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Abstract: Averaging quantiles as a way of combining experts’ judgments is studied both 
mathematically and empirically. Quantile averaging is equivalent to taking the harmonic mean of 
densities evaluated at quantile points. A variance shrinkage law is established between equal and 
harmonic weighting. Data from 49 post 2006 studies is extended to include harmonic weighting 
in addition to equal and performance based weighting. It emerges that harmonic weighting has 
the highest average information and degraded statistical accuracy. The hypothesis that the 
quantile average is statistically accurate would be rejected at the 5% level on 28 studies and at 
the 0.1% level on 15 studies. For performance weighting these numbers are 3 and 1, for equal 
weighting 2 and 1. 
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1. Introduction 
 
Suppose one elicits cumulative distribution functions (cdf’s) F1,...Fn  and/or probability density 
functions (pdf’s) f1,...fn  from n experts. What should one do with this information?  Some argue 
against combining the distributions unless necessary for policy (Morgan 2009, 2014). The 
equally weighted combination of cdfs, EW(x) = (F1(x) + ...Fn(x))/n is the legacy method.  
Geometric averaging, or Geometric Weighting GW(x) = ∫z≤x Π fi (z)1/n dz / ∫ Π fi (u)1/ndu  has 
been advocated as being "independence preserving" (Laddaga 1977) and "externally Bayesian” 
(Genest and Zidek 1986).  Geometric averaging tends to concentrate mass in regions where the 
experts agree. This tendency is more pronounced with harmonic averaging or Harmonic 
Weighting (HW).  HW has found recent adherents who propose quantile averaging as an 
alternative to EW. As shown below, averaging quantiles is equivalent to harmonically averaging 
densities at the quantile points.   
 
These solutions all require the complete cdf’s. When only fixed percentiles, or quantiles, of each 
distribution, say 5, 50 and 95 percentiles, are given, the above solutions require imputing 
distribution functions based on the elicited quantiles. Popular approaches are fitting a parametric 
distribution (O’Hagen et al 2006) or minimizing information subject to quantile constraints 
relative to a background support (Cooke 1991).  Averaging quantiles is much simpler; one 
simply averages the 5 percentiles, the 50 percentiles and the 95 percentiles. There is no need to 
impute a distribution. Although not attested in any guidance of which the author is aware, it is 
often employed as a way of summarizing data without introducing additional assumptions. It has 
been adopted by the COVID-19 ForecastHub (https://covid19forecasthub.org/doc/ensemble/ ) 
(Ray et al 2020. Cremer et al 2021).  Examples of others using quantile averaging include 
(Christensen et al 2018, De Gooijer and Zerom 2019, De Vries and de Wal 2015, Flandoli et 

https://covid19forecasthub.org/doc/ensemble/
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al 2011, Sayedi et al 2020, Kim et al 2021). It has been promoted as an alternative to equal 
weighting  as horizontal averaging as opposed to vertical averaging (Lichtendahl et al 2013).  
 
Here, mathematical and empirical properties of quantile averaging are examined. The next  
section, shows that quantile averaging of distributions is equivalent to harmonically averaging 
their densities at the quantile points (taken from Bamber et al 2016, Colson and Cooke 2017) . 
and  derives a variance shrinkage law: Defining Ave Var = (1/n)Σ Var(Fi), simple calculations 
show: 
  
Var EW = Var of means + Ave Var  ≥  Ave Var ≥  Var HW. 
 
The conditions for equality are different for the two inequalities.  
 
Variance shrinkage raises the question whether HW invites overconfidence.  A database of 49 
post 2006 studies (Cooke et al 2021) has been extended to include HW combinations for each 
study. Section 3 contains a comparison of PW (item specific performance based weighting) , EW 
and HW at the study level. The following picture emerges: Whereas PW and EW as statistical 
hypotheses would be rejected at the 5% level on 3 resp 2 of the 49 studies, HW is rejected on 28 
(57%) studies. On 15 (31%) studies rejection is at the 0.1% level. HW’s informativeness on 
average exceeds that of EW and is comparable to that of PW.  Section 3 gives results and 
examines whether study parameters could predict the poor statistical performance of HW. 
Section 4 shows that HW is appropriate when interpolating, as opposed to combining, 
distributions. A final section gathers conclusions. Supplementary information gives 
mathematical details. All data and code are available from the author on request. 
 

2. Methods  
Let F and G be continuous invertible cdf’s from experts 1 and 2, with densities f, g.  Let HW, hw 
denote respectively the cdf and pdf of the result of averaging the quantiles of F, G: 
 

HW-1(r) = ½ ( F-1(r) + G-1(r) ).                                            (1) 
 
A good intuitive interpretation (Andrea Bevilacqua, personal communication) notes that HW  
takes the average of the experts' median values and a confidence interval whose width is the     
average of the experts' confidence intervals.  The position of the median within the confidence 
interval depends on the distributions. 
 
To gain further insight into eqn 1, take derivatives of both sides: 
 

1/hw(HW-1(r)) = ½ (1/f (F-1(r)) + 1/g(G-1(r))),                                (2) 
 
                                                                                           2 

                 hw(HW-1(r))  =    .                                     (3) 
                                                                         1/f (F-1(r)) + 1/g(G-1(r))                                                   
 
Eqn 3 says that hw is the harmonic mean of f and g, evaluated at points corresponding to the r-th 
quantile of each distribution.  The harmonic mean of n numbers strongly favors the smallest of 
these numbers: the harmonic mean of 0.01 and 0.99 is 0.0198, the geometric mean is 0.099 and 
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the average is 0.5. To appreciate the effect of this, consider a flexible and tractable class of 
distributions on the unit interval: 

 a > 1; b > 0   (4) 
 
Figure 1 shows two expert distributions from this class, F and G, and also shows HW, EW and 
GW. 

 
Figure 1:F(a=5, b=0.5), G(a=5, b=5), HW = quantile average, EW = Arithmetic average of distributions, GW = 
geometric average of distributions. 
  
For each x on the horizontal axis, the slope of HW(x) is close to the smaller of the slopes of F(x) 
and G(x); causing HW(x) to grow slowly for small and large x, resulting in a concentrated 
distribution. EW in contrast has a much wider confidence interval. Note that HW is more 
concentrated than GW.  
 
Variance shrinkage is based on the Cauchy Schwarz inequality: for any x,y ∈ ℝn, (Σxi

2)(Σyi
2) ≥ 

(Σxiyi)2 with equality if and only the xi and yi are proportional.  Putting yi = 1, this says  
 

nΣxi
2 ≥ (Σxi)2 = Σij xixj                                                                                 (5) 

 
with equality if and only if the xi  are equal. 
 
The cdf of the quantile average of random variables Y1,...Yn  with continuous invertible cdf’s is 
the cdf of HW = (1/n)ΣXi when the Xi has the same cdf as Yi and all Xi have rank or Spearman 
correlation  r(Xi, Xj) =1. The joint distribution of (X1,...Xn) is such that if values x1 ,...xn are  
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sampled and if x1 realizes the qth quantile of X1, them, since all variables are completely rank 
correlated  xi realizes the  qth quantile of Xi, i = 2,...n. Hence HW averages the quantiles of 
Y1,...Yn.    
 
Although the Xi are completely rank correlated, their product moment correlation ρ need not be 
1. If r(Xi, Xj) =1 then Xi = φ(Xj) for some strictly monotonic transformation φ, whereas ρ(Xi, Xj) 
= 1 if and only if  Xi = aXj + b for some positive a and some b ∈ ℝ. If U is uniform on (0,1), 
then r(U,U10) = 1 but ρ(U,U10) = 0.66. From the Pearson formula1 relating rank and product 
normal correlations for two normal variables we infer that ρ(Xi, Xj) = 1 if and only if r(Xi, Xj) =1 
for normal variables Xi, Xj. 
 
If the Xi have means µi and variance σi

2 it follows that  
 

Var(HW) = (1/n2)[Σσi
2 + Σ i ≠ jCij ];  Cij = Cov(xi, xj).                                          (6) 

 
Eqn 6 entails that Var(HW)  does not depend on the means and therefore is invariant under 
adding arbitrary location parameters to the variables. Pithily put, the uncertainty of HW does not 
depend on how near or far apart the variables are.   
 
Proposition 1: (1/n)Σσi

2
 ≥ Var(HW)  with equality if and only if  the σi

2 are all equal and ρ(Xi, 
Xj) = 1. 
 
pf:   (1/n)Σσi

2
 –  Var(HW) = 

  
(1/n) Σσi

2
 –  (1/n2)[Σσi

2 + Σ i ≠ j Cij] =  [(n–1)Σσi
2 – Σ i ≠ j Cij]/ n2 =[nΣσi

2  – Σ i j Cij]/n2                 (7) 
 

where  Cii = σi
2.  ρ(Xi, Xj) =Cij /σiσj  ≤ 1 with equality if and only if Xi=  aXj + b, ai > 0, b ∈ ℝ. 

Therefore, with (5) 
 

Σi,j Cij ≤ Σi,j σiσj ≤ nΣσi2                                                                    (8) 
 
so that the shrinkage [nΣσi2  – Σij Cij]/n2  is non-negative. The first inequality in (8) holds 
with equality if and only if ρ(Xi, Xj) = 1 while the second holds if and only if the σi are equal   
◻  
 
For variables with unit product moment correlation the first inequality always holds with 
equality in (8), but not the second. Standardizing a variable by dividing by its standard 
deviation gives the variable unit variance. Standardized versions of U and U10 are 
completely rank correlated but the shrinkage is 17% (see Fig 2 left panel).  
 
A similar shrinkage formula based on the means characterizes the difference between the 
variance of an equally weighted combination of distributions and the average variance. For 

                                                 
1 For normal variables ρ = 2× sin(r × π/6). 
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variables X1,...Xn,  with densities f1,...fn,  variances σi2  and means µi  let EW denote the 
distribution with density (1/n)Σfi.  We have  
 
Proposition 2: Var(EW)  –  (1/n)Σσi2  =  [nΣµi2  – Σij µiµj]/n2 ≥ 0.    
 
Pf:  Var(EW) = ∫x2(Σfi (x)/n)dx –  Σµi2/n + Σµi2/n – (Σµi/n)2    
 

= (1/n)Σσi2 + (1/n)Σµi2  –Σij  µiµj/n2  =  (1/n)Σσi2 +   [nΣµi2 – Σ i j  µiµj]/n2 . (9) 
 
The last term is non-negative by the Cauchy Schwarz inequality and equals 0  if and only if 
the µi  are equal. ◻ 
 
We recognize eq(9) as the mean of the variances of the Fi  plus the variance of the means of 
the Fi. For the special case n = 2, eqn (9) becomes 
 

Var(EW) = ½ (σ12 + σ22) + ¼(µ1 - µ2)2                                                           (10) 
 

   
Figure 2:  Left  panel, cdf’s of powers of uniform variables standardized to have unit variance; Right panel, 
normal variables N(µ,σ2) with unit variance.  The Quantile average HW is shown on both panels 
 
Figure 2 compares powers of uniforms with unit variance (left panel) and normals with 
unit variance (right panel). The shrinkage Ave Var – Var HW on the left is due to the 
differences between rank and product moment correlation, while that of Var EW – Ave Var  
on the right is due to differences in means.  The conditions for equality are different for the 
above propositions, but we can put them together to define a total shrinkage 
 

 total shrinkage =  Var(EW) – Var(HW) = [nΣµi2 – Σi j  µiµj +  nΣσi2  – Σi j Cij]/n2.      (11) 
 

Figure 2 suggests that when experts’ central masses have little overlap, the shrinkage from 
(9)  can be quite severe. 

 
3. Results 
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The TU Delft expert judgment data base contains the 49 studies since 2006 involving 530 
experts assessing, in addition to the variables of interest, 580 calibration variables from 
their field to which true values were known. Of these, 140 experts (26%) would not be 
rejected as statistical hypotheses at the traditional 5% level. The study compares EW and 
performance weighted combinations (PW) in which experts’ distributions are weighted 
according to their statistical accuracy and informativeness (see Cooke 1991, an updated 
exposition is in Colson and Cooke 2017, for references see Cooke et al 2021 and 
supplementary online information).  For the present study the HW combinations have been 
added for each study. Four studies (with asterisks in Table 1) involved experts who did not 
answer all calibration variables.  These experts were dropped, causing the numbers in 
those studies to differ somewhat from those in (Cooke et al 2021).  For comparing the 
three combination schemes PW, EW and HW  this is immaterial. 
  
The mean statistical accuracy scores of all three combinations are above the traditional 5% 
rejection threshold for simple hypothesis testing (for the geomean or geometrical average 
this holds only for PW and EW). On 28 of the 49 studies (57%) HW would be rejected at the 
5% level, and on 15 (31%), rejection would be at the 0.1% level.  This contrasts with EW  
and PW  where 2  resp. 3  combinations would be rejected at the 5% level. On average, 
HW’s informativeness was substantially greater than EW’s and slightly better than PW’s.  
PW  has the highest combined score (the product of statistical score and informativeness) 
in 40 studies, EW on 5 studies and HW  on 4 studies (this is an in-sample comparison with 
PW,  for out-of-sample comparisons see Colson and Cooke 2017, Cooke et al 2021 and 
supplementary online information). The combined score is an asymptotic strictly proper 
scoring rule for average probabilities. 
 
  PW EW HW     
  SA inf comb SA inf comb SA inf comb #calib vbls #exprts 

Arkansas 0.50 0.34 0.17 0.39 0.20 0.08 5.55E-02 0.64 3.55E-02 10 4 

Arsenic D-R 0.04 2.74 0.10 0.06 1.10 0.07 7.99E-04 1.32 1.06E-03 10 9 

ATCEP Error 0.68 0.23 0.16 0.12 0.25 0.03 5.99E-04 1.07 6.38E-04 10 5 

Biol agents 0.68 0.61 0.41 0.41 0.24 0.10 3.60E-02 0.88 3.18E-02 12 12 

CDC ROI 0.72 2.31 1.66 0.23 1.23 0.29 7.56E-01 1.57 1.18E+00 10 20 

CoveringKids 0.72 0.43 0.31 0.63 0.27 0.17 9.03E-01 0.60 5.38E-01 10 5 

CREATE 0.39 0.28 0.11 0.06 0.21 0.01 2.77E-04 0.52 1.44E-04 10 7 

CWD 0.49 1.22 0.60 0.47 0.93 0.44 7.07E-01 1.49 1.06E+00 10 14 

Daniela 0.55 0.63 0.35 0.53 0.17 0.09 1.82E-01 0.52 9.48E-02 7 4 

dcpn_fistula 0.12 1.31 0.16 0.06 0.62 0.04 8.78E-08 1.13 9.88E-08 10 8 

eBBP 0.83 1.41 1.17 0.36 0.32 0.11 8.04E-02 0.95 7.67E-02 15 14 

EffusiveErupt 0.66 1.12 0.75 0.29 0.80 0.23 2.65E-02 1.51 3.99E-02 8 14 

Erie Carps* 0.66 0.86 0.57 0.18 0.28 0.05 3.87E-01 0.75 2.92E-01 15 10 

FCEP Error 0.66 0.57 0.38 0.22 0.10 0.02 1.75E-05 0.77 1.35E-05 8 5 

Florida 0.76 1.13 0.86 0.76 0.46 0.34 6.98E-02 0.88 6.15E-02 10 7 

GL-NIS 0.93 0.21 0.19 0.04 0.31 0.01 5.53E-02 0.84 4.66E-02 13 9 

Gerstenberger 0.93 1.10 1.02 0.64 0.48 0.31 8.10E-02 0.97 7.82E-02 14 12 
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Goodheart 0.71 0.96 0.68 0.55 0.28 0.15 6.83E-01 0.89 6.07E-01 10 6 

Hemophilia 0.31 0.49 0.15 0.25 0.20 0.05 3.12E-01 0.78 2.43E-01 8 18 

IceSheet2012 0.40 1.55 0.62 0.49 0.52 0.25 7.96E-02 1.20 9.56E-02 11 10 

Illinois 0.34 0.65 0.22 0.62 0.26 0.16 2.37E-03 0.79 1.88E-03 10 5 

Liander 0.23 0.52 0.12 0.23 0.48 0.11 2.81E-03 1.20 3.36E-03 10 11 

Nebraska 0.03 1.45 0.05 0.37 0.70 0.26 2.40E-05 1.19 2.86E-05 10 4 

Obesity 0.44 0.51 0.22 0.07 0.24 0.02 6.68E-04 0.74 4.98E-04 10 4 

PHAC T4 0.18 0.35 0.06 0.30 0.21 0.06 2.02E-02 0.70 1.41E-02 13 10 

San Diego* 0.15 0.76 0.12 0.15 1.01 0.15 3.02E-03 1.58 3.32E-02 10 8 

Sheep Scab 0.64 1.31 0.84 0.66 0.78 0.52 1.15E-02 1.41 1.63E-02 15 14 

SPEED 0.68 0.78 0.53 0.52 0.75 0.39 2.97E-02 1.17 3.46E-02 16 14 

TdC 0.99 1.26 1.24 0.17 0.36 0.06 1.24E-02 1.08 1.34E-02 17 18 

Tobacco 0.69 1.06 0.73 0.20 0.45 0.09 2.11E-01 0.71 1.49E-01 10 7 

Topaz 0.41 1.46 0.60 0.63 0.92 0.58 8.66E-05 1.53 1.32E-04 16 21 

umd_nremoval 0.71 1.99 1.40 0.07 0.80 0.05 2.40E-03 1.22 2.93E-03 11 9 

Washington 0.20 0.72 0.14 0.15 0.53 0.08 4.21E-01 0.86 3.63E-01 10 5 

GeoPol 0.42 1.15 0.49 0.20 0.56 0.11 5.02E-06 1.28 6.43E-05 16 9 

BFIQ 0.69 0.57 0.40 0.42 0.29 0.12 1.15E-02 0.67 7.78E-03 11 7 

IQEarn 0.70 0.62 0.44 0.70 0.57 0.41 4.54E-01 0.90 4.09E-01 11 8 

USGS 0.51 1.51 0.77 0.06 0.80 0.05 4.49E-04 1.54 6.90E-04 18 32 

UK 0.22 0.66 0.14 0.13 0.33 0.04 1.19E-01 0.78 9.31E-02 10 6 

Spain 3.59E-05 0.69 0.00 1.22E-05 0.23 0.00 1.96E-08 0.80 1.56E-08 10 5 

Italy 0.45 0.47 0.21 0.22 0.20 0.04 1.25E-01 0.49 6.11E-02 10 4 

France 0.65 1.96 1.28 0.08 0.43 0.03 2.66E-02 0.92 2.44E-02 10 5 

all_CDC 0.97 2.54 2.46 0.25 1.08 0.27 2.06E-04 1.74 3.58E-04 14 48 

Puig-GDP 0.93 0.99 0.92 0.06 0.43 0.03 5.41E-04 1.25 6.75E-04 13 9 

Puig-oil* 0.13 0.61 0.08 0.88 0.20 0.18 2.23E-10 1.07 2.38E-10 20 6 

PoliticalViolence* 0.13 1.82 0.23 0.44 1.05 0.46 1.73E-07 1.73 8.19E-16 21 16 

Brexit food 0.55 0.84 0.46 0.11 0.27 0.03 7.07E-01 1.26 8.88E-01 10 10 

Tadini Quito 0.93 0.85 0.79 0.42 0.23 0.10 2.02E-02 0.95 1.92E-02 13 8 

Tadini Clermont 0.75 1.14 0.86 0.33 0.28 0.09 9.28E-01 0.28 2.63E-01 13 12 

ICE_2018 0.94 0.93 0.87 0.13 0.55 0.07 8.97E-02 1.22 0.11 16 20 

Ave 0.54 1.01 0.55 0.31 0.49 0.15 0.16 1.03 0.14     

Geomean 0.37     0.19     5.1E-03         

#SA< 0.05 3     2     28         

#SA < 0.001 1     1     15         

# Best     40     5     4     

Table 1: Results from 49 post 2006 structured expert judgment studies. “SA” denotes statistical accuracy, 
“Inf” denotes informativeness, “comb” denotes the product of these two. Statistical accuracy is the P-value at 
which the hypothesis of statistical accuracy would be falsely rejected. Informativeness is Shannon relative 
information with respect to a background measure. The product of these two is an asymptotic strictly proper 
scoring rule for average probabilities. Details for scoring are in (Cooke et al 2021, Colson and Cooke 2017). 
Numbers of experts and calibration variables are shown. Asterisks denote studies in which one or more 
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expert did not assess all calibration variables.  Studies with bolded names were the 33 studies analyzed in 
detail in (Colson and Cooke 2017).  
  
Statistical accuracy and informativeness are metrics for measuring performance as 
uncertainty assessors. Forecast accuracy based on medians is also important. The relative 
forecast error of various combination schemes was extensively studied in (Cooke et al 
2021) from which the following information is extracted. The variations of performance 
weighted combinations are explained in the supplementary online information. 
 
  |(PWi - rls)/rls| |PWg - rls|/rls |PWn - rls|/rls |(EW - rls)/rls| |PWQ - rls|/rls |(EWQ - rls)/rls| 
Ave 2.2 2.7 2.3 3.8 278.6 1472.3 
Stdev 11.8 16.0 14.7 45.2 5646.8 33299.8 
Geomean 0.38 0.40 0.37 0.43 0.42 0.63 
Table 2: Average and standard deviation of absolute dimensionless forecast errors for item specific 
performance weights (PWi), global performance  weights (PWg), non-optimized global performance weights 
(PWn), equal weights (EW), performance weighted average of medians (PWQ) and equal weighted average of 
medians (EWQ) and corresponds to HW. “rls” denotes “realization” , the true values of the random variables.   
 
As quantile averaging is often used without calibration variables, it could be of interest to 
anticipate poor statistical performance of quantile averaging based only on study 
characteristics without reference to the true values.  The variance shrinkage laws are 
suggestive but when variables are measured in different physical units, scale invariant 
tools are required.  The Spearman rank correlation matrix of HW statistical accuracy with 
study characteristics (Table 3) does not show strong relationships.  The number of experts 
and number of calibration variables are rank correlated in this data set at 0.53;   indeed, 
studies with modest budgets tend to follow the guidance of 10 calibration variables and at 
least 4, preferably 6 experts.  Better resourced studies can afford to raise both numbers. 
 

 
 

 

 

 

Table 3 Rank correlation matrix for Harmonic Weighting. Max Inf is the maximal information score of an expert in a panel. 

From Table 3, neither the number of calibration variables nor the number of experts exerts a 
strong influence on the statistical accuracy of the quantile average.  However, each tends to have 
a negative  impact on HW’s statistical accuracy.  A possible explanation is that harmonic 
averaging leans heavily towards the smallest value of the densities.  This would explain the 
negative correlation with Max Inf as this concentrates the mass of HW in a smaller region. 
Adding more experts increases the chance that one will have very high information and that will 
shrink the bands of HW. Both Max Inf and #experts correlate positively with # calib vbls. 
 
To appreciate the problems, Figures 3 and 4 show range graphs for two studies.  For each 
calibration variable, the experts’ 90% confidence intervals are shown as horizontal lines 
and the medians as dots. The bottom confidence intervals are those of HW.  The realization 

Spearman Rank Correlation matrix HW 

 
#calib vbls #experts Max Inf 

HW Stat. accuracy -0.15 -0.09 -0.25 
#calib vbls 

 
0.53 0.38 

#experts 
  

0.62 
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is shown as a red vertical line. IQearn has one of the best performances for HWSA whereas 
puig-oil has one of the poorest. In both studies the PW  and EW  have good statistical 
accuracy (see captions).  Both studies have non-overlapping confidence bounds. This has 
the effect of increasing the support of the uniform background measures relative to the size 
of the confidence intervals and thus increasing the average informativeness of the experts. 
Indeed, a confidence interval of [5, 6] looks more informative against a background of [1, 
100] than against [1, 10].  The average information for IQearn is 1.29 while that of puig-oil 
experts is 1.25. The key difference is the placement of the realization (vertical red line) 
relative to the experts’ assessments.  That, of course, cannot be inferred from study 
characteristics. Without knowing the realizations, it is impossible to anticipate the poor 
performance of HW  for puig-oil. 

 

              
 

Figure 3:  Range graphs for the case IQearn. Experts’ [5%, 95%] confidence intervals are given as horizontal 
lines, medians as dots, the realization is given as a red vertical line. HW  is added as 9th expert at the bottom of 
each graph. In this case the statistical accuracies are: PW = 0.7   EW = 0.7   HW =  0.45. The experts’ average 
information with respect to the uniform background is 1.29. 
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Figure 4:  Range graphs for the case puig-oil. Experts’ [5%, 95%] confidence intervals are given as 
horizontal lines, medians as dots, the realization is given as a red vertical line. HW is added as 7th expert at the 
bottom of each graph. In this case the statistical accuracies were: PW = 0.13   EW = 0.88   HW =  2.23E-10. 
The experts’ average information with respect to the uniform background is 1.25. 
 

4. When quantile averaging is appropriate: interpolating versus combining. 
 
Rather than combining distributions over a single uncertain variable, we are often 
confronted with situations in which we must interpolate distributions at different values of 
some underlying parameter.  Oppenheimer et al (2016) discuss an application in which 
experts quantify uncertainty in crosswind dispersion of an airborne pollutant for different 
downwind distances.   According to the standard Gaussian plume model, the crosswind 
standard deviation of the time integrated concentration at downwind distance x is σc(x) = 
axb  for (poorly constrained) constants a, b, (a, b >0).  Suppose experts quantify their 
uncertainty in σc(x) for x=10km, and 20km. Barring exceptional circumstances, the 
uncertainty σc(x) increases with x.  
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Suppose we want the distribution for σc(15).   If we take an equal weight combination of 
the distributions of σ(10) and σ(20) we may well find that the result has greater variance 
than that of σ(20).  The variance shrinkage laws allow us to see exactly when that happens. 
Put n = 2, Var(σ(10)) =V1, Var(σ(20)) = V2, with means µ1, µ2.  For the equal weight 
combination of the uncertainties in σ(10) and  σ(20)  eqn 10 says: 
 

Var(EW) = ½ (V1 + V2) + ¼(µ1 - µ2)2 > V2  ⇔  V1 + ½(µ1 - µ2)2 > V2                                (12) 
 
Such an outcome would be unacceptable.  By the same token, eqn 7 says that the variance 
of HW  is always less than or equal to the average of the variances of σc(10) and σc(20) 
with equality holding in case these distributions are normal with the same variance.  These 
remarks apply mutatis mutandis when interpolating at other distances between 10km and 
20km.    In cases of interpolation like the above, quantile averaging provides a reasonable 
solution, whereas equal weighting of distributions does not.  

 
5. Conclusion 

 
If all experts say the same thing, then the three schemes considered here are all equivalent. 
Data show, however, that there is a great deal of variation in experts’ assessments and in 
their performance.  Accordingly, there is great variation in performance of expert 
combinations. Cherry picked studies can produce very different conclusions. Reliable 
conclusions should therefore be based on a large set of studies of known provenance. With 
regard to HW we may conclude that it achieves higher informativeness at the expense of 
statistical accuracy.  In 57% of the studies this results in overconfidence, in 31% the 
overconfidence is severe..  The forecast error of averaging medians is, in aggregate, much 
larger than that of EW or PW.  However, when we are interpolating between distributions, 
rather than combining them,  quantile averaging would seem appropriate.   
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