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The authors are applauded for tackling challenging real problems. I especially welcome bringing 
performance data to bear on the expert judgment problem, as this raises the scientific potential of 
expert judgment.  The following remarks on probability interval scoring should not obscure the 
agreement on these most important issues.  
 
Scoring rules were introduced by de Finetti in 1937 as tools for encouraging honesty in eliciting 
subjective probabilities (1) and have been further developed by many authors (2). Experts 
receive a score as a function of their probability assessment and the realization. The score is 
strictly proper if experts maximize their expected score per item by, and only by, stating their 
true beliefs. Using a result of Murphy (1977) (3), DeGroot and Fienberg (1983) gave an additive 
decomposition of strictly proper rules into ‘calibration’ and ‘refinement’ terms (4), thereby 
replacing Murphy’s ‘resolution’ (refinement applies only to well-calibrated experts).  
 
Scoring rules for individual variables were not designed for evaluating or combining experts and 
are not generally fit for that purpose. Consider standard proper rules applied to 100-coin tosses. 
An expert assesses the probability of heads on each toss as ½. The score for the outcome heads is 
the same as the score for tails on each toss. If the score for all 100 assessments is a function of 
their 100 scores for the individual tosses, then their score for 100 tosses is independent of the 
outcome sequence; the outcome of 100 heads receives the same score as 50 heads and 50 tails. 
There are many counter intuitive examples (5, 6).  
 
The authors apply scoring rules for probability intervals to COVID-19 probabilistic predictions 
(7). For the (1) interval [L, U] with upper (lower) bound U (L), the (negatively sensed) score  
for realization y is (U L) + (2/) [(L y)+ + (y  U)+] where X+ = X if X > 0 and = 0 
otherwise. s = 2/ is the slope of the overconfidence penalty for Y  [L,U]. The length (U  L) is 
called the “sharpness”; small values reward concentrated probability mass. If Y~Unif[0,1], the 
central 0.9 interval is [0.05, 0.95] with expected interval score:  
 
0.9 + 2  0..0.05 s u du = .9+2  (2/0.1) 0.052/2 = 0.95 . 
 
The integral is doubled to account for Y > U. The 1 interval need not be centered; the interval 
[0.1,1] is equally “sharp” and equally accurate statistically.  However, the expected score is 0.9 
+ 0.. 0.1 s u du (doubling the integration interval instead of the integral itself) =  1. Although the 
sharpness and statistical accuracy are the same in these two examples, the expected interval 
scores differ. Suppose an expert prefers to give an 80% interval [0.1, 0.9], s = 2/.2 and the 
expected score is  0.9. An expert seeking to optimize (i.e.minimize) his/her expected score might 
opt for a central 2% prediction interval [0.49, 0.51] with expected score 0.02 +22/.980.492/2= 
0.51 (or take lim o [0.5  , 0.5 +] with expected score ½).  All of these prediction intervals 
have zero information relative to the uniform background measure on [0,1], so from that 
viewpoint there isn’t much to choose.   
 



The way in which the interval score trades overconfidence for sharpness may strike some as 
counter-intuitive. For example, an expert claiming the degenerate interval [0.5, 0.5] has 40% 
probability of catching the realization would achieve an expected score of 0.833, better than the 
score of the 90% central interval. The sharpness of an interval of zero length outweighs the 
overconfidence of claiming 40% mass at the point 0.5.  Of course this example is blocked if 
probability intervals are required to be 90%; assigning 90% mass to the point 0.5 returns an 
expected interval score of 5. Such scores from several experts could induce poor statistical 
performance, depending on how the experts are combined. 
 
Scoring rules for average probabilities or equivalently, for expected relative frequencies, were 
designed to counter the issues raised here, for a recent exposition, see (8). 
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