and

D ≤ Ai1...im2, B �≤ Ai1...im2.

But now since B ⊂ D we must have B ⊂ Di1...im and by the induction hy-
pothesis B ≤ Di1...im so that also B ≤ Ai1...im2. This contradicts maximality
of m. �

Corollary 2. If, for all i1 . . . in and almost all d ∈ Di1...in , the condi-
tional distribution µCi1...in1Ci1...in2|d has minimum information (relative to
the independent joint distribution), then the Cantor tree dependent distribution
has minimum information amongst all Cantor tree dependent distributions
satisfying the Cantor tree specification.

6. Vine representations and Cantor trees The purpose of this
section is to show that regular vines can be represented by Cantor trees, and
that Cantor trees can be represented by vines.
We first show:

Theorem 8. Any regular vine dependent distribution can also be repre-
sented by a Cantor tree dependent distribution.

Proof: It is enough to show that any regular vine constraints can be encoded
by Cantor tree constraints.
Let V be a regular vine. We construct a Cantor tree corresponding to V by
defining a mapping φ from binary words to nodes in the vine.
We set φ(∅) to equal the single node in Tn. The map φ is defined further
by induction. Suppose that φ is defined on all binary words of length less
than m. Let w be a word of length m− 1, with φ(w) = e = {j, k}. We define
φ(w1) = j and φ(w2) = k arbitrarily.
Now, for any binary word w we define Aw = Aφ(w), and claim that the
collection {Aw} so formed is a Cantor tree.
The union property follows because when e = {j, k}, we have Ae = Aj ∪ Ak.
The weak intersection propery follows from the proof of Lemma 5. The unique
decomposition property follows from Lemma 6. When w is maximal, Aw is
a singleton, so that the maximal word property holds trivially.
It is now easy to see that this Cantor tree specification is the same as the
regular vine specification, and the theorem follows. �

Remark: Short words correspond to nodes in high level trees in the regular
vine, while long words correspond to nodes in low level trees. This arises
because a Cantor tree is a ”top-down” construction, while a vine is a ”bottom-
up” construction.

This result implies that the proof of existence of Cantor tree dependent
distributions given in the last section applies also to regular vine dependent
distributions.
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We now show that Cantor tree specifications can also be represented by vines.
As an example, Figure 9 shows the vine representation of the Cantor tree
specification given in Example 3. Checking the formal definition of a vine,
we see that for this example one can choose m = 4 and further:

1) T1 = (E1, N1) with

N1 = {1, 2, 3, 4, 5},

and E1 = {{1, 2}, {2, 3}}.
2) T2 = (E2, N2) with

N2 = {{1, 2}, {2, 3}, 3, 4, 5}

⊂ E1 ∪ N1,

and

E2 = {{{1, 2}, {2, 3}}, {3, 4}, {4, 5}}.

3) T3 = (E3, N3) with

N3 = {{{1, 2}, {2, 3}}, {3, 4}, {4, 5}}

⊂ E2 ∪ E1 ∪ N1,

and

E3 = {{{{1, 2}, {2, 3}}, {3, 4}}, {{3, 4}, {4, 5}}.

4) T4 = (E4, N4) with

N4 = E3 ⊂ E1 ∪ N1,

and

E4 = {{{{{1, 2}, {2, 3}}, {3, 4}}, {{3, 4}, {4, 5}}}.

More generally, one can always construct a vine representation of a Cantor
tree specification in this way, as will be shown below (the main problem
is to show that at each level one has a tree). A vine is a useful way of
representing such a specification as it guarantees that the union and the
unique decomposition properties hold. The only property that does not have
to hold for a vine is the weak intersection property. The vine in Figure 6 does
not have the weak intersection property.

Theorem 9. Any Cantor tree specification has a corresponding vine rep-
resentation.

Proof: Let m be the maximum length of a maximal word. Define T1 =
{N1, E1}, where N1 = N and e = {j, k} ∈ E1 if and only if for some word w
of length m − 1,

Aw1 = {j}, and Aw2 = {k}.

More generally, e = {j, k} ∈ E� if and only if e �∈ E�−1∪ . . .∪E1 and for some
word w of length m− �, Aw1 equals the complete union of j and Aw2 equals
the complete union of k. This inductively defines the pairs Ti = (Ni, Ei)
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(i = 1, . . . , m). However, it remains to be shown that these are trees, that is,
that there are no cycles.
Suppose for a contradiction there is no cycle in Tm, . . . , T�+1, and there is
a cycle in T�. Without loss of generality there are nodes Ai1...in and Aj1...jk

on the cycle with i1 = 1, j1 = 2 and such that Ai1...in �< A2, Aj1...jk �< A1.
Then there must be at least two nodes in the cycle that are subsets of D.
Then by Lemma 11, they are in the decomposition of D and hence also in the
decomposition of A1 and of A2. There must also be a path joining these two
nodes by nodes in the decomposition of D. Hence there is a cycle containing
the two nodes with one of the two arcs joining the two nodes made up of
nodes just in the decomposition of A1 (say), and the other arc of the cycle
is made up of nodes in the decomposition of D and thus also of A2. But
then the nodes in T�+1 which are the edges of the cycle form a cycle in T�+1.
This contradicts the assumption that � was the largest integer for which T�

contains a cycle. �

7. Rank and partial correlation specifications In this section
we discuss vine constructions in which we specify correlations on each vine
branch.

7.1. Partial correlation specifications We first recall the definition and
interpretation of partial correlation.

Definition 19 partial correlation. Let X1, . . . , Xn be random vari-
ables. The partial correlation of X1 and X2 given X3, . . . , Xn is

ρ12|3,...,n =
ρ12|4...n − ρ13|4...nρ23|4...n

((1 − ρ2
13|4...n)(1 − ρ2

23|4...n))
1
2

.

If X1, . . . , Xn follow a joint normal distribution with variance covariance
matrix of full rank, then partial correlations correspond to conditional cor-
relations. In general, all partial correlations can be computed from the cor-
relations by iterating the above equation. Here we shall reverse the process,
and for example use a regular vine to specify partial correlations in order to
obtain a correlation matrix for the joint normal distribution.

Definition 20 partial correlation vine specification. If V is a
regular vine on n elements, and e ∈ Ei, then a complete partial correlation
specification is a regular vine with a partial correlation pe specified for each
edge e. A distribution satisfies the complete partial correlation specification
if, for any edge e = {j, k} in the vine, the partial correlation of the variables
in Ce,j and Ce,k given the variables in De is equal to pe.
A complete normal partial correlation specification is a special case of a reg-
ular vine specification, denoted triple (F ,V, ρ), satisfying the following con-
dition: For every e and vector of values d taken by the variables in De, the
set Be(d) just contains the single normal copula with correlation ρe (which is
constant in d).

Remark: We have defined a partial correlation specification without refer-
ence to a family of copulae as, in general, the partial correlation is not a
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property of a copula. For the bivariate normal distribution, however, this is
the case.

As remarked above, partial correlation is just equal to conditional correlation
for joint normal variables. The meaning of partial correlation for non-normal
variables is less clear. We quote Kendall and Stuart [15](p335): “In other cases
[i.e. non-normal], we must make due allowance for observed heteroscedasticity
in our interpretations: the partial regression coefficients are then, perhaps,
best regarded as average relationships over all possible values of the fixed
variates.”
If V is a regular vine over n elements, a partial correlation specification

stipulates partial correlations for each edge in the vine. There are

(
n
2

)

edges in total, hence the number of partial correlations specified is equal to
the number of pairs of variables, and hence to the number of ρij . Whereas
the ρij must generate a positive definite matrix, the partial correlations of a
regular vine specification may be chosen arbitrarily from the interval (−1, 1).
The following lemma summarizes some well-known facts about conditional
normal distributions (see for example [23]).

Lemma 12. Let X1, . . . , Xn have a joint normal distribution with mean
vector (µ1, . . . , µn)′ and covariance matrix Σ. Write ΣA for the principal
submatrix built from rows 1 and 2 of Σ, etc so that

Σ =

(
ΣA ΣAB

ΣBA ΣB

)
, µ =

(
µA

µB

)
.

Then the conditional distribution of (X1, X2)
′ given (X3, . . . , Xn)′ = xB is

normal with mean µA + ΣABΣ−1
B (xB − µB) and covariance matrix

Σ12|3...n = ΣA − ΣABΣ−1
B ΣBA.(7.7)

Writing σij|3...n for the i, j-element of ΣAA, the partial correlation satisfies

ρ12|3...n =
σ12|3...n√

σ11|3...nσ22|3...n

.

Hence, for the joint normal distribution, the partial correlation is equal to
the conditional product moment correlation. The partial correlation can be
interpreted as the correlation between the orthogonal projections of X1 and
X2 on the plane orthogonal to the space spanned by X3, . . . , Xn.
The next lemma will be used to couple normal distributions together. The
symbol < v, w > denotes the usual Euclidean inner product of two vectors.
The proof works by embedding the first set of n-dimensional vectors in R ×
R

n−1 ⊂ R × R
n−1 × R, and the second set in R

n−1 × R ⊂ R × R
n−1 × R.

Lemma 13. Let v1, . . . , vn−1 and u2, . . . , un be two sets of linearly
independent vectors of unit length in R

n−1. Suppose that

< vi, vj >=< ui, uj > for i, j = 2, . . . , n − 1.

Then given α ∈ (−1, 1) we can find a linearly independent set of vectors of
unit length w1, . . . , wn in R

n such that
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1. < wi, wj >=< vi, vj > for i = 1, . . . , n − 1

2. < wi, wj >=< ui, uj > for i = 2, . . . , n

3. < w′
1, w

′
n >= α, where w′

1 and w′
n denote the normalized orthogonal

projections of w1 and wn onto the orthogonal complement of the space
spanned by w2, . . . , wn−1.

The corollary to this lemma follows directly using the interpretation of a
positive definite matrix as the matrix of inner products of a set of linearly
independent vectors.

Corollary 3. Suppose that (X1, . . . , Xn−1) and (Y2, . . . , Yn) are two
multivariate normal vectors, and that (X2, . . . , Xn−1) and (Y2, . . . , Yn−1) have
the same distribution. Then for any −1 < α < 1, there exists a multivariate
normal vector (Z1, . . . , Zn) so that

1. (Z1, . . . , Zn−1) has the distribution of (X1, . . . , Xn−1),

2. (Z2, . . . , Zn) has the distribution of (X2, . . . , Xn), and

3. the partial correlation of Z1 and Zn given (Z2, . . . , Zn−1) is α.

We now show how the notion of a regular vine can be used to construct a
joint normal distribution.

Theorem 10. Given any complete partial correlation vine specification
for standard normal random variables X1, . . . , Xn, there is a unique joint
normal distribution for X1, . . . , Xn satisfying all the partial correlation spec-
ifications.

Proof: We use the Cantor tree representation of the regular vine. The proof
is by induction in the Cantor tree. Clearly any two normal variables can
be given a unique joint normal distribution with the product moment rank
correlation strictly between −1 and 1.
Suppose that for any binary word w longer than length k, the variables in Aw

can be given a unique joint normal distribution consistent with the partial
correlations given in the vine. Consider now a binary word v of length k − 1.
Since the vine is regular, we can write Av as a disjoint union

Av = Cv1 ∪ Cv2 ∪ Dv,

where Cv1 and Cv2 both contain just one element. The corresponding node
in the regular vine specifies the partial correlation of Cv1 and Cv2 given Dv.
By the induction hypothesis there is a unique joint normal distribution on
the elements of Av1 and similarly a unique joint normal distribution on the
elements of Av2, all satisfying the vine constraints on these elements. Fur-
thermore, the distributions must both marginalize to the same joint normal
distribution on Dv. Hence we are in the situation covered by Corollary 3,
and we can conclude that the variables of Av can be given a joint normal
distribution which marginalizes to the distributions we had over Av1 and
Av2, and which has the partial correlation coefficient for Cv1 and Cv2 given
Dv that was given in the specification of the vine. �
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Fig. 10. Partial correlation vine

Corollary 4. For any regular vine on n elements there is a one to one
correspondence between the set of n × n positive definite correlation matrices
and the set of partial correlation specifications for the vine.

We note that unconditional correlations can easily be calculated inductively
by using Equation 7.7. This is demonstrated in the following example.

Example 4. Consider the vine in Figure 10. We consider the subvine
consisting of nodes 1,2 and 3. Writing the correlation matrix with the variables
ordered as 1,3,2, we wish to find a product moment correlation ρ13 such that
the correlation matrix


 1 ρ13 0.6

ρ13 1 −0.7
0.6 −0.7 1




has the required partial correlation. We apply Equation 7.7 with

ΣB = (1), ΣA =

(
1 ρ13

ρ13 1

)
, ΣAB =

(
0.6
−0.7

)
, Σ13|2 =

(
σ2

1|2 0.8σ1|2σ3|2
0.8σ1|2σ3|2 σ2

3|2

)
.

This gives σ1|2 = 0.8, σ3|2 = 0.7141, and

ρ13 = 0.8σ1|2σ3|2 − 0.42 = 0.0371.

Using the same method for the subvine with nodes 2,3, and 4, we easily
calculate that the unconditional correlation ρ24 = −0.9066. In the same way
we find that ρ14 = −0.5559. Hence the full (unconditional) product-moment
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correlation matrix for variables 1,2,3, and 4 is


1 0.6 0.0371 −0.5559
0.6 1 −0.7 −0.9066

0.0371 −0.7 1 0.5
−0.5559 −0.9066 0.5 1


 .

Remark: As this example shows, for the standard vine on n elements (of
which Figures 2 and 10 are examples) in which each tree is linear (that is,
there are no nodes of degree higher than 2), the partial correlations can be
conveniently written in a symmetric matrix in which the ijth entry (i < j)
gives the partial correlation of ij|i + 1, . . . , j − 1. This matrix, for which
all off-diagonal elements of the upper triangle may take arbitrary values
between −1 and 1, gives a convenient alternative matrix parameterization of
the multivariate normal correlation matrix.

The partial correlations in a vine specify the complete correlation matrix, even
with no assumptions of joint normality. This is stated in the following result
which may be proved by induction using the formula for partial correlation
given in Definition 19.

Theorem 11. Let (X1, . . . , Xn) and (Y1, . . . , Yn) be vectors of random
variables satisfying the same partial correlation vine specification. Then for
i �= j,

ρ(Xi, Xj) = ρ(Yi, Yj).

Our notion of a partial correlation vine specification generalizes a construction
of Joe [13] who, in our terminology, defined a partial correlation specification
on a standard vine.

7.2. Rank correlation specifications

Definition 21 Rank correlation specification. If V is a regular
vine on n elements, then a complete conditional rank correlation specification
is a triple (F ,V, r) so that for every e and vector of values d taken by the
variables in De, every copula in the set Be(d) has conditional rank correlation
re(d), (|re(d)| ≤ 1).

In Proposition 1 below we show that if re(d) is a Borel measurable function
of d then the conditional copula family formed by taking the minimal infor-
mation copula with given rank correlation for a.e. d is a regular conditional
probability family.

We now turn to rank correlation specifications.

Proposition 1. Suppose that X1, X2 are random variables, and that XD

is a vector of random variables. Suppose further that the joint distributions of
(X1, XD) and (X2, XD) are given, and that the function

XD 
→ rXD (X1, X2)
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is measurable. Then the conditional copula family formed by taking the min-
imal information copula with given rank correlation for a.e. XD is a regular
conditional probability family.

Proof: The density function of the minimal rank correlation at any given
point varies continuously as function of the rank correlation [22]. Hence for
any Borel set B, the minimal information measure of B is a continuous
function of the rank correlation. Then the minimal information measure of
B is a measurable function of XD. �

Theorem 12. Suppose that we are given a rank tree specification for a
regular vine for which the conditional rank correlation functions are all mea-
surable, and the marginals have no atoms. If we take the minimal information
copula given the required conditional rank correlation everywhere, then this
gives the distribution that has minimal information with respect to the inde-
pendent distribution with the same marginals.

Proof: Note first that information is invariant under bi-measurable bijec-
tions. Hence, whenever F and G are the distribution functions of continuous
random variables X and Y , the information of the copula for X and Y (with
respect to the uniform copula) equals that of the joint distribution of X and
Y with respect to the independent distribution with the same marginals. It
is easy to see that all marginal distributions constructed using minimal infor-
mation copulae with given rank correlation are continuous. The result now
follows from Theorems 7, 8 and Proposition 1.�

8. Conclusions Conditional rank correlation vine specifications can
be sampled on the fly, and the minimum information distribution consistent
with a rank correlation specification is easily sampled using bivariate mini-
mum information copulae. Moreover, a user specifies such a distribution by

specifying

(
n
2

)
numbers in [−1, 1] which needn’t satisfy any additional con-

straint. In the minimum information realisation, a conditional rank correla-
tion of zero between two variables means that the variables are conditionally
independent. From a simulation point of view conditional rank correlation
specifications are attractive ways to specify high dimensional joint distribu-
tions.
One of the more common ways to define a multivariate distribution is to
transform each of the variables to univariate normal, and then to take the
multivariate normal distribution to couple the variables. The disadvantage of
this procedure is that the conditional rank correlations of the variables are
always constant (reflecting the constancy of the conditional product moment
correlation for the multivariate normal). With vines it is possible to define
non-constant conditional rank correlations, and therefore to generate a much
wider class of multivariate distributions.
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