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Proper scoring rules were designed to encourage honesty in eliciting subjective probabilities. 
Rewarding honesty is not the same as rewarding accuracy. The simplest illustration of this is given by 
scoring 100 coin tosses for which an expert assesses the probability of Heads as ½. Using any of the 
familiar proper scoring rules, the score for the outcome Heads is the same as the score for the outcome 
Tails, and the score for 100 tosses is independent of the outcome sequence. 100 Heads gets the same 
score as 50 Heads, 50 Tails. 
 
The  Probability Interval Score (PIS) and its related Continuous Ranked Probability Scores (CRPS)  
have recently been applied to COVID-19 probabilistic predictions2,3 and are discussed below. 
Numerical insight into these scores requires a bit of effort.  
 
For the (1) interval [L, U] with upper (lower) bound U (L), the PIS (negatively sensed) for 
realization y is (UL) + (2/) [(Ly)+ + (yU)+] where X+ = X if X > 0 and = 0 otherwise. s = 2/ is 
the slope of the overconfidence penalty for Y  [L,U]. The length (U-L) is called the “sharpness”; 
small values reward concentrated probability mass. If Y~Unif[0,1], the central 0.9 interval is [0.05, 
0.95] with expected PIS:  
 
0.9 + 2  0..0.05 s u du = .9+(2/0.1) 0.052 = 0.95 . 
 
The integral is doubled to account for Y > U. The 1 interval need not be central; the interval [0.1,1] 
is equally “sharp” and equally accurate statistically.  However, the expected PIS is 0.9 + 0.. 0.1 s u du 
(doubling the integration interval instead of the integral itself) =  0.9+20  ½  0.12= 1. Although the 
sharpness and statistical accuracy are the same in these two examples, the expected interval scores 
differ. Suppose an expert prefers to give an 80% interval [0.1, 0.9], s = 2/.2 = 10.  The expected score 
is 0.8 + 2 0..0.1 s udu = 20  ½  0.12 = 0.9 < 0.95. An expert seeking to optimize (i.e.minimize) 
his/her expected score might take a central 2% prediction interval [0.49, 0.51] with expected score 
0.02 +22/.980.492/2= 0.51 (or take lim 0 [,5  ,5 +] with expected score ½).  All of these 
prediction intervals have zero information relative to the uniform background measure on [0,1], so 
from that viewpoint there isn’t much to choose.   
 
The way in which the PIS trades overconfidence for sharpness may strike some as counter-intuitive. 
For example, an expert claiming the degenerate interval [0.5, 0.5] has 40% probability of catching the 
realization would achieve an expected score of 0.833, better than the score of the 90% central interval. 
The sharpness of an interval of zero length outweighs the overconfidence of claiming 40% mass at the 
point 0.5.  Of course this example is blocked if probability intervals are required to be 90%; assigning 
90% mass to the point 0.5 returns an interval score of 5. Such scores from several experts could cause 
bad statistical performance, depending on how the experts are combined. 
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With several nested intervals the PIS converges to the CRPS. Consider realization Y ~ Unif[0,1] and 
an assessment of Y by an expert whose distribution is X ~ Unif[0,H], H  1.  The expert thinks values 
> H are impossible, although these can in fact arise.  The expected CRPS is computed based not on 
what the expert believes, but on the realization Y. The CDF of X, F(x) = x/H  and the survivor function 
of X, S(x) = 1-F(x)  are pictured below: 
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We compute the expected Continuous Ranked Probability Score (CRPS) based not on what the expert 
believes, but on the realization Y. Consider an assessment of Y by an expert whose distribution is X ~ 
Unif[0,H], H1.  The expert thinks values above H are impossible, although these can in fact arise.   
 
The expected CRPS is      y = 0..1    x = 0...1 (F(x) – 1{xy})

2 dx dy.  The calculation is broken into 2 steps: 
 
y  H:  y=0..H  [ x=0..y (x/H)2 dx + x=y..H ((H–x)/H)2 dx ] dy  
 
=  y=0..H  [ y3/(3H2)  + z=H–y...0  z

2/H2 (–dz) ] dy  = 
 
= y=0..H  [ y3/(3H2)  + (H–y)3/(3H2) ] dy   
 
=   H2/12  + (1/(3H2)) z=H...0 z

3
 (–dz) dy  = H2/6. 

  
 
y >H: y=H...1 [ x=0..H

 (x/H)2 + x=H...y  dx + x=y...1 0 dx] dy 
 
= y=H...1 [ H/3 + y–H] dy  
 
= H(1–H)/3 +   0...1–H  z dz  
 
= H(1–H)/3 + (1–H)2/2. 
 
Therefore: 
 
E(CRPS(F,y)) = H2/6 + H(1–H)/3 + (1–H)2/2. 
 
 
If  X ~ Unif[L, H] , 0   L  H  1, then the same method of calculation applies mutatis mutandis. If L 
= 1–H then the contributions from x  y  and y  x are equal and we need only double the contribution 
from xy. In that case, for y  L, the contribution from  x  y is zero, since x > L. Therefore we 
compute 
 
y= L..H  x=L..y  F(x)2dx dy  + y=H..1 x=L..y F(x)2dx dy  
 



= y= L..H  x=L..y  (x–L)2/(H–L)2dx dy + y=H..1 [x=L..H (x–L)2/(H–L)2dx + x=H..y  dx]dy 
 
=y= L..H  (y3/3)/(H–L)2dx + y=H..1 [(H–L)/3 +(y–H)] dy   
 
= (H–L)2/12 + (H–L)(1–H)/3 + (1–H)2/2. 
 
Adding the identical contribution from y  x gives: 
 
E(CRPS(F,y)) = (H–L)2/6 +2(H–L)(1–H)/3 + (1–H)2. 
 
Some values are 

 
 
Note that the expected CRPS for X ~uniform [0,H], H  0.5 is the same as that for X ~uniform [1 – H, 
H]. Thus, E(CRPS) for  X ~ uniform[0, 0.7]= 0.1966  = E(CRPS) for X’ ~ uniform[0.3, 0.7].  An 
expert who believes X finding that 30% of the realizations Y are impossible has the same expected 
CRPS as an expert who believes X’ finding 60% of the realizations impossible. This illustrates how the 
CRPS compensates loss of statistical accuracy with a gain in “sharpness”. 
 
 


