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Wisdom or Madness: Expert Data on Wisdom of Crowds 
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From structured expert judgment data with realizations it is concluded that (1) experts’ Mean Absolute Percentage 

Errors are very fat tailed, making convergence problematic, (2) probabilistic proximity of experts’ median forecasts 

to realizations are modestly dependent, whereas experts’ abilities to catch realizations in their 90% bands are much 

less so, (3) expert agreement does not predict expert panel performance, (4) regarding the performance metrics 

Statistical Accuracy and Mean Absolute Percentage Errors,  number of experts is helpful for the first, harmful for 

the second whereas dependence in placement of medians is harmful for the first, helpful for the second, and (5) 

following Jensen’s inequality, averaging experts’ median assessments is slightly better than choosing a random 

expert but (from a previous publication) much worse than the median of equally weighted or performance weighted 

combinations of experts’ distributions, underscoring the importance of method of aggregation. Probabilistic crowds 

are wiser than point forecast crowds. 
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1. Introduction 

It seems  to have started in 1841 with Charles 

Mackay's Memoirs Of Extraordinary Popular 

Delusions and The Madness Of Crowds. Francis 

Galton parried in 1907 with Cornwall fair goers'  

average (originally median) estimate of a dead 

bull's weight which was nearly spot on. James 

Surowieki's The Wisdom of Crowds (2004) 

distinguished wise crowds from irrational crowds 

on five criteria: diversity, independence, 

decentralization, aggregation and trust. Douglas 

Murray brought us back to The Madness of 

Crowds, gender, race and identity (2019).  Much 

is written on the credibility of crowds.  Lacking is 

any scientific use of expert probabilistic 

forecasting data for which realizations or true 

values are available. Emphasis is placed on 

"expert" and "probabilistic" for a number of 

reasons: (1)  the inevitable winnowing of reliable 

crowds often turns on predicates associated with 

expertise, (2) experts' scientific training 

distinguishes knowledge from uncertain  guesses, 

the provenance of forecasting, (3) probabilistic 

forecasting converts all quantities to a common 

scale, namely probability, because of which  (4) 

we can develop performance metrics applicable to 

any forecast situation, and finally (5) we have 

extensive data from 107 structured expert 

judgment (SEJ) panels. There is even discussion 

whether Galton’s “vox populi” shouldn’t be 

called “vox expertorum” given the large number 

of expert butchers and farmers attending these 

events. 

SEJ  panels consist, on average, of  11 vetted 

experts giving 5, 50 and 95 percentiles for 

uncertain variables from their fields and also for, 

on average, 14 calibration variables from their 

fields to which true values are or become known. 

Performance on these calibration variables is used 

to construct performance  weighted combinations 

and compare with equally weighed combinations. 

Expert performance is persistent, performance 

based combinations are superior to equal weight 

combinations both in– and out–of sample and 

have been evaluated in real applications (Cooke 

et al 2021, Aspinall, 2010).  

2. Crowd–Casting Versus SEJ Forecasting 

When crowd–casting and expert forecasting 

mingle, Surowieki's criteria run up against expert 

communalities. Scientists in an SEJ forecasting 

panel have similar training, follow the same 

literature and often know each other.  Physicist 

Max Planck (1950) famously quipped "science 

advances one funeral at a time". Surowieki opines: 

“Homogeneous groups, particularly small ones, are 
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often victims of what the psychologist Irving Janis 

called “groupthink.”(Surowieki 2004, p.36) “After 

a survey of expert forecasts and analyses in a wide 

variety of fields, Wharton professor J. Scott 

Armstrong wrote,‘I could find no studies that 

showed an important advantage for expertise’.” 

(Ibid p.33). The antidote is crowd size:  “...much of 

what we’ve seen so far suggests that a large group 

of diverse individuals will come up with better and 

more robust forecasts and make more intelligent 

decisions than even the most skilled “decision 

maker.”(Ibid p.32). Au contraire, says Naomi 

Oreskes in Why Trust Science (2019): scientific 

consensus resulting from rigorous peer review 

provides a basis for trust.  

SEJ data is used to examine two pillars of WOC: 

(1) Is crowd size really beneficial? and (2) Is 

“diversity” / “independence” beneficial? To 

address these, 40 forecasting panels with at least 10 

experts and at least 10 calibration variables  are 

selected giving 586 forecast variables with 

realizations, 698 experts and 10,189 expert  

forecasts (see appendix Table A1). “Beneficial” is 

measured by two performance metrics.  

The absolute percentage error for forecast f with 

realization r is |(f–r)/r| and is unstable for r close to 

zero.   Absolute percentage error is scale invariant, 

so scores for different forecasts and different 

realizations can be averaged, yielding the  Mean 

Absolute Percentage Error (MAPE).  We can 

average over all calibration variables for each 

expert to form an expert MAPE,  we can average 

the expert MAPEs for all experts in a panel to 

arrive at an expert panel MAPE which is the 

expected MAPE of a randomly chosen expert. 

Invoking the Wisdom Of Crowds (WOC) we can 

first average experts’ median forecasts and then 

compute the WOC MAPE, per variable and per 

panel.  By Jensen’s inequality WOC MAPE is 

always less or equal to expert panel MAPE, though 

the mean difference per panel is a mere 0.009 in 

this case (see appendix). 

Statistical Accuracy (SA) is based on the relative 

frequency with which the realizations of 

independent calibration variables fall inside the 

forecaster’s four inter–quantile intervals. SA is the 

probability that these relative frequencies should 

differ from the theoretical inter quantile 

 
a This is a non-technical introduction to fat tailed distributions. Many text books give a full mathematical treatment, Cooke et al  

(2014) is directed to numerate non-specialists. 

probabilities  (5%, 45%, 45%, 5%) by at least the 

observed amount. Low values near zero mean that 

it is very unlikely that the forecaster’s probabilities 

are statistically accurate, high values, near 1, 

indicate good agreement between observed and 

expected relative frequencies. 

3. Tail Sizea 

Participants in WOC discussions need to 

appreciate how much the discussion has been 

constrained by statistical assumptions, and how 

fragile these assumptions really are. If we sample 

a set of numbers from some distribution, we can 

always compute the average of these numbers as 

well as the variance, standard deviation, 

correlations with other sets of numbers etc.   But 

if we sample more numbers or sample a like-sized 

second batch, do these averages, variances and 

correlations tend to agree? The law of large 

numbers says that averages, variances, and 

correlations stabilize as we draw ever larger 

samples; however this law applies only if the 

distribution from which the numbers are drawn is 

”thin tailed”.  If the distribution is “fat tailed” then 

none of this holds.   

Pictures give a better  idea than formal  

mathematical definitions. The left panel of Figure 

1 gives running averages (average the first two, 

then the first three, etc) of 1000 independent 

samples from a uniform distribution on the [0, 1] 

interval. The horizontal axis gives the size over 

which the average is taken.  On the vertical we 

plot the running average. At the horizontal value 

1000 we average all 1000 samples.  In the right 

panel we do the same,  with the same numbers, 

except that these numbers are now inverted; 0.1 

becomes 10, etc. The inverse of the uniform 

distribution is a very fat tailed distribution. With 

thin tailed distributions running averages 

converge, with fat tailed distributions they do not.  

Very large values keep popping up at a rate which 

prevents convergence. Fat tailed distributions are 

not exotic, but are not common knowledge. 

https://press.princeton.edu/books/hardcover/9780691179001/why-trust-science


 

 

Fig. 1: Thin tailed (left) and fat tailed (right) running 

averages. Horizonal axes denote the number of samples 

over which we average. 

If we draw repeated samples of size 1000, the thin 

tailed running averages will differ a bit at the 

beginning but quickly settle into the pattern. 

Figure 2 shows what happens with three samples 

of 1000 from the from the distributions in Figure 

1. Notice the changing scale on the vertical axis 

for the fat tailed distributions; these samples do 

not settle into a pattern, they are dissipative. 

 

Fig. 2: Three Repeated samples with running averages 

Statisticians don’t like fat tails, as they prevent 

application of the familiar statistical methods. It’s 

easy to delete  a single large value as an “outlier” 

so that the rest “look normal”. However, when 

one looks at larger samples from a fat tailed 

distribution, one realizes that the large values are 

characteristic of the whole distribution. If we 

order the sample from smallest to largest values, 

we see that the distance between adjacent samples 

just gets larger as the sample values get larger.  As 

we gather more samples, the average of the whole 

sample tends to resemble the largest sample in the 

set. In fact, this is a defining  feature of the 

“subexponential” class of fat tailed distributions. 

Once we look, we can see fat tailed distributions 

everywhere -  damages from natural disasters, 

crop insurance claims, citation scores, flood 

damages,  income distributions, hospital 

discharge rates etc. Loss distributions in risk 

analysis are often fat tailed (Cooke et al 2014). 

What about experts? 

4. Crowd Size 

Do averages of ever more forecast errors trend 

down? There is an  antecedent question:  Do such 

averages converge at all? Figure 3 shows running 

averages of US damages in excess of 10$M  due 

to natural disasters (left) and absolute percentage 

error in 10,198 expert forecasts (right). To be 

sure, these experts assess different quantities, but 

their absolute percentage errors can be plotted on 

an absolute scale reflecting the factor by which 

the forecast differs from the realization in 

absolute value. Such graphs depend on the 

ordering but random re–orderings will exhibit the 

same key feature: ever larger values keep popping 

up that prevent convergence. 

 

Fig. 3: Running averages for US damages in excess of 

10$M (right, Cooke et al 2014) and running averages 

for 10,189 expert absolute percentage errors. 

Experts’  absolute percentage errors in aggregate 

are very fat tailed and averages do not appear to 

converge.  Does this also apply to WOC 

forecasts? Figure 4 (left) shows 586 realizations 

in ascending order plotted with their  WOC 

forecasts. Note the very small realization with 

forecast differing by 8 orders of magnitude.   To 

avoid instabilities due to small realizations, we 

subset the 535 forecasts for which the realizations 

are greater or equal to 0.1. The running averages 

are shown in Figure 4 (right); the averages of ever 

larger sets of absolute percentage forecast  errors 

just keeps growing.  

Figure 4: 586 WOC forecasts against realizations (left) 

and running averages of 535 WOC MAPEs (right) 



The panel sizes in our dataset do not support tail 

analysis per panel, but the effect of number of 

forecasters can be seen in other ways. Figure 5 

plots all 586 WOC MAPEs against the panel size 

over which the median forecasts are averaged. 

The rank correlation in Figure 5 is weakly 

positive. WOC panel MAPES are not decreasing 

in panel size.  

Fig. 5: WOC MAPE against number of empanelled 

experts for 586 variables. 

5. Dependence / Diversity 

Increasing crowd size can have no effect if people 

all say the same thing. Diversity and dependence 

must be addressed. If we look only at expert 

forecasts in a panel, then of course they will be 

dependent for the simple reason that they are 

forecasting the same quantity. All forecasts of a 

volcanic eruption in m3 will be large, all forecasts 

of the weekly growth of the dome in m will be 

small. Apparently that’s not the right question. 

We should be asking about dependence in experts' 

forecast errors and error must be relative to the 

realization. Diversity usually refers to something 

like ‘different world views’. This is 

operationalized here as the amount of 

(dis)agreement in a panel.  

To capture diversity and dependence, we 

construct four dependence matrices for each 

panel. The  density@realization matrix assigns 

each (expert, variable) the (interpolated) 

percentile of the expert's probability distribution 

realized by the true value. We can compute 

correlations variable–wise or expert–wise.  It 

emerges that the mean correlation expert–wise is 

0.39 whereas for variables it is 0.06 (see appendix 

Table A1). Because of this, 40% of the total 

variance is due to the variables, and 8% is due to 

the experts (positive correlation reduces 

explanatory power).  The HiLo diversity matrix 

assigns the value –1 to an (expert, variable) if the 

expert’s point forecast (median) is above the 

realization, and assigns 1 otherwise. Total 

agreement (minimal diversity) entails that expert 

medians are either all above  or all below the 

realizations. The Tail diversity matrix assigns –1 

if the realization falls outside the expert’s 90% 

confidence band, and 1 otherwise. Total 

agreement (minimal diversity) means that all 

experts’ confidence bands catch or all fail to catch 

the realizations. The net agreement (agreements – 

disagreements) for {–1,1} matrices can be 

computed from the covariance matrices (see 

appendix with illustrative calculation in Table 

A2). To compare across studies, the net 

agreement is divided by the numbers of experts 

and variables. The MAPE matrix assigns the 

absolute percentage error  to each (expert, 

variable).  

The following picture emerges: regarding the 

density@realization, the experts display a 

moderate, not extreme, tendency to cluster. The 

variance decompositions of HiLo and 

density@realization are quite similar. MAPE 

differs in that both experts and variables have less 

explanatory power. The Tail matrix reverses this 

relation between experts and variables. This is a 

strong signal in the data, see appendix Fig A1. 

The experts cluster moderately regarding the  

placement of medians but not regarding the 

uncertainty bands. Nevertheless, the assumption 

of no dependence is statistically rejected for most 

experts (see Table A3). Table 1 gives rank 

correlations between the two performance metrics 

with other study covariates. Statistical 

significance is based on the Student T 

approximation to the distribution of rank 

correlation (Kendall et al 1939). Significance 

level 0.05  is ‘significant’, those in (0.05, 0.2] are 

labelled  ‘indicative’, others are “too weak”.  

Table 1 also indicates whether increasing values 

of the covariate is helpful(+), harmful(–) or too 



weak(?) for each performance metric. Negative 

correlations are helpful for MAPE, positive 

correlations are helpful for SA.  

The negative rank correlation between 

HiLoNetAgr and mean SA is significant: more 

DISagreement corresponds with higher SA in line 

with the diversity theme that agreement is 

harmful. However,  its negative correlation with  

WOC panel MAPE argues that  more agreement is 

helpful. The number of experts in a panel 

positively correlates with WOC panel MAPE; 

more experts tends to raise the mean absolute 

percentage error (harmful). This reflects the fat 

tails in the MAPE distribution: as forecast errors 

are averaged over more experts, the average error 

gets larger.    The positive correlation with Mean 

SA means that adding experts to the panel tends to 

raise the mean SA of experts (helpful). Higher SA 

is helpful for WOC Panel MAPE. 

Table 1: 40 studies, rank correlations of covariates with 

performance metrics(left), diagram of significant or 

indicative rank correlations (right).’+’ means helpful, 

‘–‘ means harmful. The rank correlation between nrex 

and HiLoNetAgr is -0.2 (not shown). 

   

 

 There are no strong relationships in Table 1. 

However, if we focus on TailNetAgr then a sharp 

relationship emerges. TailNetAgr correlates 

strongly positive with SA in some studies and 

strongly negative in others. As shown in Figure 6, 

this is driven by the mean statistical accuracy of 

all experts in a panel. The rank correlation in 

Figure 6 is 0.68.  

Figure 6: Correlation of Tail Net Agreement and 

statistical accuracy against mean expert statistical 

accuracy. 

If we project all 40 points on the vertical axis of 

Figure 4, their average rank correlation with SA is 

–0.08. However, plotting these values against the 

Mean SA reveals the following: if the panel on the 

whole is statistically accurate, then high Tail 

agreement corresponds to high expert SA, 

otherwise high Tail agreement corresponds to low 

SA. In simplistic consensus terms, if the 

consensus is right then high Tail agreement 

predicts good SA, if the consensus is wrong then 

low Tail agreement predicts good SA. For other 

forms of agreement the signal is similar but 

weaker, also for absolute percentage error. On 

reflection this result is hardly surprising, but 

probably not the result those claiming scientific 

consensus confers credibility hoped to hear.  

6. Conclusions 

Both expert MAPEs and WOC MAPEs appear to 

be very fat tailed, raising doubt about WOC 

MAPE convergence. WOC MAPE is minimally 

better than picking a random expert. Crowd size 

and diversity (HiLoNetAgr) work in opposite 

directions on the two performance metric and also 

opposite to each other. Dependence is not simply 

good or bad,  its complicated. 

(Cooke et al 2021) compared aggregation 

schemes in 49 post 2006 studies including 22 

smaller panels. For the these 49 panels, the WOC 

MAPE was 1,472.3. For the 40 panels studied here 

WOC MAPE was 23,220.86, underscoring the 

DIS advantage of larger panels. Instead of 



averaging the experts’ medians per panel, if we 

choose the expert with the best SA, the MAPE 

over the 40 panels would be 6.3 (appendix table 

A4).   

Instead of averaging medians, (Cooke et al 2021) 

took the medians of combined expert 

distributions. Equally weighted combinations 

yielded a MAPE of 3.8 and performance weighted 

combinations yielded 2.2. Method of aggregation 

is perhaps the most important contributor to 

wisdom of crowds and adding uncertainty 

quantification to point forecasts enables better 

aggregation methods.  Probabilistic crowds are 

wiser than point forecast crowds. In short, if you 

want better forecasts look for better experts not 

bigger crowds. 

Appendix A 

Table A1  Studies & important covariates; Expert 

MAPE is the average of experts’ MAPEs, each expert’s 

MAPE is the average absolute percentage error over all 

variables. WOC MAPE is the average MAPE of the 

average of experts’ medians for each variable. WOC 

MAPE is less or equal to Expert MAPE by Jensen’s 

inequality. Net agreement is per expert variable. 

IndEx’dTailNetAgr is the expected net Tail agreement 

if the experts’ 1s and –1s were randomly distributed;  if 

the experts were all statistically accurate the probability 

of 1 would be 0.9 and the expected agreement would be 

0.64. For HiLo the probability of 1 would be 0.5 and 

the independent expected agreement would be 0. 

Application of Jensen’s inequality: | [(Ʃi=1..n fi/n) − 

r]/r |  = (1/|r|) |(1/n)[(Ʃi=1..n fi)  − nr]| = (1/|r|)  | (1/n) 

Ʃi=1..n  (fi  − r) |  ≤ (1/(|r|n) ) Ʃi=1..n |(fi − r)| = (1/n) 

Ʃi=1..n |(fi – r)/r|. 

Matrix M = M(ex  × vb) of {–1,1}; nx = number of 

experts, nv = number of variables.  Net Agreement for 

expert x1 = NA(1) =  #Agreements−#Disagreements for 

x1.  x1 := x•1 = Ʃi–1…nv xi.  #agreements – 

#disagreements for x1 = NA(1) = i > 1 x1 • xi . C1 := i 

= 1...nx  Cov(x1, xi). 

Lemma:   NA(1) = nv C1 + (x1/nv)(i 1  xi) – nv. 

Pf: C1 = Cov(x1, i = 1...nx   xi)  = Cov(x1, i>1   xi) + 

VAR(x1)  =  i>1 x1 • xi /nv – E(x1)E(i>1   xi)  + VAR(x1).  

E(x1
2) = 1; i>1 x1 • xi  = nv C1  + nv E(x1)E(i > 1   xi) – 

nv [E(x1
2) – (E(x1))2]  =  nv C1 + nv E(x1) Ʃi ≥ 1 E(xi) – 

nv = nv C1 + (x1) (i >1   xi) /nv – nv.  



Remark 1: The net agreement for expert 1 per variable 

is NA(1)/nv.  The total net agreement for matrix M per 

(expert,variable) is  NA(Mnxnv) =  [Ʃi=1..nx 

NA(i)]/(nx×nv). 

Remark 2: Setting q=1 – p, the expected Net 

Agreement of independent { 1,−1} variables with P(1) 

= p is 

 p2+q2 −2pq = (p − q)2 = (2p – 1)2.   

With  (p + q)2 = 1, the  variance of Net Agreement is  

VAR =  1 –  (2p – 1)4 =  …. =   2pq(1 – 4pq). 

The Null Hypothesis is that for all cells in M the 

probability of 1 is constant  (0, 1) and independent for 

each cell.  Hence, M consists of nx×nv Bernoulli 

variables with probability p of ‘success’.  For expert 1, 

the agreement / disagreement with each other expert for 

each variable constitute (nx–1)×nv independent {–1, 1} 

variables, each with mean (2p–1)2 and variance 2pq(1–

4pq). The sum of such variables is approximately 

normal with mean nv×(nx – 1)×(2p – 1)2  and standard 

deviation  [nv×(nx – 1)×2pq×(1 – 4pq)]1/2.   

 Graphs for Variance Decomposition 

Let e denote experts and v denote variables. E(e|v) 

denotes conditional expectation of e given v and V(e|v) 

denotes conditional variance of e given v. The Law of 

Total Variance states that the overall variance V 

satisfies 

V = V(E(v|e)) + E(V(v|e)) = V(E(e|v)) + E(V(e|v)).   

V(E(v|e)/V is the fraction of V explained by variation 

over experts, V(E(e|v))/V is the fraction of V explained 

by variation over variables. The variance 

decomposition for the matrices dens@rls, HiLo and 

MAPE are similar and indicate moderate clustering of 

experts. For Tails the pattern is reversed,  more variance 

is explained by experts indicating clustering of 

variables. 

 

Fig. A1 Fractional variance for variables (blue) and 

experts (red) 

For HiLo and Tail net agreement, we compare the 

experts’ net agreement per expert–variable with the 

expected net agreement if the 1’s and –1’s were 

distributed independently over the matrix with the 

observed frequency of occurrence.  For HiLo the net 

agreement is much lager than expected if the 

distribution of {1, – 1} were independent. For Tail the 

difference is smaller, though not uniformly. 

Fig. A2 Net agreement per expert variable compared 

with net agreement of independent  {1, –1} to the matrix 

cells with equal probabilities of {1,–1}, for HiLo (left) 

and Tail (right). 

Table A2 shows the HiLo matrix for CO2em (Rennert 

et al 2022) (left) and the corresponding expert-wise 

covariance matrix (right). The calculation of Net 

Agreement for each expert is illustrated. 

Table A2: HiLo and covariance matrices for CO2em. 

The net agreement per expert is computed as 

nrvb*sumCov +expsum HiLo*sumHiLoMatrix / nrvb  –  

nrvb.  For expert 1 this is 11× 3.702479339+(–1)×(–

14)/11 – 11=31. 

Table A3 shows the net agreement for each of the 10 

experts in CO2em. For HiLo two experts’ net 

agreement falls within the 95% central range of the 

distribution under the null hypothesis, for Tail net 

agreement, only one.

Table A3 Net agreement for each of the 10 experts in 

CO2m. 
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Figure A3: WOC MAPE over 40 panels and MAPE of 

expert with best SA per panel. MAPE is on log scale. 
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