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Supplementary Online Material Structured Expert Judgment for Asian Carp with Out-of-

Sample Validation  

 

This supplementary online material contains details on the expert scoring measures, and on the 

expert data analysis for the Asian Carp study. 

 

1. Performance Measures and Combination: the classical model 

 

There are two generic, quantitative measures of expert performance, calibration and information. 

Loosely, calibration measures the statistical likelihood that a set of experimental results 

correspond, in a statistical sense, with an expert’s assessments. More precisely, it is the p-value 

at which we would falsely reject the hypothesis that an expert's probability statements were 

accurate. In this study the 5, 50 and 95 percentiles, or quantiles, were elicited from each expert 

for each of the continuous variables.  Hence, each expert divides the range of possible outcomes 

of each variable into 4 intervals: less than or equal to the 5% value, greater than the 5% value 

and less than or equal to the 50% value, etc. The probabilities for these intervals are expressed as 

a vector  

 

p= (p1,p2, p3, p4)  = (0.05, 0.45, 0.45, 0.05).  

 

Calibration 

If N quantities are assessed, each expert may be regarded as a statistical hypothesis, namely that 

each realization falls in one of the four inter-quantile intervals with probability vector p. Suppose 

we have realizations x1,…xN of these quantities. We may then form the sample distribution of the 

expert's inter quantile intervals as: 

 

 s1(e) = #{ i  |  xi  ≤ 5% quantile}/N  

 s2(e) = #{ i  | 5% quantile < xi ≤  50% quantile}/N 

 s3(e) = #{ i  | 50% quantile < xi ≤  95% quantile}/N 

 s4(e) = #{ i  | 95% quantile < xi }/N 

 s(e) = (s1,…s4) 

 

Note that the sample distribution depends on the expert e. If the realizations are indeed drawn 

independently from a distribution with quantiles as stated by the expert then the quantity 

 

 2NI(s(e) | p) = 2N ∑i=1..4 si ln(si / pi)              (1) 

 

is asymptotically distributed as a chi-square variable with 3 degrees of freedom.  This is the 

likelihood ratio statistic, and I(s | p) is the relative information of distribution s with respect to p. 

Extracting the leading term of the logarithm  yields the familiar chi-square test statistic for 

goodness of fit. There are advantages in using the form in (1) (Cooke 1991).   

 

If after a few realizations the expert were to see that all realization fell outside his 90% central 

confidence intervals, he might conclude that these intervals were too narrow and might broaden 

them on subsequent assessments. This means that for this expert the uncertainty distributions are 

not independent, and he learns from the realizations. Expert learning is not a goal of an expert 
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judgment study. Rather, the problem owner wants experts who do not need to learn from the 

elicitation. Independence is not an assumption about the expert's distribution but a desideratum 

of the problem owner. Hence the decision maker scores expert e as the statistical likelihood of 

the hypothesis  

 

He: "the inter quantile interval containing the true value for each variable is drawn 

independently from probability vector p."   

 

A simple test for this hypothesis uses the test statistic (1), and the likelihood, or p-value, or 

calibration score of this hypothesis, is: 

 

 Cal(e) =  p-value(e) = Prob{2NI(s(e) p)≥  r | He} 

 

where r is the value of (1) based on the observed values x1,…xN. It is the probability under 

hypothesis He that a deviation at least as great as r should be observed on N realizations if He 

were true. Calibration scores are absolute and can be compared across studies. However it is 

appropriate to equalize the power of the different hypothesis tests by equalizing the effective 

number of realizations. To compare scores on two data sets with N and N’ realizations, we 

simply use the minimum of N and N' in (1), without changing the sample distribution s. 

The calibration score uses the language of simple hypothesis testing to measure the degree to 

which the data supports the hypothesis that the expert's probabilities are accurate. Low scores, 

near zero, mean that it is unlikely that the expert’s probabilities are correct. High scores, near 1, 

indicate good support. 

 

Information 

The second scoring variable is information. Loosely, the information in a distribution is the 

degree to which the distribution is concentrated. Information cannot be measured absolutely, but 

only with respect to a background measure. Being concentrated or "spread out" is measured 

relative to some other distribution.  

 

Measuring information requires associating a density with each assessment of each expert. To do 

this, we use the unique density that complies with the experts' quantiles and is minimally 

informative with respect to the background measure. This density can easily be found with the 

method of Lagrange multipliers. For a uniform background measure, the density is constant 

between the assessed quantiles.  The background measure is not elicited from experts as indeed it 

must be the same for all experts; instead it is chosen by the analyst. 

 

The uniform and log-uniform background measures require an intrinsic range on which these 

measures are concentrated. The classical model implements the so-called k% overshoot rule: for 

each item we consider the smallest interval I = [L, U] containing all the assessed quantiles of all 

experts and the realization, if known. This interval is extended to  

 

 I
*
 = [L

*
, U

*
]; L

* 
= L – k(U-L)/100;  U

*
 = U + k(U-L)/100.   

 

The value of k is chosen by the analyst. A large value of k tends to make all experts look quite 

informative, and tends to suppress the relative differences in information scores.  The default 
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value k = 10 is used here. The information score of expert e on assessments for uncertain 

quantities 1…N is 

 

Inf (e) =Average Relative information w.r.t. Background = (1/N) ∑i = 1..N I(fe,i | gi)  

 

where gi  is the background density for variable i  and fe,i is expert e's density for item i. This is 

proportional to the relative information of the expert's joint distribution given the background, 

under the assumption that the variables are independent. As with calibration, the independence 

assumption reflects a desideratum of the decision maker and not an elicited feature of the expert's 

joint distribution. The information score does not depend on the realizations. An expert can give 

himself a high information score by choosing his quantiles very close together. The information 

score of e depends on the intrinsic range and on the assessments of the other experts. Hence, 

information scores cannot be compared across studies.  

 

The above information score is chosen because it is familiar, tail insensitive, scale invariant and 

"slow". The latter property means that relative information is a slow function; large changes in 

the expert assessments produce only modest changes in the information score. This contrasts 

with the likelihood function in the calibration score, which is a very "fast" function. This causes 

the product of calibration and information to be driven by the calibration score. 

 

Combination: Decision Maker 

The combined score of expert e will serve as an (unnormalized) weight for e: 

 

w(e) = Cal (e)  Inf (e)   (Cal(e)  ),    (2) 

 

where  (Cal(e)) = 1 if Cal(e)  , and is zero otherwise. The combined score thus depends on 

; if Cal(e)  falls below cut-off level , expert e is unweighted. The presence of a cut-off level is 

imposed by the requirement that the combined score be an asymptotically strictly proper scoring 

rule.  That is, an expert maximizes his/her long run expected score by and only by ensuring that 

his probabilities p= (0.05, 0.45, 0.45, 0.05) correspond to his true beliefs (Cooke, 1991).  is 

similar to a significance level in simple hypothesis testing, but its origin is to measure  

‘goodness’ and not to reject hypotheses.  

 

A combination of expert assessments is called a "decision maker" (DM). All decision makers 

discussed here are examples of linear pooling; the classical model is essentially a method for 

deriving weights in a linear pool. "Good expertise" corresponds to good calibration (high 

statistical likelihood, high p-value) and high information. Weights that reward good expertise 

and pass these virtues on to the decision maker are desired.  

 

The reward aspect of weights is very important. We could simply solve the following 

optimization problem: find a set of weights such that the linear pool under these weights 

maximizes the product of calibration and information. Solving this problem on real data, one 

finds that the weights do not generally reflect the performance of the individual experts. As an 

expert's influence on the decision maker should not appear haphazard, and "gaming" the system 

with assessments tilted to achieve a desired outcome should be discouraged, we must impose a 

strictly scoring rule constraint on the weighting scheme.   
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The scoring rule constraint requires the term  (Cal(e)  ) in eq (2),  but does not indicate what 

value of α we should choose. Therefore, we choose α to maximize the combined score of the 

resulting decision maker. Let DMα(i) be the result of linear pooling for any item i with weights 

proportional to (2): 

 

DMα(i) = ∑e=1,..E wα(e) fe,i  / ∑e=1,..E wα(e)                 (3) 

 

The optimized global weight DM is DMα* where α* maximizes 

 

 calibration score(DMa*) × information score(DMα*).    (4) 

 

This weight is termed global as the information score is based on all the assessed calibration 

items. 

A variation on this scheme allows a different set of weights to be used for each item. This is 

accomplished by using information scores for each item rather than the average information 

score: 

 

wα (e,i) = 1α(calibration score)×calibration score(e) × I(fe,i | gi)     (5) 

 

For each α we define the Item weight DMα  for item i as 

 

IDMα(i) = ∑e=1,..E wα(e,i) fe,i  / ∑e=1,..E wα(e,i)    (6) 

 

 

The optimized item weight DM is IDMα* where α* maximizes  

 

 calibration score(IDMa) × information score(IDMα).   (7) 

 

The non-optimized versions of the global and item weight DM’s are obtained by setting  = 0. 

 

In this study the global and item weighting schemes are identical. 

 

 

2.  Details of the Asian Carp study 

 

The Briefing  booklet sent to the experts is available here: 
https://www.dropbox.com/s/8ingqnc8389znwl/Briefing%20Booklet%20Erie%20Carps_Final.pdf 

 

 

Table 1. List of participating experts. In the Results section, experts are not listed in the 

same order as in this table 

Name Title, affiliation and expertise 

Duane C. 

Chapman, 

MSc 

Research Fish Biologist, United States Geological Survey, River Studies: 

Invasive Carp Research Program. Chapman is affiliated with the Asian Carp 

Working Group, Asian Carp Rapid Response Team, Mississippi River Basin 

https://www.dropbox.com/s/8ingqnc8389znwl/Briefing%20Booklet%20Erie%20Carps_Final.pdf
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Panel on Aquatic Nuisance Species and the American Fisheries Society. 

Joseph V. 

DePinto, 

Ph.D. 

Senior Scientist, Limnotech. A former professor of environmental engineering, 

DePinto conducts aquatic ecosystem structure and functioning research, and 

designs education and management programs, with emphases on the Great 

Lakes region.  

Tomas O. 

Höök, Ph.D. 

Assistant Professor of Fisheries and Aquatic Sciences, Purdue University, 

Department of Forestry and Natural Resources. Focuses on fish and fisheries 

ecology in the Laurentian Great Lakes. 

Timothy B. 

Johnson, 

Ph.D. 

Research Scientist, Ontario Ministry of Natural Resources, Great Lakes 

Fisheries Division. Johnson’s expertise is in bioenergetics models, specifically 

for Lake Erie, and has studied the biology of invasive round goby.  

Roger L. 

Knight 

Lake Erie Fisheries Program Administrator, Ohio Department of Natural 

Resources, Division of Wildlife. Serves on the Lake Erie Committee and the 

Council of Lake Committees (Great Lakes Fisheries Commission) 

Stuart A. 

Ludsin, 

Ph.D. 

Associated Professor, The Ohio State University Department of Evolution, 

Ecology and Organismal Biology. Ludsin’s expertise is on mechanisms that 

regulate fish population and community structure and dynamics, food web 

interactions and natural resource management. 

Charles P. 

Madenjian, 

Ph.D.  

Research Fishery Biologist, United States Geological Survey, Western Basin 

Ecosystems Branch, Lake Michigan Section. Madenjian is a quantitative 

fisheries biologist and has focused on fish bioenergetics modeling in the Great 

Lakes.  

Peter 

Meisenheim

er 

Executive Director, Ontario Commercial Fisheries Association. A biologist 

who represents commercial fisheries in Ontario, currently a member of the 

Canadian Committee of Advisors of the Great Lakes Fishery Commission and 

Chair of the Ontario Species at Risk Public Advisory Committee. 

Mark A. 

Pegg, Ph.D. 

Associate Professor, School of Natural Resources at the University of 

Nebraska Lincoln. Pegg specializes in fisheries management, the impacts of 

aquatic nuisance species including Asian carps, and restoration ecology.  

Kevin Reid Ph.D. candidate, University of Guelph, and Assessment Manager and 

Fisheries Biologist-Technical Advisor Ontario Commercial Fisheries 

Association. 

Brian J. 

Shuter, 

Ph.D.  

Professor, Department of Ecology and Evolutionary Biology, University of 

Toronto and Research Scientist Aquatic Research & Development Section 

Ontario Ministry of Natural Resources. Shuter focuses on food web dynamics, 

population ecology and growth/production models for fish and zooplankton. 

 

 

Table 2. Calibration variable descriptions and acronym identifiers for each variable that 

are used in Figure 1 and Table 5. 

Calibration Variables 

1  Biomass of walleye in Lake Erie in 2011 (metric tons km
2
)  (WY11) 

2 

Biomass of round goby in Central Basin Lake Erie 2011 (metric tons 

km
2
) (RG11) 
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3 

Biomass of rainbow smelt in Lake Erie in 2011 (metric tons km
2
) 

(RS11) 

4 

Biomass of gizzard shad in Lake Erie in 2011 (metric tons km
2
)  

(GS11) 

5 

% of fish in diet of smallmouth bass (age 2+) (Central Basin) 

(SMBa11) 

6 % of fish in diet of white bass (yearling) (Central Basin)  (WBy11) 

7  % of fish in diet of white bass (age 2+) (Central Basin)  (WBa11) 

8 % of fish in diet of yellow perch (yearling) (Central Basin)  (YPy11) 

9  % of fish in diet of yellow perch (age 2+) (Central Basin) (YPa11) 

10 

% of rainbow smelt in diet of walleye (yearling) (Central Basin) 

(RS_WYy11) 

11 

 % of rainbow smelt in diet of walleye (age 2+) (Central Basin)  

(RS_WYa11) 

12 

% of round goby in diet of walleye (yearling) (Central Basin)  

(RG_WYy11) 

13 

 % of round goby in diet of smallmouth bass (age 2+) (Central Basin)  

(RG_SMBa11) 

14 

% of round goby in diet of yellow perch (age 2+) (Central Basin)  

(RG_YPa11) 

15 

kg of Asian carps captured in Marseilles and Dresden pools (CAWS) in 

2012  (pool12) 

 

Table 3 shows the results of the individual expert and equally-weighted decision maker (EW 

DM) scores with discrepancy. The EW DM had a calibration score of 0.31, indicating that we 

would not reject the hypothesis that EW’s probability assessments were accurate. Experts’ 

calibration scores were high for a panel of this size, and varied from 2E-6 to 0.53, with 9 of the 

experts scoring above 0.05. Note that all experts assessed all 15 calibration variables, with the 

exception of expert 8 who assessed only 11, thus reducing the effective number of items to 11 

(see discussion following eq (1)). The number of calibration variables corresponds to the power 

of the statistical test used to calculate each expert's p-value; using 11 instead of 15 effective  

calibration items has the effect of raising the calibration scores of the other experts. For example, 

with 15 effective items, expert 4's p-value would decrease from 0.7606 to 0.661. Without 

equalizing the effective number of calibration variables, expert 8 would enjoy an advantage 

relative to the others. 

 

The EW DM is less informative than any of the experts individually (Table 3; Figure 1). The 

column “unnormalized weight” (column 6, Table 3), is the product of the numbers in columns 2 

and 4 and is the combined score used in performance based weighting. Columns 7 and 8 show, 

respectively, the relative information between each expert and the EW DM, which is a sort of 

‘average expert’. We see that these scores typically lie in the interval [0.9, 3.4] for all variables. 

These information scores have no absolute meaning, as they depend on the given set of expert 

assessments. However, they can be meaningfully compared to the changes in the resulting DM 
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caused by removing experts and calibration items one at a time. This is discussed in the 

robustness analysis section below (and see Tables 5,6). 

Table 3. Expert and equally-weighted decision maker scores with discrepancy. The first 

column gives the labels of experts – including the decision-makers. The second column 

shows the calibration scores for all experts.  The third and fourth columns indicate the 

average information on all variables and on the calibration variables, respectively.  

Discrepancy is shown in columns 7 and 8 as the relative information of each expert with 

respect to the equal weight combination on all variables (7) and calibration variables (8).  

Expert and EW DM scores with Discrepancy 

Expert  P-Value 

Mean 

rel. 

Info, 

ALL 

Mean rel. 

Info, 

Calibr 

vbls 

# 

Assessed 

Calibr 

vbls 

UnNormalized 

wgt 

Rel.Inf to 

EW DM, 

All Vbls 

Rel.Inf to 

EW DM, 

calibr. 

Vbls 

1 0.1815 1.409 0.6121 15 0.1111 0.8712 0.4807 

2 0.1227 0.6903 0.6648 15 0.08159 0.6083 0.5314 

3 0.005634 3.789 1.47 15 0.008283 3.169 1.095 

4 0.7606 3.812 0.8562 15 0.6513 3.252 0.4717 

5 0.666 2.16 0.84 15 0.5595 1.641 0.5993 

6 1.93E-06 1.494 1.381 15 2  .66E-06 1.375 1.298 

7 0.05946 1.852 1.158 15 0.06883 1.176 0.8126 

8 0.615 4.348 1.086 11 0.6678 3.42 0.5294 

9 0.5276 2.56 1.288 15 0.6797 1.654 0.8251 

10 0.2587 2.617 0.8282 15 0.2142 2.08 0.4858 

11 0.5276 2.53 0.8071 15 0.4258 1.678 0.5083 

EW DM 0.3126 0.5748 0.2943 15 0.09197 0 0 

 

  

Robustness analysis 

 

The effect of removing an expert other than expert 4 is zero (Table 5), illustrating how robust the 

model is to experts. Removing expert 4 induces a relative information score (with respect to the 

original DM) of 1.872, which is at the lower end of the numbers in column 7 of Table 3. This 

indicates that the loss of expert 4 induces a change that overall is smaller than the differences 

among the experts themselves. The perturbed DM in this case still exhibits good performance. 

 

For robustness on items, the loss of any single calibration variable has virtually no effect on the 

DM, weight 1 always goes to expert 4 (Table 6).  The statistical accuracy (p-value) and 

informativeness scores of the perturbed DMs do change somewhat, but the changes are small.  

 

Overall, the informativeness and statistical accuracy of the optimized performance based DM 

were very good, and this conclusion is quite robust against loss of a single expert and loss of a 

single calibration variable.  
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Table 4. Robustness on experts, showing the result of removing experts one at a time and 

re-computing the DM 

 
 

Table 5. Robustness on items, showing the result of removing experts one at a time and re-

computing the DM (does not apply for equal weights) 
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Out of sample Validation 

 

Variations on the Remove-One-At a -Time (ROAT) approach have been performed by other 

researchers. Lin and Cheng (2008) examined 28 of the 45 studies and found PW significantly out 

performing EW, although PW's out-of-sample performance was degraded. Lin and Cheng (2009) 

used ROAT on 40 studies finding no significant difference between PW and EW
1
. Lin and 

Huang (2012) used ROAT with the Brier score in a regression based study of the effects of 

aggregation method, dependence, number of experts and seed variables and overconfidence on 

the Brier score (defined as 1 minus the quadratic scoring rule).  

 

Other researchers have undertaken cross validation without ROAT. Cooke (2008a) looked at 

half-half splits in 13 studies with at least 14 calibration variables. Flandoli et al (2010) examined 

five datasets, choosing 30% of the number of calibration variables as the size of the test set, 

provided this number was at least 8, otherwise the test set was 8. They recoded the classical 

model in R, but did not implement item weights or the log uniform background measure. They 

randomly drew 500 partitions into training and test sets of the fixed sizes. The most extensive 

study of this kind is Eggstaff et al (2013), which initializes the global weights model on all non 

empty subsets of seed variables and in each case predicts the complementary subset, again using 

only global weights. Studies with large numbers of seed variables were split into separate studies 

to prevent combinatoric explosion. In total 62 expert judgment studies were analysed.  

 

                                                
1 There large differences between the in-sample values in these two papers, and those found in the original studies.  
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Studies differ in expert subject matter, in numbers and training of experts,  in the methods of 

recruitment and methods of elicitation. For this reason, a numerical representation of out-of-

sample validity at the study level would be desirable. For each study, Eggstaff et al (2013) 

average the combined scores of PW and EW for each number K of variables in the training set, 

for K = 1 to N – 1, where N is the number of seed variables. The same experts, the same 

calibration variables, and the same information background measures apply for all training set 

choices within one study. However the statistical power of the test set goes down as the training 

set size increases, there are many more studies for values of K near N/2, and these studies have 

overlapping training sets. With this in mind the PW and EW combined scores are averaged for 

each size K, for K = 1..N–1. To aggregate these up the study level we may either average the 

score differences (PW – EW) or take the geometric mean (geomean) of the ratios PW/EW.   

 

Whereas the difference of scores inherits the scores’ dimension (meters minus meters is meters), 

the ratio of scores is dimensionless (meters divided by meters is an absolute number).   In 

aggregating ratios of positive numbers we must take the geometric mean, or geomean
2
. The ratio 

of PW and EW can be compared across training set sizes and across studies. The geomean of the 

ratios of combined scores of all comparisons per study are plotted in Figure 2. In 45 of the 62 

studies (73%) the geomean of combined score ratios PW / EW was greater than unity.  When 

PW’s combined score exceeded that of EW, it tended to exceed by a greater amount than when 

EW’s combined score exceeded that of PW.  The best eyeball assessment is to compare the mass 

of lines above and below the baseline of 1. The geomean of the geomeans for each study was 

2.46.  Summarizing,  PW outperforms EW in out of sample cross validation on more than two 

thirds of the studies, and the combined score of PW  is more than twice that of EW.   

 
Figure 2: 62 studies, per study: geomeans of comparisons of PW/EW combined score 

ratios.  

                                                
2 To see this suppose on two comparisons the scores were (PW=4, EW=1) and (PW=1, EW=4) The performance is 

identical, but the average of ratios is 1/2(4+1/4) =2.125. The Geomean is (41/4)1/2=1. Eggstaff et al report only the 
average scores for each size of the training sets, so we consider the ratios of averages. Since the average is always 

greater or equal to the geomean, the numerator and denominator in these comparisons would both be smaller if we 

took the geomeans of combined scores of each separate K-tuple of training variables. It's impossible to say if there is 

an overall effect of this choice.  
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Figure 3 compares the results of aggregating up to the study level by taking the geomean of the 

mean-score ratios (left panel) and the arithmetic mean of the mean-score differences (right 

panel), where “mean-scores” refers to combined scores averaged over training sets of the same 

size, per study. The left panel of Figure 3 was already presented in Figure 2. Since the studies are 

indexed from small to large numbers of seed variables, we readily note that a larger number of 

seed variables lowers the PW and EW scores and also the score differences. Figure 3 highlights 

the differences between geometric versus arithmetic aggregation, but the superiority of PW over 

EW is evident from either perspective.  

 

  
Figure 5:  Geomean (left) of PW and EW score ratios and arithmetic mean (right) of PW and EW 

score differences, for each of 62 studies analysed in Eggstaff et al (2013). If a study had N seed 

variables, the PW and EW scores were averaged over training sets of size K, K = 1 … N-1 and 

aggregated with either geo- or arithmetic means to determine an out-of-sample performance 

indicator per study .  

 

 

The accuracy of a DM in terms of proximity of the median to the true value is not directly related 

to the scoring variables of statistical accuracy and informativeness. Eggstaff et al (2013) report 

an accuracy advantage of PW over EW comparable to the differences in combined scores; 

however that feature is not pursued here. 

 


