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A B S T R A C T

We update the 2008 TU Delft structured expert judgment database with data from 33 professionally contracted
Classical Model studies conducted between 2006 and March 2015 to evaluate its performance relative to other
expert aggregation models. We briefly review alternative mathematical aggregation schemes, including
harmonic weighting, before focusing on linear pooling of expert judgments with equal weights and
performance-based weights. Performance weighting outperforms equal weighting in all but 1 of the 33 studies
in-sample. True out-of-sample validation is rarely possible for Classical Model studies, and cross validation
techniques that split calibration questions into a training and test set are used instead. Performance weighting
incurs an “out-of-sample penalty” and its statistical accuracy out-of-sample is lower than that of equal
weighting. However, as a function of training set size, the statistical accuracy of performance-based
combinations reaches 75% of the equal weight value when the training set includes 80% of calibration
variables. At this point the training set is sufficiently powerful to resolve differences in individual expert
performance. The information of performance-based combinations is double that of equal weighting when the
training set is at least 50% of the set of calibration variables. Previous out-of-sample validation work used a
Total Out-of-Sample Validity Index based on all splits of the calibration questions into training and test subsets,
which is expensive to compute and includes small training sets of dubious value. As an alternative, we propose
an Out-of-Sample Validity Index based on averaging the product of statistical accuracy and information over all
training sets sized at 80% of the calibration set. Performance weighting outperforms equal weighting on this
Out-of-Sample Validity Index in 26 of the 33 post-2006 studies; the probability of 26 or more successes on 33
trials if there were no difference between performance weighting and equal weighting is 0.001.

1. Introduction

Structured expert judgment denotes techniques for using expert
judgments as scientific data. A recent overview dates its inception to
large scale engineering studies from 1975 [9]. Cooke et al. [13] first
proposed the use of calibration (here called “statistical accuracy”) and
information to score experts' performance, and the use of these scores
for defining and validating schemes combining experts' judgments is
termed the Classical Model [6]. By 2006, analysts had conducted 45
professionally contracted Classical Model studies. Cooke and Goossens
[12] summarized and published the results from these studies, and
made the data, called the TU Delft database, available to the research
community. The studies in the TU Delft database include those from
the dawn of the Classical Model, and their study designs differ wildly.
The number of experts in a given study ranged from 4 to 77 and the

number of calibration variables (i.e., questions from the field for which
realizations are known post hoc; these questions are the basis for
creating performance-based combinations of the experts’ assessments)
ranged from 5 to 55.

The TU Delft database allows researchers to explore how experts
and different combinations of experts perform on data from real expert
judgment applications. Researchers have used this data to investigate
how the performance-weight (PW) combinations of the Classical Model
compare to equal-weight (EW) combinations of experts both in-sample
and out-of-sample. Cooke and Goossens [12] demonstrated that PW is
superior to EW on in-sample comparisons, in which the same set of
data is used to both initialize and validate the model. Clemen [5] first
raised the question of the Classical Model's out-of-sample validity,
using the TU Delft database to explore if performance-based combina-
tions predict out-of-sample items better than equally weighted combi-

http://dx.doi.org/10.1016/j.ress.2017.02.003
Received 28 January 2016; Received in revised form 7 February 2017; Accepted 18 February 2017

⁎ Corresponding author.
E-mail address: cooke@rff.org (R.M. Cooke).

Reliability Engineering and System Safety 163 (2017) xxx–xxx

Available online 24 February 2017
0951-8320/ © 2017 Resources for the Future. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/BY-NC-ND/4.0/).

MARK

http://www.sciencedirect.com/science/journal/09518320
http://www.elsevier.com/locate/ress
http://dx.doi.org/10.1016/j.ress.2017.02.003
http://dx.doi.org/10.1016/j.ress.2017.02.003
http://dx.doi.org/10.1016/j.ress.2017.02.003
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ress.2017.02.003&domain=pdf


nations of the experts. In recent years other researchers have proposed
various methods for validation of the Classical Model and drawn
conflicting conclusions.

Since 2006 use of the Classical Model has continued to expand,
thanks in large part to high-profile applications (for example, [1]). Over
thirty three independent expert judgment studies were performed
between 2006 and March 2015. These studies were contracted by a
variety of organizations including: Bristol University (UK), the British
government, the European Commission, PrioNet (Canada), Public
Health Canada, the Robert Wood Johnson Foundation, Sanguin, the
US Department of Homeland Security, and the US Environmental
Protection Agency. In these recent studies, panels of 4–21 experts
assessed between 7 and 17 calibration variables. These studies are
generally better resourced, better executed, and better documented
than the very early Classical Model applications.

Updating the 2006 database and establishing a baseline for the in-
and out-of-sample validation of performance based weighting is timely
and important. The recent report of the National Academy of Sciences
on the social cost of carbon lends urgency to this effort, noting
“performance-weighted average of distributions usually outperforms
the simple average, where performance is again measured again by
calibration and informativeness (and is often evaluated on seed
variables not used to define the weights, because the value of the
quantity of interest in many expert elicitation studies remains
unknown)” [27, p. 339].

Another recent spur is the 5-year forecasting tournament organized
by IARPA of which Philip Tetlock's Good Judgment Project was
proclaimed the winner. The tournament concerned current events
assessed by “ordinary citizens” as opposed to quantification of scien-
tific/engineering uncertainties. Radically down-selecting from a pool of
more than 3000,1 Tetlock's group distilled a small group of “super-
forecasters” based on their performance. Although very different in
purpose and method to the Classical Model, the Good Judgment
Project strongly underscores the value of performance based combina-
tions.

In this study we use data from 33 post-2006 studies (Described in
Supplementary Online Material 1) to explore the in-sample and out-of-
sample validity of the Classical Model. Based on the post-2006 data, we
test the null hypothesis that performance-weight (PW) combinations of
the experts are no better than equal-weight (EW) combinations in
terms of statistical accuracy and informativeness. Finally, we develop
an Out-of-Sample Validity Index (OoSVI) which can be used to validate
future Classical Model studies and related research.

The 33 post-2006 studies considered here excludes two sets of post-
2006 applications. One concerns an ongoing expert elicitation program
at the Montserrat Volcano Observatory that has produced a wealth of
data on expert performance [29,3]. The second is a recently completed
large scale study by the World Health Organization involving 72
experts spread over 134 distinct panels [2,20]. Since both sets of
studies involve heavily overlapping expert panels, they do not lend
themselves to the present analysis where the panels are considered
independent.

The rest of this paper is organized as follows. Section 2 provides a
brief overview of the Classical Model and reviews alternate pooling
schemes, comparing their statistical accuracy across the post-2006
data. Section 3 summarizes the in-sample properties of the post-2006
data. Section 4 reviews previous out-of-sample validation research
based on the TU Delft database, and Section 5 summarizes the out-of-
sample performance of the newly collected post-2006 data. Section 6
provides two detailed case studies that demonstrate good and poor out-
of-sample performance. Section 7 evaluates the hypothesis that PW is

no better than EW out-of-sample. Section 8 compares the present
results with those of Eggstaff et al. [16] and a final section gathers
conclusions.

The Supplementary Online Material (SOM) provides: (1) references
and information on the 33 post-2006 applications analyzed here, (2) a
detailed description of the Classical Model, (3) more information on
quantile averaging in the post-2006 dataset, (4) improved exposition of
proofs of the scoring rule properties (adapted from Cooke [6]), (5)
additional details on previous cross validation research, and (6) an
expanded list of references for applications of the Classical Model.

2. Aggregating expert judgments

2.1. The Classical Model

In the Classical Model, experts quantify their uncertainty regarding
two types of questions. The variables of interest are the target of the
elicitation; these questions cannot be adequately answered by existing
data or models, so expert judgment is needed as additional evidence.
Calibration variables (also termed seed variables) are questions from
the experts’ field which are unknown to the experts at the time of the
elicitation, but whose true values will be known post hoc. Experts are
scored and weighted according to their calibration and information,
and their assessments are combined into a PW decision maker, which
can be compared to an EW decision maker. The calibration and
information scores are briefly discussed below, and more detail is
available in SOM 2.

In the context of expert judgment, the term “calibration” gives engineers
and scientists the false impression that the judgments of experts are being
“adjusted,” as they would calibrate instruments by adjusting their scales.
This is not the case. Since calibration is only loosely defined in decision
theory literature, this confusion is best avoided by replacing “calibration”
with “statistical accuracy,” defined as the P-value at which one would falsely
reject the hypotheses that a set of probability assessments were statistically
accurate. Very crudely, it answers questions like “how likely is it that at least
7 out of 10 realizations should fall outside an expert's 90% confidence
bands, if each value really had an independent 90% chance of falling inside
the bands?”

Information is measured as Shannon relative information with
respect to a user supplied background measure. Shannon relative
information is used because it is scale invariant, tail insensitive, slow,
and familiar. The combined score, the product of statistical accuracy
and informativeness, satisfies a long run proper scoring rule constraint
and involves choosing an optimal statistical accuracy threshold beneath
which experts are unweighted. Weights for the PW decision maker are
based on this combined score, as described in SOM 2.

The Classical Model's performance measures of statistical accuracy
and information do not map neatly onto the terms “accuracy” and
“precision”, which are familiar to social scientists. Accuracy denotes the
distance between a true value and a mean or median estimate, and
precision denotes a standard deviation. While appropriate for repeated
measurements of similar variables, these notions are scale dependent
and therefore not useful in aggregating performance across variables
on vastly different physical scales. For example, how should one add an
error of 109 colony forming units of campylobacter infection to an error
of 25 micrograms per liter of nitrogen concentration? Expert judg-
ments frequently involve different scales, both within one study and
between studies. For this reason, the performance measures in the
Classical Model are scale invariant. That said, the exhaustive out-of-
sample analysis of Eggstaff et al. [16] (described in Section 4) found
that the realizations were closer to the PW combination's median than
the EW combination's median in 74% of the 75 million out-of-sample
predictions based on the TU Delft data. Such non-parametric ordinal
proximity measures, proposed by Clemen [5] are not used to score
expert performance, as the scores strongly depend on the size of the
expert panels. Thus, the present study focuses on the standard Classical

1 Full documentation is not available at this writing and the information here is based
on http://www.npr.org/sections/parallels/2014/04/02/297839429/-so-you-think-
youre-smarter-than-a-cia-agent accessed 1/12/2017 and [31].
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Model scoring variables: statistical accuracy, informativeness, and the
combined score (i.e., the product of statistical accuracy and informa-
tion).

2.2. Linear, geometric, and harmonic pooling

Both PW and EW are examples of linear pooling, whereby the
combination is a weighted (PW) or unweighted (EW) average of the
experts’ distributions. Other pooling schemes have been proposed, and
it is appropriate to consider their performance before restricting
attention to PW and EW. Geometric averaging, or geometric weighting
(GW) has been advocated as being “independence preserving” [22] and
“externally Bayesian” [18]. Geometric averaging tends to concentrate
mass in regions where the experts agree. Lichtendahl et al. [23] suggest
that averaging experts' quantiles might be superior to EW. Flandoli
et al. [17] also used this technique in their analysis of the Classical
Model. Averaging quantiles is easier to compute than averaging
distributions, and is frequently employed by unwary practitioners. It
was recently used in climate change uncertainty quantification [19]
and, unwittingly, in a re-analysis of data from a Classical Model study
[28].

As shown by Bamber et al. [4], averaging quantiles is equivalent to
harmonically weighting (HW) the densities (Box 1). GW concentrates
mass more aggressively than linear pooling, and HW is slightly more
extreme. For example, the arithmetic mean of 0.01 and 0.99 is 0.5, the
geometric mean is 0.0995, and the harmonic mean is 0.0198.

Given its tendency to over-confidence, it is not surprising that HW
returns poor statistical performance. Fig. 1, reproduced from Bamber et al.
[4], compares the statistical accuracy of the best and worst experts (BE and
WE, respectively), EW, and HW on the post-2006 dataset. Scores for the
same study are on the same vertical line, ordered from the left according to
the statistical accuracy of EW. Bamber et al. find that on 18 of the 33
studies, the hypothesis thatHW is statistically accurate would be rejected at
the 5% level; on 9 studies it would be rejected at the 0.1% level. The
hypothesis that the best expert is statistically accurate is rejected at the 5%
level in 7 studies, but it is not rejected at the 0.1% level in any of the 33
studies. The geometric mean of the ratios of BE statistical accuracy/WE
statistical accuracy is 890,000, indicating the wide gap between the best and
worst performing experts in these studies.

SOM 3 provides more information on the scoring of EW and HW
and includes a comparison to performance weighting (PW). SOM 3 also
analyzes the dependence of EW, HW, and PW performance on the
number of experts and number of calibration variables in a study.

3. In-sample validation

Before exploring the out-of-sample validity of PW, it is useful to
first establish its in-sample validity. If PW is not superior to EW in-
sample, there is no motive for studying its out-of-sample performance
or using PW in practice.

The Classical Model introduces three types of performance weights.

SOM 2 provides more detail. First, global weights (PWg) use the
average information score over all calibration variables, which is
proportional to the information in the product of the marginal
distributions. Second, item weights (PWi) use the information scores
on each item to derive item-specific weights. PWi is most often used in
practice, and it enables the expert to up- or down weight him/herself
for variables in which (s)he feels more or less confident. Both PWg and
PWi optimize the choice of a threshold statistical accuracy (Sa) value;
experts with Sa below the cutoff value are unweighted. SOM 4 shows
that this yields asymptotically strictly proper scoring rules (without,
however, excluding other possibilities). Third, a non-optimized PW
combination (NoOp) forgoes optimization and assigns weights propor-
tional to the combined score based on the global information measure.
This latter weight does not satisfy the conditions of SOM 4. These three
combinations (together with EW and user-specified weighting) are
implemented in the freeware EXCALIBUR [14], downloadable at
http://www.lighttwist.net/wp/.

The combined scores of EW, PWg, PWi, and NoOp are shown in
Fig. 2, ordered according to PWi scores. More detail is presented in
Table 1. These are in-sample comparisons, as the statistical accuracy
and informativeness of the various combinations are measured on the
same calibration variables used to initialize the performance weighting.

The in-sample superiority of the PW combinations over EW,
evident in Fig. 2, is not a foregone conclusion. Table 1 shows that
the statistical accuracy of EW is better than that of PW NoOp in 30% of
the cases, and EW has the highest combined score in one case
(Nebraska). In three cases (CoveringKids, Erie Carps, and
Hemophilia) the best expert's combined score is higher than that of
the other combinations. However, PWi has the highest combined score
in 24 of the cases, coinciding with PWg in 13 studies and the best
expert in 12 studies. In 14 studies the PWi combined score is strictly
greater than that of PWg. Comparing the NoOp combined scores with
those of PWg shows that optimization plays a significant role in
improving the performance of the combination of experts.

The geometric mean (or geomean) of the ratios of combined scores
from different weighting schemes gives an overall picture of relative in-
sample performance. The geomean over all 33 studies of PWgComb/
EWComb is 3.36 and for PWiComb/EWComb it is 3.86. The geomean
BEComb/EWComb it is 1.84, indicating it would be better simply to
use the best expert than to apply equal weighting. The geomean of
PWgComb/BEComb is 1.83, demonstrating the value of using perfor-
mance weights on all the experts rather than rely on the best expert.

4. Review of cross validation studies

The previous section established that PW outperforms EW in the
post-2006 data based on an in-sample analysis. A sensible next
question, first raised by Clemen [5], is how do PW and EW compare
out-of-sample?

True out-of-sample validation would require observing the vari-
ables of interest and then calculating how PW and EW perform based

Box 1.Bamber et al. [4] explain that averaging quantiles is equivalent to harmonic weighting of the densities.

The following proof is reproduced from Bamber et al. [4]:
Let F and G be CDFs from experts 1 and 2, with densities f, g. Let HW, hw denote respectively the CDF and density of the result of averaging

the quantiles of F, G. Then for all r ∈ (0, 1):

HW r F r G r( ) = ½( ( ) + ( )).−1 −1 −1 (1)

Taking derivatives of both sides:

hw HW r f F r g G r1/ ( ( ) = ½(1/ ( ( )) + 1/ ( ( ))),−1 −1 −1 (2)

hw HW r
f F r g G r

( ( )) = 2
(1/ ( ( )) + 1/ ( ( )))

.−1
−1 −1 (3)

Eq. (3) says that hw is the harmonic mean of f and g, evaluated at points corresponding to the r-th quantile of each distribution.
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on those realizations. The variables of interest in an expert judgment
study, however, are rarely observed. The lack of observation is what
necessitates the use of expert judgment. Thus, true out-of-sample
evaluation is seldom possible, and cross validation techniques based on
subsets of the calibration questions are used instead.

In the first cross validation analysis of the Classical Model, Clemen
[5] suggested a remove-one-at-a-time (ROAT) approach in which one
item is removed, the performance weights are recalculated, and then
performance is evaluated based on predictions for the item that was
removed. The predictions originate from different PW decision maker
combinations but are pooled and compared to the EW combination. In
a preliminary analysis, Clemen looked at a non-random sample of 14
studies and found that PW outperformed EW in 9 of them, which was
not statistically significant. Lin and Cheng expanded ROAT analysis on
the TU Delft database by expanding the pool of studies considered to
28 (2008) and then 40 (2009) of the pre-2006 studies. They found
performance of the PW decision maker degrades out-of-sample relative
to in-sample. In their first analysis, PW significantly outperformed EW
out-of-sample, but they found no significant difference between the two
in the second analysis. Lin and Cheng did not report that their code has
been vetted against EXCALIBUR, and large differences exist between

the values reported in Lin and Cheng [24] and Cooke and Goossens
[12]. SOM 5 provides information on these discrepancies.

Although ROAT analysis is a simple and frequently implemented
cross validation technique, it suffers from an inherent bias against the
PW decision maker, as described previously by Cooke [7,8,10]. In
ROAT analysis, each calibration variable is predicted by a separate
performance-based combination in which experts who assessed the
removed item badly are up-weighted, and those who assess the
removed item well may be down-weighted. The combination is then
scored according to its performance on the removed item. Cooke has
previously illustrated this bias with a simple example (2012a; 2014),
which, because of its importance, is explained again here.

Suppose Experts 1 and 2 state the probability of flipping heads from a
coin as P1(Heads)=0.8 and P2(Heads)=0.2. Suppose the experts' assess-
ments are weighted proportionally to the likelihood of their distributions
(given observed data) and combined into a decision maker, such that the
decision maker's assessment is Pdm =wP1 +(1 −w)P2. Likelihood weights
are not proper scoring rules and do not account for information; but a
strong analogy links them to the classical model, as the driving term in that
model is the likelihood of the hypothesis that an expert is statistically
accurate. Moreover, these experts are equally informative.

Fig. 1. Statistical accuracy (p-value) of the best expert (BE), worst expert (WE), equal weighting (EW), and harmonic weighting (HW) on the post-2006 dataset. Scores for the same
study are on the same vertical line, ordered from the left according to the statistical accuracy of EW. The dotted line indicates the 5% rejection threshold.
(Reproduced from Bamber et al. [4]).

Fig. 2. In-sample validation, combined scores for EW, PWi, PWg, NoOp and EW for 33 post-2006 studies.
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If we observe n Heads and n Tails, the experts’ likelihood ratio is:

0.8 × 0.2
0.2 × 0.8

= 1
n n

n n (4)

and each expert receives weight 1/2. Removing one observed Tail
changes the likelihood ratio to 0.8/0.2 = 4, so Expert 1 now receives
four times the weight of Expert 2 in the combined decision maker. The
new decision maker's assessment of the probability of the Heads is
[(4/5) × 0.8 + (1/5) × 0.2.] = 0.68 and the probability of Tails is
1 – 0.68 = 0.32. In ROAT cross validation, this model is then evaluated
on its ability to predict the Tail that was removed, so the likelihood
based on this observation is 0.32. Removing a Head has a similar affect,
and swings the decision maker toward Expert 2. If this process is
repeating for each of 10 coin tosses, the likelihood for the ROAT model
is lower than the likelihood of the original model by a factor of (0.32/
0.5)^10 = 0.01.

In addition to this bias against PW, ROAT is a problematic method
for cross validation because removing one calibration variable can
influence an individual expert's statistical accuracy by a factor of three
or more. Statistical accuracy is a “fast” function, meaning it commonly
varies by several orders of magnitude over experts in a given study. To
illustrate the variation from removing one item, Fig. 3 shows the
weights of five experts in the European Union-United States Nuclear
Regulatory Commission (EU-USNRC) atmospheric dispersion study
[21] as each of 23 calibration variables is removed one-at-a-time.

ROAT analysis is based primarily on the same scoring rule used by
the Classical Model, i.e. a combination score that is the product of
statistical accuracy and information. Researchers have also suggested
cross validation for the Classical Model should be based on perfor-

mance measures different from those that underlie it. Clemen [5]
proposed evaluating the Classical Model based on the distance of the
PW decision maker's median to the realization. Others [24,25,16] have
also used that method, and, as mentioned in Section 2, PW out-
performed EW in 74% of the 75 million out-of-sample predictions
considered by Eggstaff et al. However, obtaining an accurate median
estimate is a different objective from the Classical Model's goal of
informative and statistically accurate uncertainty assessments.

Lin and Huang [26] conducted ROAT analysis with the Brier score,
which is related to the quadratic scoring rule. They followed Winkler
[30], who first proposed strictly proper scoring rules for individual
variables to score experts. A score is assigned to each expert's
probability assessment for each calibration variable based on each
realization, and the scores are summed over the set of calibration
variables. This idea has been strongly discouraged [10,6]. Cooke [10]
provided a simple example as a counter-argument to this approach. If
an expert assesses that the probability of flipping Heads with a coin of
unknown composition is 1/2, the score for each toss is the same for
either Heads or Tails. If these individual scores are summed to create
an overall score, then the overall score is independent of the actual
observed outcomes. Observing 50 Heads and 50 Tails yields the same
overall expert score as observing 100 Heads. This is why scoring rules
in the Classical Model are asymptotically strictly proper scoring rules
for expected relative frequencies. Instead of assessing scores per
calibration variable and summing over all calibration variables, sets
of assessments are scored by comparing expected and observed relative
frequencies (for detail see SOM 4).

Although ROAT has been the predominant approach to cross

Table 1
Summary of in-sample results for the 33 post-2006 studies, showing the statistical accuracy (Sa), information (Inf), and combined scores (Comb) for each combination. PW is
performance weights, either without optimization, with optimized global weights, or with optimized item weights (see SOM 2 for detail). The best expert in each panel is the expert with
the highest combined score. For each study (i.e., each row), the optimal combined scores are in boldface and highlighted.

Equal Weight PW Non-optimized PW Global PW Item Best Expert

Study #Exp #Cal Sa Inf Comb Sa Inf Comb Sa Inf Comb Sa Inf Comb Sa Inf Comb

Arkansas 4 10 0.39 0.20 0.08 0.50 0.34 0.17 0.50 0.34 0.17 0.50 0.52 0.26 0.07 0.41 0.03
Arsenic 9 10 0.06 1.10 0.07 0.04 1.68 0.06 0.04 2.74 0.10 0.04 2.74 0.10 0.04 2.74 0.10
ATCEP 5 10 0.12 0.25 0.03 0.68 0.23 0.16 0.68 0.23 0.16 0.24 0.38 0.09 0.10 0.50 0.05
Biol_Agent 12 12 0.41 0.24 0.10 0.41 0.43 0.18 0.68 0.61 0.41 0.68 0.66 0.45 0.31 1.00 0.31
CDC_ROI 20 10 0.23 1.23 0.29 0.39 1.35 0.52 0.72 2.31 1.66 0.72 2.31 1.66 0.72 2.31 1.66
CoveringKids 5 10 0.63 0.27 0.17 0.72 0.38 0.28 0.72 0.43 0.31 0.72 0.51 0.36 0.62 0.89 0.55
create-vicki 7 10 0.06 0.21 0.01 0.19 0.27 0.05 0.39 0.28 0.11 0.31 0.30 0.09 0.02 0.25 0.00
CWD 14 10 0.47 0.93 0.44 0.47 0.94 0.45 0.49 1.22 0.60 0.68 1.33 0.90 0.31 2.19 0.69
Daniela 4 7 0.53 0.17 0.09 0.68 0.23 0.16 0.55 0.63 0.35 0.55 0.63 0.35 0.55 0.63 0.35
DCPN_Fistula 8 10 0.06 0.62 0.04 0.12 1.14 0.14 0.12 1.31 0.16 0.27 1.34 0.36 0.01 1.92 0.01
eBPP 14 15 0.36 0.32 0.11 0.36 0.43 0.15 0.83 1.41 1.17 0.83 1.41 1.17 0.83 1.41 1.17
Eff_Erup 14 8 0.29 0.80 0.23 0.29 1.02 0.29 0.66 1.12 0.75 0.66 1.24 0.82 0.19 1.80 0.33
Erie_Carp 11 15 0.31 0.29 0.09 0.57 0.45 0.25 0.76 0.86 0.65 0.76 0.86 0.65 0.53 1.29 0.68
FCEP 5 8 0.22 0.10 0.02 0.14 0.39 0.06 0.66 0.57 0.38 0.66 0.57 0.38 0.66 0.57 0.38
Florida 7 10 0.76 0.46 0.34 0.56 0.80 0.45 0.76 1.13 0.86 0.76 1.15 0.87 0.12 1.74 0.22
Gerstenberger 12 14 0.64 0.48 0.31 0.35 0.61 0.21 0.93 1.10 1.02 0.76 1.20 0.91 0.54 1.74 0.93
GL_NIS 9 13 0.04 0.31 0.01 0.93 0.21 0.19 0.93 0.21 0.19 0.93 0.26 0.24 0.45 0.27 0.12
Goodheart 6 10 0.55 0.28 0.15 0.47 0.35 0.16 0.71 0.96 0.68 0.71 0.96 0.68 0.71 0.96 0.68
Hemopilia 18 8 0.25 0.20 0.05 0.31 0.27 0.08 0.31 0.49 0.15 0.31 0.46 0.14 0.85 1.07 0.91
IceSheets 10 11 0.49 0.52 0.25 0.62 0.70 0.43 0.40 1.55 0.62 0.62 1.04 0.64 0.40 1.55 0.62
Illinois 5 10 0.62 0.26 0.16 0.39 0.51 0.20 0.34 0.65 0.22 0.39 0.60 0.23 0.13 0.97 0.13
Liander 11 10 0.23 0.48 0.11 0.23 0.50 0.11 0.23 0.52 0.12 0.68 0.75 0.51 0.00 0.86 0.00
Nebraska 4 10 0.37 0.70 0.26 0.03 1.25 0.04 0.03 1.45 0.05 0.03 1.45 0.05 0.03 1.45 0.05
Obesity 4 10 0.07 0.24 0.02 0.50 0.23 0.12 0.44 0.51 0.22 0.78 0.49 0.38 0.44 0.51 0.22
PHAC_T4 10 13 0.27 0.20 0.05 0.09 0.26 0.02 0.14 0.40 0.06 0.10 0.49 0.05 0.01 1.25 0.01
San_Diego 8 10 0.33 1.07 0.36 0.78 0.69 0.54 0.88 0.69 0.61 0.35 1.19 0.41 0.03 1.12 0.04
Sheep 14 15 0.66 0.78 0.52 0.36 0.98 0.35 0.64 1.31 0.84 0.64 1.31 0.84 0.64 1.31 0.84
SPEED 14 16 0.52 0.75 0.39 0.63 0.71 0.45 0.68 0.78 0.53 0.99 0.78 0.78 0.23 0.84 0.19
TDC 18 17 0.17 0.36 0.06 0.30 0.55 0.17 0.99 1.26 1.24 0.99 1.26 1.24 0.99 1.26 1.24
Tobacco 7 10 0.20 0.45 0.09 0.66 0.53 0.35 0.69 1.06 0.73 0.69 1.06 0.73 0.69 1.06 0.73
Topaz 21 16 0.63 0.92 0.58 0.31 1.12 0.34 0.41 1.46 0.60 0.41 1.46 0.60 0.41 1.46 0.60
UMD_NREMOVAL 9 11 0.07 0.80 0.05 0.49 1.43 0.70 0.71 1.99 1.40 0.71 1.99 1.40 0.71 1.99 1.40
Washington 5 10 0.15 0.53 0.08 0.20 0.65 0.13 0.20 0.72 0.14 0.50 0.99 0.49 0.06 1.29 0.08
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validation of the Classical Model, other approaches have also been
considered. These approaches split the calibration variables into two
complementary sets: the training set is used to calculate the perfor-
mance-based weights, and the remaining variables comprise a test set
that is used for validation. Cooke [7] focused on the panels in the TU
Delft database with 16 or more calibration questions. He split the 13
such panels into half, with each set serving as the training set to predict
the other half. Each of the included panels thus provided 2 data points.
Cooke found PW outperformed EW on 20 of the 26 comparisons.
Flandoli et al. [17] examined five datasets, choosing 30% of the number
of calibration variables as the size of the test set, provided this number
was at least 8, otherwise the test set was 8. For each of the five studies,
they sampled training sets from all possible combinations of calibration
variables and found that generally the Classical Model's PW out-
performed EW or their alternative Expected Relative Frequency model
in terms of statistical accuracy. They recoded the Classical Model in R,
and their results for the cases studied do not agree with EXCALIBUR
(SOM 5).

The most extensive cross validation study is Eggstaff et al. [16],
which performed cross validation on all possible training/test set
combinations (except the empty set and the full set) for the 62 studies
available at the inception of their work. Studies with large numbers of
calibration variables were split into separate studies to suppress
combinatoric explosion. In this comprehensive analysis, they found
PW significantly outperforms EW. Eggstaff et al. only consider global
weighting, as it is easier to implement than item weighting. Eggstaff's
code excludes experts who assess less than the full set of calibration
variables, whereas EXCALIBUR includes these experts and reduces the
power of the statistical accuracy score to equal that of the expert with
the fewest assessed calibration variables. Eggstaff's approach is reason-
able for the purpose of cross validation, but it can produce differences
with EXCALIBUR.

The results of one choice of training/test set is termed a split. Using
the exhaustive cross validation approach of Eggstaff et al., excluding
the empty set and the entire set, a study with 10 calibration variables
produces 210−2 = 1022 splits. There are 10 splits with training size 1
and 252 splits with training size 5. A study with 17 calibration variables
produces 131,070 splits, 24,310 of which have training size 8. Simply
aggregating splits would strongly overweight the mid-sized training
sets. Each additional calibration variable doubles the computation time
until memory constraints become binding. Computing all splits for a
study with 17 calibration variables takes over 24 h on a fast PC.

Although EXCALIBUR does not perform cross validation, it can be
used to spot check cross validations. The cross validation code of
Eggstaff et al. [16] was checked extensively against EXCALIBUR after
publication, and some errors were corrected which affected a few cases.
After correcting these, exact agreement with EXCALIBUR was

achieved. This is the only cross validation code that has been vetted
in this way.

5. Out-of-sample cross validation of the post-2006 studies

The present study builds on the approach of Eggstaff et al. [16], and
uses the out-of-sample validation code which Lt. Col. Eggstaff gra-
ciously provided. We apply their comprehensive cross validation
technique to the 33 post-2006 studies.

To compare studies and test the effectiveness of performance based
combination, the scores must be rendered comparable. For a given
study, scores for a fixed training set size can be averaged, as they are in
Eggstaff et al. [16]. Whatever the size of the training set, the EW
combination is always the same. A small training set means that testing
the hypothesis that an expert is statistically accurate has low power,
and PW is less able to resolve differences in expert performance. At the
same time, the ability to distinguish PW and EW performance has
greater power. The converse holds for large training sets: PW is better
able to resolve experts' statistical accuracy, but the test set is less able
to resolve differences in the statistical accuracy of PW and EW.

For the rest of this study, PW denotes PWglobal. PWSa, PWInf and
PWComb denote the statistical accuracy, informativeness and com-
bined scores of PWglobal respectively. Similar abbreviations apply for
EW.

Fig. 4 shows the statistical accuracy scores PWSa and EWSa first
averaged within a study over each training set size (e.g., all training sets
of 8 calibration variables), then averaged across studies for each
percentage size (e.g., all training sets consisting of 80% of the
calibration variables, including, for example, training sets of 8 of 10
calibration variables and 11 of 14 calibration variables). Each training

Fig. 3. Variation of expert weights when calibration variables are removed one-at-a-time.

Fig. 4. Average over all studies per training set size percentage of the average PWSa and
EWSa; higher values are better.
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set percentage includes studies for which the training sets and test sets
are different; increasing the calibration set increases both the number
of variables in the training set of size x% and the corresponding test set
of size 100−x%. For a fixed training and test set size, the statistical
accuracy scores are comparable.

Whereas in-sample PWSa is usually greater than EWSa (see
Table 1), Fig. 4 shows that PWSa degrades out-of-sample relative to
EWSa. There is indeed an 'out-of-sample penalty’ for PWSa. Statistical
accuracy is a very fast function, typically varying over 4 orders of
magnitude in a panel of 5 experts with 10 calibration variables. A
difference between a P-value of 0.60 or 0.50, like those observed in
Fig. 4, is quite small by comparison. Cooke [10] considers the small
sample behavior of the statistical accuracy statistic. All these Sa scores
increase with training set size, reflecting the loss of statistical power as
the test set size decreases. PWSa increases faster than EWSa for larger
training sets. For small training sets with low power to resolve
differences between the experts, in-sample statistical accuracy scores
tend to be more equal. PW is therefore less able to distinguish more
and less statistically accurate experts, and PW is similar to EW. Not
until the training set exceeds 70% of the calibration set does PW
consistently identify the more accurate experts and accord them more
weight. The differences between PWSa and EWSa then start to close.

Information shows a different pattern (Fig. 5). As in Fig. 4, per
study PWInf and EWInf are averaged for each training set size for each
study, and these averages are then averaged per percentage size over all
studies. As described, informativeness is scored as Shannon relative
information with respect to an analyst-defined background measure.
Per variable, this background measure is by default uniform or
loguniform on the smallest interval containing all expert quantiles
and the realization, if available (i.e., for calibration questions), plus a
10% overshoot. Thus, expert information scores are directly compar-
able within a study but not between studies. For a given study, EWInf
differs for each individual training set, but the average over all training
sets of a given size always equals the in-sample EWinf values in
Table 1. Hence, for each training set size, averaging over all studies
returns the average of the in-sample EW information scores (column
EWInf of Table 1), or 0.499. Per training set size, the heterogeneity
across studies is the same. PWInf is lowest for small training sets,
reflecting the fact that PW is more similar to EW, but increases quickly
to twice EWInf. Unlike statistical accuracy, informativeness is a slow
function and a difference of a factor 2 is noteworthy.

Both PWComb and EWComb increase with training set size due to
loss of statistical power in the test set. We may anticipate that PWComb
should grow more quickly.

To isolate the growth of PWComb that is not due to decreasing
statistical power, we must articulate the notation a bit. Let
PWComb(t,s) denote the PW combined score on training set t of study
s. Let Av#t=k PWComb(t,s) denote the average of PWComb(t,s) over

all training sets of size k of study s. Similar notation applies for
EWComb. Fixing s and fixing training size |t| EWSa(t,s) and EWInf(t,s)
are nearly independent: The average of their product (the average of
combined scores) is indistinguishable from the product of their
averages. More exactly, the mean and standard deviation over all
studies and all training percentage sizes of Av#t=kEWComb(t,s)–
[Av#t=kEW Sa(t,s)×Av#t=kEWInf(t,s)] are respectively −4.3E-4 and
6.5E-4. Therefore, for all s

Av PWSA t s
Av EWSa t s

PWInf t s
Av EWInf t s

Av PWComb t s
Av EWSa t s Av EWInf t s

( , )
( , )

× ( , )
( , )

= ( , )
( , )´ ( , )

t k
t k t k

t k

t k t k

# =
# = # =

# =

# = # =

Because of independence, the right hand side differs very little from

Av PWComb t s
Av EWComb t s

( , )
( , )

.t k

t k

# =

# =

The latter quantity is taken to represent the out-of-sample performance
of PWComb for study s and training set size k which is not conflated with
the loss of statistical power in the test set. An increase or decrease of this
quantity as k varies represents a real change in PWComb relative to
EWComb that does not depend on statistical power of the test set.

When combining ratios, we must take the geomean to insure that
the combination of the reciprocals is the reciprocal of the combination.
Geos denotes the geometric average over all studies s. Fig. 6 plots Geos
Av#t=%k PWComb(t,s) and Geos Av#t=%k EWComb(t,s), where %k
denotes the kth percentage of the calibration set. Their ratio in Fig. 7
shows the growth in Geos Av#t=%k PWComb(t,s) which does not
depend on statistical power loss. The ratio does not grow until the
training sizes exceed 50% of the calibration set.

The geomeans in Fig. 7 are all greater than 1, indicating that PW
outperforms EW on training sets of all percentages. However, they are
less than the in-sample geomean of PWComb / EWComb (3.36),
demonstrating the out-of-sample penalty.

The expert weights are much more volatile for small training sizes,
as these weights are based on statistical accuracy measured with only a
few calibration variables. Fig. 8 plots the weighted average variance of
the expert weights. More precisely, (a) we compute the in-sample
combined score of each expert in each study for every training / test
split, (b) we compute the variance of each expert's combined score per
training set size, (c) we take a weighted average of the experts’
variances per training set size (weighted using the experts’ average
combined scores per training set size), and finally (d) we average the
weighted average variance over all studies per percentage training set
size. The result is a picture of the overall volatility in expert weights
expressed as a function of training set percentage size. This volatility
declines sharply up to sizes of 70% after which the differences are less
than 0.005.

Fig. 5. Average over all studies per training set size percentage of the average PWInf and
average EWInf; higher values are better.

Fig. 6. PWComb and EWComb averaged over training sets of same size, and geo-
averaged over studies per training set size percentage.
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6. Detailed data for two studies

It is helpful to look at detailed data for studies showing “good”
(Biol_agents) and “bad” (San Diego) out-of-sample characteristics. In
both cases PWComb exceeds EWComb in-sample (see Table 1).

Starting with the “good,” Fig. 9 shows PWComb - EWComb for each
test set (left panel) and the averages of these scores over training set
sizes (right panel). Both PWComb and EWComb increase with training
set size. The right panel shows that PWComb increases more rapidly,
hence the difference between PWComb and EWComb (left panel) also
tends to increase. This indicates that, as the training set increases, PW
is improving at a rate greater than the loss of power in the test set.

Fig. 10 shows the variance of the experts' un-normalized weights in
Biol_agents as a function of training set size. The variance declines for
all experts as training set size increases.

This pattern is by no means universal. The poorest out-of-sample
performance is found in the San Diego study, shown in Fig. 11. For all
training set sizes PWComb is worse than EWComb (right panel). The

variance in experts’ combined scores decrease very quickly (Fig. 12),
from much higher initial values than in Biol_agents in Fig. 10.

Clearly, there are differences in studies that are not revealed by the
in-sample performance scores. Future research will focus on impacts of
study parameters on cross-validation. Without going deeply into the
causes of the differences in these two cases, we many note from Table 1
that the best expert in Biol_agents coincides with the PW, whereas in
San Diego, the best expert scores well below PW. San Diego is also
unusual in that EW is more informative than PW in Table 1.

7. Statistical test of PW versus EW out-of-sample

Previous publications [10,15,16] have used a “total out-of-sample
validity index” based on all training/test set splits defined per study as
follows: (a) take the ratio Average PWComb/Average EWComb per
training set size (b) take the geomean of these ratios over all training
set sizes. The main justification for this is that it leaves nothing out;
however, it includes splits with very low power in the training or test
sets, is computationally too heavy for real time deployment, and
involves training sets where the expert weights have high volatility.

We propose an “Out of Sample Validity Index” (OoSVI) defined by
step (a) above applied only to training sets whose size is 80% of the
entire set of calibration variables. The reasons for this choice are:

1. The expert weights used to construct PW have relatively low
volatility at 80%

2. The expert weights at 80% more closely resemble the weights used in
the actual study based on all calibration variables

3. For studies assessing 5-, 50- and 95-percentiles on 10 calibration
variables, the possible statistical accuracy scores range over a factor
of 31, which is ample for distinguishing EWSa and PWSa.

4. This OoSVI can be computed quickly and processed with the
primary study results, even for large numbers of calibration vari-
ables. With 22 calibration variables (the largest number in Eggstaff's
study), evaluating all splits with 80% in the training set involves
evaluating 7315 splits, for 70% the number is 170,544.

The test for statistical accuracy for a 20% test size has greatly
reduced power, but this applies equally to EW and PW without
prejudicing the ratio PWComb/EWComb.

The simplest test for the hypothesis that PW and EW are indis-
tinguishable considers an indicator for each study which takes the
value 1 if PW outperforms EW and takes the value 0 otherwise. The
null hypothesis assigns such an indicator the distribution (1/2, 1/2).
Any column of Table 2 might be chosen with the indicator taking “1” if
the row value is greater than 1 (“success”), and “0” (“failure”)
otherwise. Using the 80% column, we find 26 “successes” in 33 trials.
The probability of seeing at least 26 successes if there were no
difference between PW and EW is 0.001. Had we used the geomean
over all training set sizes (last column) with 23 “successes” the

Fig. 7. The ratio of average PWComb and average EWComb, geo-averaged over studies
per training set size percentage.

Fig. 8. Geomean of weighted average of variances in experts' in-sample combined scores
(un-normalized weights), geomean taken over all studies per training set percentage size.

Fig. 9. Data from the Biol_Agents study. Left, differences of combined test set scores for PW and EW for all training splits; training set size increases from left to right, from size 1 to size
11. Right, combined scores of PW and EW averaged per training set size.
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exceedance probability would be 0.018. For each percentage split of
50% or more, the null hypothesis would be rejected at the 5% level.

Table 3 shows the correlation between various study characteristics
and in-sample performance measures and the OoSVI. If study char-
acteristics, such as the number of experts or seed questions included,
were correlated with OoSVI, that could guide future elicitation practice.
This preliminary analysis, though, suggests none of these study
characteristics is correlated with OoSVI. OoSVI is most strongly
correlated with the statistical accuracy of the best and second best
expert, indicating that identifying good experts is the crux of the
method's performance, both in- and out-of-sample. The geomean of
OoSVI for studies with a best expert whose Sa is above 0.05 is 1.54; the
geomean for studies with a best expert whose Sa is below 0.05 falls to

1.14. For the Sa of the second best expert, the geomeans are 1.64 and
1.17 respectively. /

8. Discussion

The present results may be compared with the results of Eggstaff
et al. [16], which analyzed out-of-sample validation for 62 studies
available at the inception of their research. Those results are also
reported in Cooke [10,11]. The latter sources give the Total OoSVI,
which corresponds to the last column of Table 2. Eggstaff's data records
45 successes (Total OoSVI > 1) out of 62 trials, or 72%. This study
finds 23 successes out of 33 trials, or 70%. The value of Total OoSVI for
Eggstaff et al. [16] is 2.25, which is higher than the comparable value

Fig. 10. Variance of experts' combined scores on the training sets (un-normalized weights) per training set size, for Biol_Agent studys.

Fig. 11. Data from the San Diego study. Left, differences of combined test set scores for PW and EW for all training splits; training set size increases from left to right, from size 1 to size
9. Right, combined scores of PW and EW averaged per training set size.

Fig. 12. Variance of experts' combined scores on the training sets (un-normalized weights) per training set size, for study San Diego study.
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from Table 2: 1.32. We note that Eggstaff's data set included more
studies with a high number of calibration variables (Fig. 13):

Although the percentage of studies in which Total OoSVI > 1 in
Eggstaff et al. [16] is similar to the present study, its statistical
significance is greater owing to the larger number of studies: the P-
value for falsely rejecting the null hypothesis is 0.0002, assuming

independence. Eggstaff split the studies with more than 22 calibration
variables into two or more sub-studies because of the computational
burden. The splitting was not done randomly, split studies use the
same experts, and performance on different sub-studies sometimes
varies widely. Excluding all these split studies and excluding studies
also present in the current set, we retain 40 of the original 62 studies, of
which the Total OoSVI exceeded 1 in 31 cases. These may be combined
with the current study yielding 23 (this study)+31 (Eggstaff)=54
successes on 33 (this study)+40 (Eggstaff)=73 trials. The null hypoth-
esis that PW is no better than EW is now rejected at the 2.5E-5 level.
Our analysis strongly supports the value of PW over EW, based on both
in-sample and out-of-sample performance.

Whereas this study groups training/test splits according to the
percentage of all calibration variables in the training set, Eggstaff et al.
group splits by the difference: training set size – test set size. For all
differences, the ratio (# studies with PWComb dominating/# studies
with EWComb dominating) is greater or equal to one. The ratio
decreases as the training set grows larger than the test set. If the goal
were to choose a training set size to maximize the probability that
PWComb > EWComb, the advice would be that there should be five
more variables in the test set than in the training set. On Eggstaff's
dataset, the size of the training set in this case would vary from 1 to 8,
and would involve training sets of very different statistical power.
Eggstaff also parsed their out-of-sample results by the size of the
training set, and noted a relative decline in PWComb for very large
training sets. The number of studies with very large calibration sets is
quite small raising questions of statistically stability. Finally, we note

Table 2
Average PWComb/Average EWComb for training sets sized as percent of all calibration variables.

Training set size as percent of calibration variables Row Geomean

10% 20% 30% 40% 50% 60% 70% 80% 90%

Arkansas 1.132 1.256 1.523 1.382 1.423 1.322 1.306 1.404 1.718 1.376
Arsenic 1.039 1.035 1.073 1.117 1.293 1.431 1.722 1.874 1.961 1.352
ATCEP 1.955 1.677 1.380 1.455 1.166 1.149 1.156 0.997 0.799 1.262
Biol_Agent 1.278 1.280 1.217 1.373 1.477 0.453 1.676 2.008 2.405 1.536
CDC_ROI 1.006 1.199 1.112 1.229 1.004 1.109 1.107 1.305 1.399 1.157
CoveringKids 1.032 1.510 1.407 1.478 1.487 1.463 1.517 1.538 1.427 1.420
Create 0.890 0.789 0.763 0.817 1.046 1.277 1.278 1.331 1.142 1.014
CWD 1.328 0.980 1.031 0.907 0.812 0.729 0.708 0.680 0.756 0.862
Daniela 1.051 1.051 1.086 1.099 1.137 1.137 1.815 1.721 1.721 1.279
Fistula 0.262 0.964 0.918 1.039 1.147 1.354 1.362 1.426 1.910 1.037
eBPP 1.859 1.844 2.027 1.778 2.402 2.576 2.727 2.958 4.033 2.384
Eff_Erup 0.965 0.903 0.903 0.796 0.651 0.664 0.892 0.892 0.919 0.835
Erie_Carp 2.920 2.612 2.684 2.567 1.856 1.787 2.047 2.017 2.909 2.339
FCEP 3.843 7.704 7.704 7.908 8.897 8.826 7.485 7.485 5.713 7.091
Florida 0.920 0.445 0.657 0.695 0.750 0.886 0.979 1.364 1.412 0.851
Gerstenberger 1.056 1.183 1.152 1.683 1.651 1.670 1.562 1.501 1.604 1.431
GL_NIS 2.177 1.847 1.672 1.477 1.186 1.134 1.066 1.024 0.809 1.316
Goodheart 1.180 1.291 1.595 1.441 1.366 1.480 1.611 2.136 2.607 1.586
Hemopilia 1.638 2.019 2.019 1.862 2.938 1.534 1.476 10476 2.808 1.913
IceSheets 1.266 0.861 0.867 0.814 0.850 0.779 0.807 0.880 0.903 0.883
Illinois 0.671 0.697 0.821 0.798 0.867 1.126 1.407 1.800 2.484 1.073
Liander 0.881 0.746 0.488 0.614 0.669 0.780 0.870 0.788 0.575 0.700
Nebraska 0.559 0.340 0.389 0.517 0.692 0.978 1.393 1.733 1.892 0.789
Obesity 3.569 2.383 2.430 2.105 1.842 1.586 1.361 1.267 1.815 1.945
PHAC_T4 1.057 0.833 0.709 0.650 0.853 0.974 1.106 1.195 1.180 0.931
San_Diego 0.273 0.327 0.516 0.578 0.569 0.555 0.519 0.439 0.478 0.460
Sheep 0.772 0.866 0.828 0.902 1.018 1.033 1.119 1.204 1.432 1.001
SPEED 0.575 0.661 0.595 0.614 0.632 0.750 0.783 0.844 0.835 0.692
TDC 3.413 3.850 4.207 3.416 2.794 2.754 2.667 2.573 2.557 3.088
Tobacco 2.179 2.167 2.019 1.965 1.861 1.928 1.830 1.778 10.472 1.900
Topaz 0.863 0.860 0.860 0.941 0.966 1.050 1.119 1.178 1.182 0.994
UMD_NREMOVAL 1.882 5.221 4.555 4.508 3.634 3.340 3.192 2.654 2.236 3.300
Washington 3.614 2.148 1.726 1.370 1.119 1.119 1.142 1.308 1.334 1.529
Column Geomean 1.219 1.249 1.254 1.263 1.277 1.308 1.383 1.440 1.528 1.321
number > 1 22 19 20 20 22 24 26 26 25 23
P(this many success or more in 33 trials) on null hypothesis 0.040 0.243 0.148 0.148 0.040 0.007 0.0007 0.001 0.002 0.018

Table 3
Correlation between the Out-of-Sample Validity Index (OOSVI) and various study
characteristics and in-sample performance measures in the post-2006 studies. The p-
value is the probability of seeing the observed correlation or stronger if no correlation
exists.

Variable Spearman's rank correlation
coefficient

P-value

Study characteristics
Number of experts −0.19 0.28
Number of calibration

variables
0.01 0.94

Three quantiles (vs. five) 0.02 0.91
Plenary interviews (vs. one-

on-one)
−0.17 0.35

In-sample performance
EW statistical accuracy 0.00 0.99
PW (global) statistical

accuracy
0.31 0.08

Best expert statistical accuracy 0.50 < 0.01
Second best expert statistical

accuracy
0.32 0.07
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that Eggstaff's results have not been recalculated after removing the
coding errors (albeit minor) that came to light after publication.

Based on an analysis of a few recent studies, Cooke et al. [15] found
that performance averaged over one or two calibration variables
presaged the overall performance of PWComb relative to EWComb.
Indeed Fig. 6 could be interpreted as sanctioning a smaller number of
calibration variables. However, the large variance in expert weights
based on a small number of calibration variables depicted in Fig. 8
counsels caution.

The method employed in the present calculations uses the code of
Eggstaff et al. [16], correcting bugs discovered after publication. This is
the only cross-validation code verified to have perfect agreement with
EXCALIBUR. There are two respects in which these calculations differ
from those used in the EXCALIBUR code: First only global perfor-
mance weights are used as they are easier to implement, whereas item
specific performance weights are superior to global weights in 58% of
our post-2006 cases (Table 1) and more often used in practice. Second,
Eggstaff's code discards experts who assessed less than the full set of
calibration variables. It is not uncommon in practice that an expert
declines to assess a few calibration variables; this happened in 2 of the
33 post-2006 cases. EXCALIBUR adjusts all statistical accuracy scores
to have the statistical power of the smallest number of assessed
calibration variables.

9. Conclusion

Society faces consequential decisions that must be taken before the
attendant uncertainties can be resolved. Recent emphasis on perfor-
mance based combinations of uncertainties is found both in the IARPA
forecasting tournament and in the recent NAS report on the social cost
of carbon. Methods for science based quantification of uncertainty
require reliable data on expert performance in the public domain and a
critical analysis of the performance of various combination methods.

Although extensive data on expert performance has been available
since 2008, it has been largely ignored and the fruits of performance
based analysis have largely remained on the vine. Thus harmonic
weighting, or “averaging quantiles” is still used by unwary practitioners
and even advocated in scientific journals, while an elementary perfor-
mance analysis could easily predict its strong penchant for over-
confidence (as confirmed by the data in Section 2). The notion that
performance of expert probability assessors can and should be
objectively measured still encounters (mostly passive) resistence.

In cases where cross validation has been undertaken, the methods
and results to date lack consistency. As reviewed in Section 4 and
detailed in SOM5, individual codes used for cross validation of the
classical model show disturbing inconsistencies. Building and vetting a
cross validation code is time consuming yet absolutely essential for
progress in this field. With such codes in hand, the exhaustive cross
validation in sections7 and 8 shows that performance based weighting
is superior to equal weighting at the 2.2E-5 significance level. This
result is echoed in a very different domain by the results of the Good
Judgment Project. Performance based selection of “superforecasters”
effectively assigns weight zero to 98% of the project participants.

To make out-of-sample validation practical, methods must be
developed which can be computed quickly and compared across
studies. The OoSVI based on all training/test sets splits in which
80% of the calibration variables are in the training set offers a number
of advantages. First and most importantly, the PW on each such split
resembles the PW of the whole study. Second, it can be used to improve
the design of Classical Model studies by studying the impact of study
parameters on OoSVI. Third, incorporating the OoSVI into the front
line processing codes could aid in choosing among the combination
schemes. For a given application, if the PW combination were superior
to the EW combination in-sample but not out-of-sample, this might
motivate the choice of EW in that particular case. Finally, OoSVI could
itself be used as a scoring variable for the individual experts, and by
extension, as a weighting scheme for crafting better and more robust
performance-based combinations. Future research can explore to what
extent features of the study, such as the number of experts or method
of elicitation (e.g., one-on-one versus group sessions) explain in-
sample and out-of-sample performance. A cross validation study of
item weights, which are the most common weights used in practice in
Classical Model applications, and the best expert would also be a
worthwhile endeavor.

Appendix A. Supplementary material

Supplementary data associated with this article can be found in the
online version at doi:10.1016/j.ress.2017.02.003.
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