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Abstract

A review of scoring rules highlights the distinction between rewarding honesty and

rewarding quality. This motivates the introduction of a scale‐invariant version of the

Continuous Ranked Probability Score (CRPS) which enables statistical accuracy (SA)

testing based on an exact rather than an asymptotic distribution of the density of

convolutions. A recent data set of 6761 expert probabilistic forecasts for questions

for which the actual values are known is used to compare performance. New insights

include that (a) variance due to assessed variables dominates variance due to

experts, (b) performance on mean absolute percentage error (MAPE) is weakly

related to SA (c) scale‐invariant CRPS combinations compete with the Classical

Model (CM) on SA and MAPE, and (d) CRPS is more forgiving with regard to SA than

the CM as CRPS is insensitive to location bias.
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1 | INTRODUCTION

Continuous Ranked Probability Scores (CRPSs), Probability Interval Scores

(PISs), and scores from the Classical Model (CM) have recently captured

attention in evaluating COVID‐19 probabilistic model predictions

(Colonna et al., 2022; Cramer et al., 2022; Ray et al., 2020), fueling the

debate on how probabilistic predictions should be evaluated. This article

offers insights from a recent expert judgment data set (Cooke et al., 2021)

comprised of expert probabilistic predictions over a wide variety of fields

for which realizations or true values are also available.

Familiarity with foundations teaches that the problem of combining

and evaluating experts' probabilistic predictions is not a purely

mathematical problem. The laws of probability even supplemented with

Savage's axioms of rational decision theory and the theory of proper

scoring rules, will never tell us how best to combine experts' judgments.

The problem is more akin to finding an optimal design in engineering. A

bicycle after all obeys Newton's laws but does not follow from them. Any

working design will involve features motivated by practicalities rather

than laws. An example is the measurement of “spread” of a distribution. If

our data are measured on different dimensions (e.g., meters, micrograms

per cubic meter, etc.) then traditional measures like the standard deviation

and prediction intervals are unsuitable because they inherit the physical

dimension of the underlying variables: changing meters to kilometers

changes some of the numbers. Comparing spreads across variables with

different physical dimensions requires a scale‐invariant measure. If, as is

the case with expert judgment, the tails of the distribution are poorly

constrained in the data, we also need it to be “tail insensitive.” Agreement

of probabilistic predictions with reality, variously called statistical accuracy

(SA) or calibration, must accommodate aggregating over variables and

combining experts. Such practical issues must be addressed in deciding
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how to evaluate probabilistic predictions. The first step is thus to inform

our discussion as to available data.

The following sections address the expert data, scoring rules, and

performance. Conclusions are drawn in the final section.

2 | EXPERT DATA

This paper uses data from 49 studies involving 526 experts assessing in

total 580 calibration variables from their fields, for which realizations are

known (four experts from the original data were dropped because they

did not assess all calibration variables in their respective panels). In total

there are 6761 expert probabilistic forecasts of variables from their fields

for which true values are known. The data are described and referenced

in Cooke et al. (2021). The supplementary information of that article gives

a description of the CM (Cooke, 1991), which informed the data

collection. Its relevant aspects are briefly reviewed in this section.

The number of assessed calibration variables differ per study and

Figure 1 provides information about this. Experts assessed at least

seven and at most 21 calibration variables in all studies. Ten calibration

variables (the default number) were used in 21 of the 49 studies. In the

data used for this analysis, expert assessments take the form of fixed

percentiles, 5th, 50th, and95th, from the assessor's subjective distri-

bution for a continuously distributed unknown quantity.

CM uses weights derived from expert performance on calibration

variables to derive combinations of expert distributions (termed Decision

Makers [DMs] in a linear pool, see [Cooke, 1991] ch.11 for an extended

discussion of pooling). In the CM, SA is measured as the probability of

falsely rejecting the hypothesis that a probabilistic assessor is statistically

accurate. It is, in other words, the p value of rejection for this hypothesis.

We hasten to add that CM does not test and reject expert hypotheses

but, in compliance with proper scoring rule theory for sets of assessments

(see below), uses this p value to measure the degree of correspondence

between assessments and data in forming weighted combinations of

expert distributions. When n true values for a number of such quantities

are observed, we compute the sample distribution s of interquantile

relative frequencies and compare this with the theoretical interquantile

mass function p = (0.05, 0.45, 0.45, 0.05). The test statistic is nI s p2 ( , ),

where I is the Shannon relative information (log‐likelihood ratio) and n is

the number of calibration variables. Assuming that the realizations are

independently sampled from the assessor's distributions, this statistic is

asymptotically χ2 distributed with degrees of freedom equal to the

number of assessed percentiles. Thus, SA is measured as

F nI s p1 − (2 ( , ))χ2 , where F χ2 is the cumulative distribution function

(CDF) of a χ2 distribution with three degrees of freedom. Low scores (near

0) mean it is unlikely that the divergence between s and p should arise by

chance. Higher scores (near 1) indicate better agreement between s and

p. Note that CM relies on an asymptotic approximation which for a small

number of calibration variables is not very good (Cooke, 2014).

Simulations for 10 calibration variables are provided in Hanea and

Nane (2021). The approximation is deemed capable of detecting only

large differences in experts' performances which are indeed usually

present. It is noteworthy that SA uses only the assessed percentiles and

does not rely on an interpolated CDF.

With the expert‐provided assessments for the calibration vari-

ables, realizations are expected to fall below experts'5th percentile5%

of the time, to fall between the 5th and 50th percentile 45% of the

time, and so on. The (interpolated) percentiles of the realizations for all

expert probabilistic predictions are shown in Figure 2, revealing the

realizations' concentration in very low and very high percentiles.

In CM informativeness (Inf) is measured as the Shannon relative

information of the minimal information fit to the experts' percentiles,

relative to a user‐selected background measure. In this analysis, the

background measure per variable is always uniform on an interval 20%

larger than the smallest interval containing all experts' assessments and

the realization. In this case, the minimal information fit is piecewise

F IGURE 1 Number of experts per number of assessed calibration variables.

2 of 16 | NANE and COOKE

 25735152, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/ffo2.189 by C

ochrane N
etherlands, W

iley O
nline L

ibrary on [01/07/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



uniform such that the mass in each interquantile interval complies with

the expert's assessment. Relative information is tail insensitive and “slow”

so that the experts' information scores are quite insensitive to the size of

the background measure. This slowness means that the ratio of Inf scores

is much less variable over experts than the ratio of SA scores, see Cooke

et al. (2021) for details.

The variability in expert judgment data is large. Two important

sources of variability are the experts themselves and the variables

assessed. Different experts have different backgrounds and

different heuristics for giving probabilistic predictions. Variables

differ in their relation to the experts' knowledge base. Using the

realizations of experts' predictions, we can quantify the contribu-

tions from these two sources. We illustrate this with the ice sheet

study of 2018 (Bamber et al., 2019). Table 1 arranges the 20

experts in rows and the 16 calibration variables in columns. Each

cell contains the (interpolated) CDF value for the realization for

each row expert's assessment of the column variable. The bottom

row and, respectively, the rightmost column contain the marginal

averages. The eyeball sees that the column averages are more

variable than the row averages.

Let Var denote the variance in the entire expert‐variable matrix

and let Var E e v[ ( )] denote the variance of the expectations for the

experts' probability densities given variable v , and so on. The law of

total variance gives:

   Var Var E e v E Var e v Var E v e E Var v e= [ ( )] + [ ( )] = [ ( )] + [ ( )].

Var E e v

Var

[ ( )] denotes the fraction of the overall variance Var that is

explained by the variables and similarly Var E v e

Var

[ [ )] is the fraction

explained by the experts. For this data Var E e v

Var

[ ( ]) = 0.553 and
Var E v e

Var

[ ( )] = 0.0175. Roughly speaking, this means that much more

variability comes from the variables than from the experts. Figure 3

shows this decomposition for the 23 studies with at least 10 experts

and 10 calibration variables.

3 | SCORING RULES

Scoring rules were introduced by de Finetti in 1937 as tools for

encouraging honesty in eliciting subjective probabilities (De Finet-

ti, 1937) and have been further developed by many authors including

(Brown, 1974; Gneiting & Raftery, 2007; De Groot & Fienberg, 1983;

Murphy, 1977; Savage, 1971; Shuford et al., 1966). The latter

reference gives an extensive overview. Carvalho (2016) and Dawid

and Musio (2014) review applications of proper scoring rules, and

Merkle and Steyvers (2013) investigates how the choice of scoring

rules impacts conclusions. An expert receives a score as a function of

his/her probability assessment and the realization. The score is

strictly proper if the expert maximizes (for negatively sensed rules,

minimizes) his/her expected score per item by, and only by, stating

his/her true belief. This section discusses scoring rules for individual

variables with discrete probabilities, scoring rules for sets of discrete

variables, and scoring rules for continuous variables, focusing on rules

encountered in practice.

3.1 | Scoring rules for individual variables with
discrete probabilities

Using a result of Murphy (1977), De Groot and Fienberg (1983) gave

an additive decomposition of strictly proper rules into “calibration”

and “refinement” terms, thereby replacing Murphy's “resolution”

(refinement applies only to well‐calibrated experts). In the case

of the logarithmic rule, refinement becomes the Kullback‐Leibler

divergence of the sample distribution of realizations. Some authors

(Hersbach, 2000) adopt a framework in which nature picks a

distribution for an unknown quantity and forecasters attempt to

predict this distribution.

Scoring rules for individual variables were not designed for

evaluating or combining experts and are not generally fit for that

F IGURE 2 Frequency of percentiles of realizations for 6761 expert probabilistic forecasts from 49 studies.
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TABLE 1 Variance decomposition for the ice sheet 2018 study (Bamber et al., 2019), with 20 experts and 16 calibration variables.

%tile rls vbl1 vbl2 vbl3 vbl4 vbl5 vbl6 vbl7 vbl8 vbl9 vbl10 vbl11 vbl12 vbl13 vbl14 vbl15 vbl16  E v e

exp1 0.572 0.035 0.905 0.043 0.048 0.199 0.045 0.380 0.082 0.954 0.050 0.045 0.951 0.951 0.950 0.985 0.450

exp2 0.957 0.035 0.905 0.042 0.048 0.955 0.045 0.073 0.957 0.953 0.771 0.032 0.037 0.049 0.950 0.978 0.487

exp3 0.800 0.335 0.048 0.727 0.332 0.591 0.575 0.058 0.086 0.268 0.469 0.082 0.062 0.259 0.950 0.908 0.409

exp4 0.952 0.039 0.050 0.502 0.049 0.957 0.122 0.061 0.029 0.952 0.906 0.548 0.078 0.049 0.975 0.963 0.452

exp5 0.613 0.042 0.136 0.046 0.568 0.759 0.045 0.624 0.101 0.950 0.565 0.285 0.040 0.039 0.975 0.963 0.422

exp6 0.950 0.048 0.905 0.956 0.248 0.793 0.424 0.041 0.075 0.532 0.931 0.071 0.161 0.951 0.971 0.978 0.565

exp7 0.170 0.253 0.924 0.838 0.958 0.955 0.098 0.018 0.101 0.532 0.437 0.328 0.078 0.207 0.974 0.806 0.480

exp8 0.590 0.219 0.455 0.351 0.049 0.695 0.580 0.298 0.234 0.950 0.487 0.047 0.044 0.121 0.960 0.908 0.437

exp9 0.952 0.032 0.455 0.461 0.635 0.819 0.048 0.362 0.114 0.201 0.046 0.521 0.037 0.165 0.973 0.987 0.426

exp10 0.320 0.042 0.950 0.164 0.400 0.955 0.122 0.298 0.040 0.952 0.758 0.048 0.124 0.049 0.976 0.963 0.448

exp11 0.950 0.042 0.545 0.511 0.482 0.570 0.259 0.599 0.262 0.950 0.049 0.084 0.575 0.926 0.757 0.974 0.533

exp12 0.500 0.048 0.752 0.735 0.469 0.953 0.613 0.110 0.031 0.688 0.629 0.074 0.125 0.479 0.725 0.984 0.495

exp13 0.950 0.031 0.455 0.043 0.049 0.955 0.311 0.073 0.101 0.950 0.375 0.113 0.029 0.021 0.950 0.963 0.398

exp14 0.725 0.048 0.151 0.950 0.046 0.955 0.208 0.080 0.070 0.952 0.088 0.383 0.611 0.049 0.969 0.963 0.453

exp15 0.500 0.039 0.545 0.277 0.717 0.845 0.122 0.017 0.101 0.877 0.487 0.521 0.029 0.952 0.973 0.978 0.499

exp16 0.500 0.037 0.095 0.046 0.182 0.956 0.424 0.951 0.075 0.954 0.717 0.045 0.106 0.049 0.978 0.758 0.430

exp17 0.951 0.035 0.095 0.651 0.049 0.957 0.951 0.149 0.038 0.511 0.487 0.305 0.658 0.950 0.973 0.887 0.540

exp18 0.050 0.034 0.302 0.614 0.049 0.954 0.086 0.073 0.101 0.952 0.049 0.352 0.274 0.476 0.976 0.986 0.395

exp19 0.950 0.088 0.132 0.247 0.049 0.533 0.406 0.298 0.040 0.950 0.771 0.071 0.512 0.239 0.975 0.978 0.452

exp20 0.750 0.801 0.635 0.728 0.049 0.953 0.045 0.500 0.559 0.953 0.608 0.048 0.037 0.082 0.974 0.981 0.544

E e v( ) 0.685 0.114 0.472 0.447 0.274 0.815 0.276 0.253 0.160 0.799 0.484 0.200 0.228 0.353 0.945 0.944 0.466

Note: The percentile which the realization realizes (%ile rls) for expert's i's distribution for the calibration variable j is reported in row i and column j.
Averaging these percentiles with respect to each expert (E v e( | )) and each variable (E v e( | )) is included.

F IGURE 3 Variance decomposition for 23 studies with at least 10 experts and 10 calibration variables. For each study, the fraction of the
overall variance that is explained by the experts ( VE e v V( )∕ , in blue) and the one explained by the variables ( VE v e V( )∕ , in the dark red) are
included.
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purpose. Indeed, rewarding honesty is not the same as rewarding

quality. A simple example illustrates this difference: Consider 100 fair

coin tosses. An expert assesses the probability of heads on each toss

as 1/2. With the standard scoring rules (Brier, logarithmic, spherical,

and quadratic), the score for the outcome heads is the same as their

score for tails on each toss. If the score for all 100 assessments is a

function of their 100 scores for the individual tosses, then their score

for 100 tosses is independent of the outcome sequence; the outcome

of 100 heads receives the same score as 50 heads and 50 tails. Equal

scores do not imply equal quality.

Another example concerns the popular Brier score for “rain/no rain”

events. This rule is twice the mean squared difference between the

forecast probability of rain and the outcome indicator (1 for rain, 0 for

no rain), negatively sensed on [0, 2] per forecast.1 Nearly as popular is

the logarithmic rule assigning the score of ln(probability of outcome) per

variable. It is positively sensed on the range (−∞, 0] per forecast.

Consider 1000 next‐day forecasts of rain by two experts. Suppose the

experts bin their forecasts as shown below (Cooke, 2014) (Table 2).

Ten probability bins are considered, each associated with a

forecast probability of rain. The experts' assessments are equally

informative in the sense that they each assign the same probabilities

to the same number of days. Expert 1 is statistically perfectly

accurate, that is, the empirical relative frequency of actual rainy days

from the assessed 100 days is identical with the probability

associated with each bin. Expert 2 is massively inaccurate statistically.

The sample distributions bear little resemblance to his/her assessed

probabilities (5%, …, 95%). Expert 1 has a mean Brier score of 0.34

and Expert 2 is a mean Brier score of 0.18, nearly twice as good. For

the logarithmic score, Expert 1's mean score is −0.5, Expert 2's mean

score is−0.32, again nearly twice as good. Expert 2 gets better scores

because the higher resolution of the overall distribution strongly out‐

weighs statistical inaccuracy, even if the sample distributions per bin

bear little resemblance to the forecast probabilities. In fact, if we

replace {1, 99} for Expert 2 with {17, 83}, the Brier scores for the

experts would be equal (for the Logarithmic rule, achieve this result

with {15, 85}). Again equal scores do not imply equal quality. Such

examples make it difficult to explain to experts and DMs what the

numerical values of these scores mean. For more discussion,

see Cooke (1991, 2014). In the context of expert judgment, we

would like to reward both honesty and quality with scoring rules that

TABLE 2 1000 rain/no rain probability forecasts for two experts (upper table), along with Brier (middle table) and Logarithmic scores (lower
table).

Probability bin 5% 15% 25% 35% 45% 55% 65% 75% 85% 95% Totals

Expert 1

Assessed 100 100 100 100 100 100 100 100 100 100 1000

Realized 5 15 25 35 45 55 65 75 85 95 500

Expert 2

Assessed 100 100 100 100 100 100 100 100 100 100 1000

Realized 1 1 1 1 1 99 99 99 99 99 500

Brier Score (= (1 −Quadratic score); negatively sensed in (0,2)) Mean
score

Expert 1

Calibration 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Resolution 9.50 25.50 37.50 45.50 49.50 49.50 45.50 37.50 25.50 9.50 335.00 0.34

Expert 2

Calibration 0.32 3.92 11.52 23.12 38.72 38.72 23.12 11.52 3.92 0.32 155.20 0.18

Resolution 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 19.80

Log score (=ln(p(occur)) × #occur + ln(P(not occur)) × #not occur; positively sensed in (−infty, 0])

Expert 1

Calibration 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 −0.50

Resolution −19.85 −42.27 −56.23 −64.74 −68.81 −68.81 −64.74 −56.23 −42.27 −19.85 −503.83

Expert 2

Calibration −2.47 −12.39 −24.27 −38.10 −54.38 −54.38 −38.10 −24.27 −12.39 −2.47 −263.22 −0.32

Resolution −5.60 −5.60 −5.60 −5.60 −5.60 −5.60 −5.60 −5.60 −5.60 −5.60 −56.00

Note: The probability forecasts are binned in 10 equally spaced intervals and their distribution is included in the “assessed” rows. The “realized” rows depict

which events have occurred. The contribution of the calibration and resolution with respect to each bin is depicted for the Brier and logarithmic scores.

NANE and COOKE | 5 of 16
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are intuitive and easily explained. This requires numerical insight into

the rules' behavior.

3.2 | Scoring rules for average probabilities

Scoring rules for average probabilities were introduced to avoid

problems with scores for individual items (Cooke, 1991). Let random

variables X X, …, n1 take outcomes in a finite set,O, letMO be the set of

probability measures on O, and let Mn be the set of probability

measures on X X, …, n1 . For ∈ MΠ n, let π be the vector of average

probabilities, that is, π n X i= (1∕ )∑ Π{ = }i j n j=1, …, . The vector of

average probabilities for the outcomes in O is the vector of expected

relative frequencies of these outcomes in X X, …, n1 . Let s be

the observed relative frequency of outcomes for realization

X X x x( , …, ) = ( , …, )n n1 1 . A scoring rule for average probabilities assigns

a number, R, to the pair π s R( , ). is strictly proper (positively sensed) if,

for all ∈ MΠ n,

∈
E R ϕ s πarg max [ ( , )] = .

ϕ M
Π

O
(1)

This says, whatever the expert's belief, Π, about X X( , …, )n1 , (s)he

achieves the maximal expected score by stating the probability, π,

over outcomes which corresponds to his/her average probabilities

according to Π. The proofs are a bit more complicated because,

“ Π,” goes over a much larger set than the argmax over MO.

There is a representation theorem in Cooke (1991) for such rules.

However, more useful in practice are rules which are asymptotically

strictly proper as n → ∞. These rules allow the product form in the

CM. Where 1A is the indicator function for the set A and α is any

number strictly between 0 and 1, it is shown that

SA Inf α× × 1 , > 0,SA α> (2)

is asymptotically strictly proper in the set of all product measures

over (X X X, …, n1 2 ). By design, SA is a very fast function and Inf very

slow. This means that when scores in Equation (1) are normalized to

sum to one, SA strongly dominates and Inf modulates between

experts with comparable SA scores. The presence of the cutoff

indicator1SA α> is imposed by the proper scoring rule requirement. The

theory of proper scoring rules does not say what the value of α

should be, just that there should be some cutoff on SA beneath which

an expert is unweighted. The α maximizing the score of the combined

expert is termed optimal in the CM (see Section 4.4).

3.3 | Scoring rules for continuous variables

The PIS, the related CRPS, and the CM have recently been applied to

COVID‐19 models' probabilistic forecasts. Computable examples

highlight issues encountered in Section 3.1, namely trading off

calibration with resolution; reminding us that equal scores do not

imply equal quality. In addition, the scale dependence of CRPS

impedes aggregation over variables on different scales. We derive a

scale‐invariant version of CRPS and derive a closed form of its

convolution to be used in testing experts' SA without recourse to an

asymptotic distribution.

3.3.1 | PISs

Numerical insight into the behavior of these scores requires a bit of

effort. The α(1 − ) uncertainty interval with upper (lower) bound H L( )

and probability α(1 − ) of catching the true value, has the PIS

(negatively sensed) (Aitchison & Dunsmore, 1968) for realization y :

H L
α

L y y H( − ) +
2

× [( − ) + ( − ) ],+ +

where X X=+ if X > 0 and X = 0+ otherwise. Note that α2∕ is the

slope of the overconfidence penalty for y L H[ , ]. The length  H L−

is called the “sharpness” (the resolution component); small values

reward concentrated probability mass. L y y H× [( − ) + ( − ) ]
α

2
+ + mea-

sures (mis)calibration.

To better understand the characteristics of PIS, consider Y

uniformly distributed on the interval [0, 1] (hereafter denoted

Y U~ [0, 1]) and the α(1 − ) uncertainty interval L H[ , ]. Then

∫ ∫E PIS Y H L
α

L x x
α

x H x

H L
α

L H

[ ( )] = − +
2

( − ) d +
2

( − ) d

= − +
1
[ + (1 − ) ].

Y

L

H0

1

2 2

For the central 0.9 interval [0.05, 0.95], the expected PIS is 0.95.

The interval [0, 0.9]with the same “coverage” has worse expected score

1. Suppose an expert prefers to give an 80% interval,[0.1, 0.9], then the

expected score is 0.9. This is better than 0.95 because the prediction

interval is sharper. An expert seeking to optimize (i.e., minimize) his/her

expected score might take a central 2% prediction interval [0.49, 0.51]

with expected score of 0.51. The way in which the PIS trades calibration

for sharpness may strike some as counterintuitive. For example, an

expert claiming that the degenerate interval [0.5, 0.5] has 40%

probability of catching the realization would achieve an expected score

of 0.833, better than the score of the 90% central interval. The

sharpness of an interval of zero length outweighs the overconfidence of

claiming 40% mass at the point 0.5.

3.3.2 | CPRS

Consider y an unknown scalar quantity of interest. Suppose y has a true,

unknown CDF FY , characterizing the distribution of a random variable Y .

An expert provides CDF FX which (s)he believes to be the distribution

of Y . We assume both FY and FX are continuous and strictly increasing

on their support. The CRPS is defined as (Brown, 1974)

∫CRPS F y F x dx( , ) = [ ( ) − 1 ] .X X x y
−∞

∞

{ ≥ }
2 (3)

Lower values indicate better performance. CRPS is known to be

strictly proper relative to the class of Borel probability measures with

6 of 16 | NANE and COOKE
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finite first moment (Gneiting & Raftery, 2007). These authors note:

“Applications of the CRPS have been hampered by a lack of readily

computable solutions to the integral Equation (3)”.

This section presents computable solutions to this integral which

then allow us to study its trade offs between SA and “sharpness.” The

CRPS can be thrown into a scale‐invariant form which offers

significant advantages. To understand the behavior of the CRPS

score, let us consider X uniformly distributed on L H[ , ] (written

hereafter as X U L H~ [ , ]), with L H0 < < < 1. As we will show later,

this particular choice of distribution is relevant for the development

of our proposed score. For ∈y [0, 1]:

∈











CRPS F y

L y
H L

for y L

y L

H L

y H

H L
for y L H

y H
H L

for H y

( , ) =

− +
−

3
0 ≤ < ,

( − )

3( − )
−

( − )

3( − )
[ , ],

− +
−

3
< ≤ 1.

X

3

2

3

2
(4)

Figure 4 shows the CRPS score as a function of y , for different

cases of L andH. Note the possible values are scale dependent. Cases

when y falls within and outside the FX support are highlighted.

The expectation of the CRPS score, which may be infinite, is given by

∫∫E CRPS F Y F x dx dF y[ ( , )] = [ ( ) − 1 ] ( ).Y X
y x

X x y Y{ ≥ }
2 (5)

We discuss some computable solutions for this expectation.

3.3.3 | Computable solutions

Consider Y U~ [0, 1] and an assessment of Y 's distribution by an

expert as that of random variable X X U H H, ~ [0, ], 0 < < 1. The

expert thinks values greater thanH are impossible, although these can

in fact arise. The expected CRPS is computed based on the distribution

of Y . The CDF of X F x x H, ( ) = ∕ , for ∈x H[0, ] and F x( ) = 1,X for x H≥ ,

along with the survivor function of X S x F x, ( ) = 1 − ( ) are shown in

Figure 5 (see also Candille & Talagrand, 2005).

Then ∫ ∫E CRPS F Y F x dx dy[ ( , )] = [ ( ) − 1 ]Y X x y0

1

0

1
≥

2 is computed in

two steps:

(A) For y H< :








 







∫ ∫ ∫

x

H
dx

H x

H
dx dy

H
+

−
=

6
.

H y

y

H

0 0

2

2

2 2

(B) For y H> :







∫ ∫ ∫ ∫

x

H
dx dx dx dy

H H

H

+ + 0 =
(1 − )

3

+
(1 − )

2
.

H

H

H

y

y

1

0

2

2

1

2

Therefore:

E CRPS F Y
H H H H

[ ( , )] =
6

+
(1 − )

3
+
(1 − )

2
.Y X

2 2

(6)

F IGURE 4 Continuous Ranked Probability Score (CRPS) for X U L H~ [ , ] and ∈y [0, 1]. Differences for y L< (red), for ∈y L H[ , ] (blue), and
y H> (green) are highlighted. (a) L = 0.1, H = 0.3, (b) L = 0.6, H = 0.7, and (c) L = 0.3, H = 0.7.

F IGURE 5 Cumulative distribution function and survivor function of a uniformly distributed random variable on [0,H].

NANE and COOKE | 7 of 16

 25735152, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/ffo2.189 by C

ochrane N
etherlands, W

iley O
nline L

ibrary on [01/07/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



As noted by Hersbach (2000), these results acquire a physical

dimension. The result for (A) is the score an expert with X U H~ [0, ]

expects, namely H ∕62 , which has the physical dimension of H2. If X is

in meters and changes to centimeters, the expected score increases

by a factor 104.

If X U L H~ [ , ], for L H0 < < < 1, then the same method of

calculation applies mutatis mutandis. If L H= 1 − , with H ≥ 0.5, then

the contributions from x y< and y x< are equal and we need only to

double the contribution from x y< . If y L< , the contribution from

x y< is zero. We compute
















∫ ∫ ∫ ∫

∫ ∫ ∫ ∫ ∫

∫ ∫

F x dx dy F x dx dy

x L

H L
dx dy

x L

H L
dx dx dy

y

H L
dx

H L
y H dy

H L H L H H

( ) + ( )

=
( − )

( − )
+

( − )

( − )
+ ,

=
3( − )

+
( − )

3
+ ( − ) ,

=
( − )

12
+
( − )(1 − )

3
+
(1 − )

2
.

L

H

L

y

H L

y

L

H

L

y

H L

H

H

y

L

H

H

2
1

2

2

2

1 2

2

3

2

1

2 2

Adding the identical contribution from y x< gives:

E CRPS F Y
H L H L H

H[ ( , )] =
( − )

6
+
2( − )(1 − )

3
+ (1 − ) .Y

2
2 (7)

Again, the score inherits a physical dimension from X . Substitut-

ing L H= 1 − in the above equation, we find that E CRPS F Y[ ( , )]Y for

X U H H~ [1 − , ] is equal to E CRPS F Y[ ( , )]Y for X U H~ [0, ] from

Equation (6). This holds for any L H0 < < < 1, with L H= 1 − . Hence,

for X U E CRPS F Y E CRPS F Y~ [0, 0.7], [ ( , )] = 0.1966 = [ (˜, )]Y Y , for

X U˜ ~ [0.3, 0.7]. By the same token, X U~ [0, 0.5] yields the same

expected score of 0.25 as X̃ with Dirac distribution δ (0.5)

concentrated at 0.5.

For CDFs F{ }i and F , if F F→i , then E CRPS F y[ ( , )]→Y i

E CRPS F y[ ( , )]Y , by the Helly–Bray theorem (Billingsley, 2013). It

follows that, if F U→ [0, 0.5]n and F δ˜ → (0.5)n , then for all ε > 0 and

for all sufficiently large  n E CPRS F Y E CPRS F Y ε, [ ( , )] − [ (˜ , )] <Y n Y n . This

illustrates how the CRPS compensates loss of SA by a gain in

“sharpness,” and again illustrates that equal scores do not entail equal

quality.

Note that if the probabilistic forecast is the distribution of Y

(uniform [0, 1]), then the expected CRPS score is 1/6, by Equation (6).

For H E CRPS F Y0 < < 1, [ ( , )] >Y
1

6
, by Equation (6) and for

H L H E CRPS F Y0.5 < < 1, = 1 − , [ ( , )] >Y
1

6
, by Equation (7). An ex-

pert would receive a better (lower) expected score if their

probabilistic forecast were equal to the distribution of Y .

3.3.4 | Scale invariant CRPS and a new test for SA

Scale invariance in Bayesian decision analysis was introduced by

Morris (1974) and discussed in Morris (1977) and Wiper and

French (1995). Similar to Morris (1974), we introduce a reparame-

trization of CRPS by transforming the realizations according to the

probability integral transformation of an expert's assessed CDF. An

expert with CDF FX for continuous variable X is scored not with

respect to the realization y but with F y( )X , the quantile of the

distribution of X realized by y . The proposed CRPS transformation

has several advantages:

(i) The transformed CRPS becomes scale‐invariant.

(ii) The expert's sampling distribution of transformed CRPS can be

expressed in closed form.

(iii) The density of convolutions of transformed CRPS scores for

independent variables is available in closed form.

(iv) Transformed CRPS can then be used to test the expert's SA

without recourse to an asymptotic distribution.

On the downside, CRPS is insensitive to location bias (see below).

If the experts assess only certain quantiles, a second downside is that

continuous CDFs must be interpolated before applying CRPS.

To motivate this transformation, suppose we would like to test

the hypothesis that Y follows the expert's assessed distribution FX .

Applying the probability integral transformation, let U F X= ( )X and

define V F Y= ( )X . Then F u u( ) =U . The hypothesis that F F=X Y is

equivalent to the hypothesis

H V U: ~ [0, 1].0

In this case CRPS can be written, for the realization v and for U

uniformly distributed on [0, 1], as

∫

∫ ∫ ∫

∫

CRPS F v u u

u u u u u

u

v v

( , ) = [ − 1 ] d ,

= (0 − 0) d + d + ( − 1) d

+ (1 − 1) d ,

=
3

−
( − 1)

3
.

U u v

v

v

−∞

∞

{ ≥ }
2

−∞

0
2

0
2

1
2

1

∞
2

3 3

(8)

The range of the CRPS F v( , )U is






,

1

12

1

3
, for ∈v [0, 1]. The

distribution of CRPS is the distribution of the random variable

V V V V
1

3
[ − ( − 1) ] =

1

3
− + ,3 3 2

taking values in [ , ]
1

12

1

3
(lower values are better). Under the null

hypothesis, V is uniform [0, 1]. For fixed ∈Q [ , ]
1

12

1

3
, to find the

probability that CRPS F v Q( , ) ≤U , under the null hypothesis, we find

the roots of V V Q− + ( − ) = 0:2 1

3

v
Q Q

=
1 ± 1 − 4( − )

2
=
1 ± 4 −

2
.1,2

1

3
1

3

Collecting the mass between the two roots, we obtain the CDF

P CRPS F v x x( ( , ) ≤ ) = 4 −
1

3
,U

with density
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∈


 




x
x

2

4 −
,

1

12
,
1

3
.

1

3

(9)

Figure 6 shows CRPS F v( , )U , together with its CDF and density

under the null hypothesis H0.

From Figure 6, it is evident that the score CRPS F v( , )U is

symmetric around the value v = 0.5. This is different from the

behavior of CRPS F v( , )U exhibited in Figure 4a or 4b, and it illustrates

a feature of the scale‐invariant version of CRPS.

From Equation (9), we can easily compute

E CRPS F V

E CRPS F Vt

Var CRPS F V

[ ( , )] =
1

6
,

[ ( , )] =
1

30
,

( ( , )) = 0.0055555.̲

V U

V U

V U

2 (10)

It is handier to consider the following transformation

Z U V CRPS F V( , ) = 4 ( , ) −
1

3
.U (11)

Then Z has CDF and density

∈F x x f x
x

x( ) = , and ( ) =
1

2
, [0, 1].Z Z

Note that fZ is the density of U2, where U U~ [0, 1]. So far, only

one unknown scalar quantity of interest, and expert's resulting CRPS

score, have been considered.

Suppose an expert provides uncertainty assessments for n

random variables. The emerging question is how to aggregate the

CRPS scores of each of the n variables? The transformation Equation

(11), and the observation that the density fZ is the density of a

squared uniform random variable are again handy.

If we assume the n variables to be independent, then we need to

consider Z Z, …, n1 independent variables, each with density fZ . For

these, we need to find the density of ⋯Z Z Z= + +n
n

( )
1 . Or, in terms of

the squared uniform random variables, we need to find the density of

⋯S U U= + +n n1
2 2.

Weissman (2017) provides closed‐form distributions for Sn, for

n = 3, 4, 5, 6, 8, 10, 12 and their graphical representations. A

connection is also made with a topic of geometrical probability,

that is, finding the CDF of S P S s, ( ≤ )n n , is equivalent to finding the

volume of the intersection between the unit n‐cube and the ball of

radius s , in n, when both are centered at the origin. In his

comment to Weissman (2017), Forrester (2018) observes that the

more generic volume problem posed by Xu (1996), of finding the

volume of the intersection of a cube and a ball in n‐space has

already been solved by Tibken and Constales (Rousseau &

Ruehr, 1997). Weissman (2017) reports that Constales' solution

to the volume problem involves a method based on Fourier series

and implies that, for general n,




















∑F s P S s
s

n π

C k n iS k n

k n

e

k

Im( ) = ( ≤ ) =
1

6
+ +

1

(2 ∕ ) − (2 ∕ )

2 ∕
,

n n
k

n
πiks n

=1

∞

2 ∕
(12)

where ∫S x sin t t( ) = ( ) d
x

0
2 and ∫C x cos t t( ) = ( ) d

x

0
2 denote the Fresnel

integrals and Im is the imaginary part of a complex number.

Figure 7 graphically compares the above cumulative distribution

for n = 2 (left) and n = 10 (right) with the empirical distribution

function of the corresponding sum of squared uniform observations.

100 observations were sampled for both empirical distribution

functions. The CDF was implemented in R, by making use of

functions implementing the Fresnel integrals in the pracma package

(Borchers & Borchers, 2022).

Consider n observations of continuous variables assessed by an

expert e. The following procedure calculates SA for the CRPS statistic

(1) For each realization y n= 1, …,i , compute q F y= ( )e
i

i e i, , the quantile

of yi in expert e's CDF Fi e, .

(2) The SA hypothesis H0 entails that these quantiles are indepen-

dent samples from a uniform distribution. Under this hypothesis,

CRPS e CRPS F q( ) = ( , )i U e
i can be computed from Equation (8).

F IGURE 6 Continuous Ranked Probability Score (CRPS) function, for U U~ [0, 1] and ∈v [0, 1], together with its cumulative and density
functions, under the null hypothesis H0.
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(3) For each i n= 1, …, , compute z e CRPS e( ) = 4 ( ) − 1∕3i i , which is

given in Equation (11).

(4) Compute s e F z e( ) = (∑ ( ))n i
n

i=1 , where Fn is the exact distribution of

the sum of n independent squared uniform variables, given in

Equation (12).

Note that the procedure can be applied for continuous and

invertible CDFs. CRPS uses an exact instead of an asymptotic

distribution for the convolution of these CDFs. From Figure 6, it is

evident that the score CRPS v( ) for value v is symmetric around the

value 0.5. The distribution of the sum of such variables is insensitive

to location bias in the following sense: the score for n2 observations

of 0.4 is the same as for n observations of 0.4 and n observations of

0.6. Figure 6 also shows that CRPS is insensitive to underconfidence:

An expert whose probability transformed realizations are all 0.5

scores better than one for whom the hypothesis of Section 3.3.4 that

F F=X Y holds. Underconfidence is relatively rare with expert

judgment. Overconfidence, on the other hand, is not rare (see

Figure 2 ) and the CRPS score is sensitive to overconfidence.

4 | PERFORMANCE RESULTS

As our expert data is in the form of fixed quantiles of continuous

distributions, we focus on performance metrics from CM and CRPS. The

performance metrics of interest are SA, Inf, and mean absolute percentage

error (MAPE), both for the experts themselves and for combinations of

experts (called DMs). Before doing this, we first address the issue of

persistence. This notion was introduced in Cooke et al. (2021), and we

extend those results by examining the persistence of MAPE.

4.1 | Persistence of MAPE

MAPE is a scale‐invariant measure of the proximity of a point forecast

to the realization. In our case, the forecast is taken as the median.

There are many measures for such proximity (Gneiting et al., 2007;

Morley et al., 2018), each with benefits and drawbacks. MAPE is

perhaps the most popular, defined for forecasts xi and realization ri,

for i n= 1… as

∑
n

x r

r

1 −
.

i

n
i i

i=1

This is evidently unstable for very small ri. Instability arises on this

data set, as the largest MAPE is over one million. MAPE is not used in

computing DMs in the CM, as it does not comport with CM's scoring

rule properties. It is nonetheless an important performance metric.

We first address the persistence of MAPE.

Consider a panel‐wide performance metric in a panel of experts

assessing variables from their field for which true values are known,

for example, the maximum value of SA in the panel. Suppose that the

experts are really equivalent and that observed differences in SA

were simply due to “random stressors” during the elicitation. In

contrast to persistent influences like knowledge, experience, and

intuition, random stressors might be things like fatigue, mood, and

distraction. It is not possible to observe or measure these influences.

We can, however, test the claim that differences are just “noise.” The

null hypothesis is that the experts' responses for each variable are

independently sampled from the same distribution (overdistribu-

tions). If the experts were re‐elicited a short time later, then their

responses would be independent resamples from this distribution.

This is the operational meaning of the statement that expert

differences are not persistent. That means that, for example, Expert

1's elicited distribution for variable 1 could just as well have come

from Expert 2 and conversely. Nonpersistence is a statistical

hypothesis that can be tested by randomly scrambling the original

expert assessments. Thus, a new Expert 1 chooses assessments for

each variable from the assessments of all experts for that variable.

Expert 2 randomly chooses assessments not already chosen by

Expert 1, and so on. We repeat this process, say 1000 times, to

generate a distribution of the performance metric values in which any

“expert effect” has been wiped out. If the maximum SA value were

F IGURE 7 The exact distribution (red) and empirical distribution function for 100 samples of the sum of squared simulated uniform
observations (blue), for n = 2 (left) and n = 10 (right).
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not persistent, then the original value could be regarded as a random

sample from the scrambled distribution. Equivalently, the percentile

in the scrambled distribution realized by the original maximum SA

would be uniformly distributed. With 49 studies, we would have 49

percentiles which would be uniformly distributed under the

hypothesis that the performance metric were not persistent in this

set of studies.

As described in Cooke et al. (2021) this hypothesis of uniformity

can be tested either with a simple binomial test or with a normal test

where the sum of the 49 percentiles is approximated as normal under

the null hypothesis. For positively (negatively) sensed metrics high

(low) percentiles are critical. The results from (Cooke et al., 2021) are

extended to include the minimal MAPE value in each panel. Along

with MAPE, Table 3 includes statistics regarding SA and combined

score, which is the product of the SA and information score.

We see, fromTable 3, that the persistence of the panel minimum

MAPE is on a par with the spread of SA scores as reflected in their

standard deviation. Roughly summarized, over the set of 49 studies,

the ability to put one's median assessment close to the realization is a

property of the experts. That said, the Pearson correlations of MAPE

with SA and with Inf are negligible (−0.02 and 0.03, respectively). The

rank correlations however are −0.25 and 0.23. The negative rank

correlation −0.25 means that good SA is weakly correlated with low

percentage error. Putting the median near the realization seems to be

a different skill from giving statistically accurate and informative

probabilistic forecasts.

4.2 | Results for SA with CM and CRPS

As mentioned, SA can be scored either with interquantile hit rates and

the asymptotic χ2 CDF, or with CRPS using the exact distribution of the

sums of CRPS scores. For the purposes of this section, we distinguish

these two as CM SA and CRPS SA. When applied to this data, CRPS

needs to interpolate the quantile of the realization. It was also noted

that CRPS is insensitive to location and under confidence bias.

Figure 8 plots the SA scores for 526 experts based on CM and on

CRPS, ordered by the CRPS scores. Although the drift of the two

scores is similar, there is substantial scatter. CRPS's log geometric

mean SA score is −2.76 while that of CM is −3.47; in this sense, CRPS

is more forgiving.

We define an expert's location bias as the absolute difference

between the percent of realizations above the medians and 50%.

Location bias of 50% means that all realizations are above or all

realizations are below the medians.

Figure 9 black circles the CM scores of those experts for whom

the location bias is greater or equal to 20%. CM SA scores of experts

for whom the location bias is 50% (all realizations were either below

or all above the medians) are red circled. The location bias of these

circled experts is missed by CRPS and helps explain some of the

downward scatter.

For 70 experts, the location bias is 0%. These are termed experts

without location bias (though of course there could be location bias in

the lowest and highest interquantile intervals). Figure 10 plots these

70 CM SA scores against all the CRPS SA scores. On this subset,

CRPS's log geometric mean SA score is −2.50, while that of CM is

−2.68.

The number of calibration variables assessed in the 49 panels

ranges from 7 to 21, see Figure 1. This influences CM SA in two

ways, a larger number (i) increases the accuracy of the χ2

approximation and (ii) tends to lower SA scores of poorly

calibrated experts as the test of SA has greater power. The first

should decrease the differences between CM SA and CRPS SA, at

least for location‐unbiased experts, whereas the second enables a

greater range of CM SA scores and might, therefore, increase the

differences. A multiple regression of ( )log
CRPS SA

CM SA
against location

bias and number of calibration variables explains 30% of the

variance (adjusted R2) and both explanatory variables have a

significant positive effect on the dependent variable. Thus, the

influence of (ii) exceeds that of (i). The Pearson correlations of the

dependent variable with location bias and with number of

calibration variables are 0.41 and 0.29 respectively. The correla-

tion of the two explanatory variables is −0.17. Under confidence

TABLE 3 Persistence of performance metrics in 49 studies.

Mean SA StDev SA Max SA Mean CS Stdev CS Max CS Min CS Min MAPE

Count(Orig,Med) 42 38 36 39 40 38 40 38

Binom 1.81E−07 7.10E−05 7.01E−04 1.92E−05 4.63E−06 7.10E−05 4.63E−06 7.10E−05

Sum percentiles 36.33 34.27 31.29 33.84 32.99 31.92 36.40 34.1

Normal 2.40E−09 6.61E−07 3.91E−04 1.89E−06 1.33E−05 1.21E−04 1.95E−09 6.03E−07

Note: For each study, 1000 random scrambles of expert assessments are drawn. Statistics of the original panel and the scrambled panels are computed:
the average statistical accuracy (Mean SA) for all experts, the standard deviation SA (StDev SA), the maximum SA (Max SA) among all experts, the average,

standard deviation, maximum and minimum combined score (Mean CS, StDev CS, Max CS, Min CS) and minimum mean absolute percentage error (Min
MAPE). The statistics from the original panel are compared with the empirical median of the corresponding statistics from the random scrambles. Count
(Orig, Med) counts for how many studies the original statistic is higher than the corresponding median. For Min CS and Min MAPE, Count(Orig, Med)
counts for how many studies the original statistic is lower than the corresponding median. Binomial denotes the probability under the hypothesis of
nonpersistence that the number of percentiles above the median should equal or exceed the indicated number. Sum percentiles denote the sum of

percentiles the original panel statistic realizes in the random scrambles. Normal is the probability under the nonpersistence hypothesis that the sum of
percentiles should be at least as great as that indicated.
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did not have a significant effect because of the low number of

under confident experts. A more detailed analysis might better

explain the differences in the two SA scores but at this point it

appears that location bias is the major factor.

4.3 | MAPE

SA is not the only scoring variable of interest; proximity of the

median to the realization is also important.

The data set contains many very high MAPE values. For

visualization, we select 326 experts whose MAPEs were less than

2. Figure 11 plots these MAPE scores (left axis) and also plots the

corresponding values of CM SA andCRPS SA (right axis). Although not

overwhelmingly clear in the figure, the CRPS SA scores tend to be

higher than those of CM SA, especially for very low MAPEs (see trend

lines). The Spearman correlation of CM SA and MAPE on this data

subset is−0.15, while that of CRPS SA andMAPE is−0.26. This results

from the fact that CRPS uses the (interpolated) CDF whereas CM is

based on interquantile hit‐rates. It is reasonable to expect that

F IGURE 8 Statistical accuracy of 526 experts with respect to Continuous Ranked Probability Score (CRPS) (red) and Classical Model (blue).
Statistical accuracy (SA) scores are ordered by CRPS SA scores.

F IGURE 9 Statistical accuracy of 526 experts with Classical Model (CM) and Continuous Ranked Probability Score (CRPS) with location
biases circled. Location bias is the absolute difference between the percentage of medians above the realizations and 50%. Black circles denote
CM scores of those experts for whom the location bias is greater or equal to 20%. Red circles denote location bias of 50%.
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weighing experts according to CRPS scores will produce better MAPE

values for the combination of experts than CM. Other researchers

Flandoli et al. (2011) have used likelihood scores based on

interpolated CDFs and achieved better MAPE performance than with

CM. Although CRPS is a strictly proper scoring rule, its scale‐invariant

version is not proper.2 The test statistic based on this score is

unaffected by this. The true distribution of variable Z in Equation (11)

is known, therefore, for large sample sizes, an alternative is to use the

Glivenko Cantelli theorem on the convergence of the empirical to the

theoretical distribution in analogy to the asymptotic propriety of CM.

These are some possibilities to be explored in future work.

4.4 | DMs

We now turn to DMs based on CM and CRPS. For comparison, we

introduce a new DM being the single expert in each panel with the

smallest MAPE. CM comes in two flavors. The Global Weight DM

(GWDM) uses Equation (1) where the Inf score is the average inf over

all calibration variables. The Item Weight DM (IWDM) assigns a

weight per variable based on each expert's inf for that variable. This is

better in principle as it allows an expert to up‐ or downweight him/

herself item‐wise according to his/her self‐assessed knowledge of

each item. In practice, however, experts are not always able to do this

F IGURE 10 Statistical accuracy (SA) of 526 experts with Continuous Ranked Probability Score (CRPS) and 70 experts with Classical Model
(CM) without location bias.

F IGURE 11 326 mean absolute percentage error (MAPE) scores <2 (left axis) and Statistical accuracy (SA) for Classical Model (CM) and
Continuous Ranked Probability Score (CRPS) (right axis), with trend lines.
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up‐down weighting successfully. As mentioned, scoring rule theory

does not determine the value of the cutoff α and in most applications

this is done by choosing the value which optimizes the performance

of the combination (GWDM_opt and IWDM_opt). As a foil for

gauging the effect optimization, the DMs without optimization,

setting α = 0, are also computed, notated simply as GWDM and

IWDM. These DM's do not satisfy the proper scoring rule constraint.

We note that the optimized DMs are optimized on the data used in

Tables 4 and 5. True out‐of‐sample validation for these DMs is a

complex undertaking out of scope for this study (Colson &

Cooke, 2017). In most cases, there is a modest out‐of‐sample penalty

for SA. This does not affect MAPE and does not affect the

nonoptimized DMs. Additionally, we consider 'Equal Weights DM

(EWDM), which assigns weights equally to all experts.

To this pantheon, we add two new DMs. CRPS uses weights

determined by CRPS SA. No further information component is

involved. Finally, MinMAPE denotes the DM's obtained by giving

weight one to the expert with the smallest MAPE value in each panel.

Table 4 gives the SA scores for all these DMs. MinMAPE scores

poorly for SA, as could be expected. The median SA score is 0.02

meaning that half of these DM s′ SA hypotheses would be rejected at

the 2% level. EW and CRPS are roughly comparable and the

optimized CM DMs return the best performance.

Table 5 gives the Inf scores for all these DMs. MinMAPE scores

highest for Inf, neither surprising nor self‐evident. Its median Inf score

is almost twice the CM scores. Recall that Inf is a slow function.

Halving the Inf corresponds roughy to doubling the width of the 90%

confidence interval. EWDM is the least informative, not unexpected.

CPRS is comparable to GWDM.

Table 6 gives the MAPE scores for all these DMs. MinMAPE

scores the best (lowest) for MAPE, as expected, but the difference

with the other DM is notable. Of course, this is purchased with poor

SA. CRPS and IWDM_opt are roughly comparable; EWDM is wiping

up the rear.

TABLE 4 Statistical accuracy for decision makers.

EWDM GWDM GWDMopt IWDM IWDMopt CRPS Best MAPE expert

5% 0.04 0.02 0.02 0.01 0.01 0.01 0.00

50% 0.29 0.39 0.55 0.49 0.64 0.34 0.02

95% 0.65 0.66 0.93 0.83 0.96 0.65 0.70

Mean 0.31 0.37 0.50 0.43 0.54 0.35 0.15

Geomean 0.18 0.23 0.30 0.24 0.32 0.21 0.00

Abbreviation: MAPE, mean absolute percentage error.

TABLE 5 Informativeness for decision makers.

EWDM GWDM GWDMopt IWDM IWDMopt CRPS Best MAPE expert

5% 0.16 0.23 0.41 0.35 0.38 0.22 0.60

50% 0.49 0.71 1.00 0.94 1.09 0.75 1.85

95% 1.29 1.90 2.70 1.98 2.70 1.89 3.32

Mean 0.60 0.86 1.26 1.03 1.31 0.87 1.96

Geomean 0.46 0.71 1.06 0.88 1.11 0.70 1.72

Abbreviation: MAPE, mean absolute percentage error.

TABLE 6 MAPE scores for decision makers.

EWDM GWDM GWDMopt IWDM IWDMopt CRPS Best MAPE expert

5% 0.25 0.19 0.20 0.22 0.18 0.22 0.21

50% 0.84 0.65 0.74 0.55 0.60 0.65 0.54

95% 6.23 6.23 6.47 5.73 6.47 6.33 1.93

Mean 3.64 2.33 2.50 1.64 1.90 2.05 0.94

Geomean 0.95 0.90 0.95 0.73 0.84 0.82 0.58

Abbreviation: MAPE, mean absolute percentage error.

14 of 16 | NANE and COOKE

 25735152, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/ffo2.189 by C

ochrane N
etherlands, W

iley O
nline L

ibrary on [01/07/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



5 | CONCLUSION

Rewarding honesty in expert elicitation is not the same as rewarding

quality in expert probabilistic assessments. This is manifested when

numerically equal scores mask large differences in quality. In

traditional proper scoring rules, SA and some measure of inf

(sharpness, resolution, refinement, information) are hard‐wired such

that very high sharpness can buy off an attendant very poor SA. In

the CM these are measured separately and combined in a product

form with SA strongly dominating. A scale‐invariant version of CRPS

isolates the SA component and can be combined with inf as in the

CM. This is applied to an expert judgment data base involving 49

studies, 526 experts, and 580 calibration variables from their fields.

With a closed‐form convolution of independent CRPS scores, the

transformed CRPS yields a score for individual variables together with

a test for experts' SA on sets of variables without recourse to an

asymptotic distribution. This may enable applications with fewer

calibration variables. Compared to the SA test used in the CM it has

the advantage of better rewarding proximity of a median point

forecast to the realization. On the other hand, it is insensitive to

location and underconfidence bias. The feature of scoring individual

variables might prove useful for screening calibration variables for

outliers.

New insights include that (a) variance due to assessed variables

dominates variance due to experts, (b) performance on MAPE is

weakly related to SA, (c) scale‐invariant CRPS combinations compete

with the CM on SA and MAPE, and (d) CRPS is more forgiving with

regard to SA than the CM as CRPS is insensitive to location bias.

Further analysis on combinations of experts' judgments, compar-

ing the performance of CRPS with other tests based on the χ2, the

Kolmogorov–Smirnov, and the Cramer–Von Mises statistics are the

subject of a companion study in preparation (Rongen et al., 2024). At

this point, we can conclude that the scale‐invariant CRPS offers an

alternative to CM with a different palette of pro's and con's. In any

event, the ability to score individual variables, rather than sets of

variables, secures it a place in the tool box.
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