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Abstract: For a high dimensional �eld of random variables, global correlation is de�ned as the ratio of aver-
age covariance and average variance, and its elementary properties are studied. Global correlation is used to
harmonize uncertainty assessments at global and local scales. It can be estimated by the correlation of ran-
dom aggregations of �xed size of disjoint sets of random variables. Illustrative applications are given using
crop loss per county per year and forest carbon.
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1 Introduction
This note de�nes global correlation, studies its elementary properties and illustrates its use in global uncer-
tainty accounting for crop loss and forest carbon. The rich literature on multivariate correlation can receive
only passing mention. Conical correlation [6] concerns the maximal product moment correlation between
linear combinations of two random vectors, interclass correlation [10] describes the correlations in grouped
data. Multiple correlation and the correlation ratio [9] relate a single variable to a set of variables. Random
correlation matrices [5] and the distribution of their determinants [4, 13] have sparked interest in the (scaled)
determinant of the correlation matrix as a measure of multivariate association. Using Vines [1, 2, 8, 12] have
made progress in understanding random determinants of correlation matrices. Micro correlations have at-
tracted attention for their role in limiting the extent of securitization and risk sharing [11], and also for their
role in amplifying tail dependence [3]. The problems discussed here involve up to 4 billion variables, and
harmonizing uncertainty quanti�cation at di�erent scales of aggregation requires new techniques.

2 Methods
The correlation of randomaggregates is used to estimate global correlation.All randomvariables are assumed
to have a �nite second moment. The following facts and de�nitions are used:

1) If X1, X2 are iid random variables with standard deviation σ, then

E(X1 − X2)2 = 2σ2.

2) If X1, . . . , XN have average variance σ2 and average covariance c, de�ned as

σ2 =
∑N

i=1 VAR(Xi)
N and c =

∑
i= ̸k COV(Xi , Xk)
N(N − 1) ,
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then

VAR
( n∑
i=1

Xi

)
= Nσ2 + N(N − 1)c (1)

and, consequently, c ≥ −σ2/(N − 1).
3) De�ne ρ = c/σ2 as the global correlation of X1, . . . , XN . Let X1, . . . , XN and Y1, . . . , YN have average

variance σ2 and average covariance c, both within and between components. That is

σ2 =
∑N

i=1 VAR(Xi)
N =

∑N
i=1 VAR(Yi)

N

and

c =
∑

i= ̸k COV(Xi , Xk)
N(N − 1) =

∑
i= ̸k COV(Yi , Yk)
N(N − 1) =

∑N
i=1
∑N

k=1 COV(Xi , Yk)
N2 .

Then from (1) one obtains

ρ
( N∑
i=1

Xi ,
N∑
i=1

Yi

)
= N2 c
Nσ2 + N(N − 1)c =

N ρ
1 + (N − 1)ρ . (2)

The above correlation converges to 1 as N →∞, for any ρ > 0. If ρ > 0 and N >> 1, then

StDev
( N∑
i=1

Xi

)
= σN(N−1 + ρ(N − 1)/N)1/2 ∼ σNρ1/2.

This should be compared to the case where c = 0, which holds if the Xi are independent:

StDev
( N∑
i=1

Xi

)
= σN1/2.

With independence, theuncertainty (standarddeviation) of a sumofN randomvariables growswithN1/2, but
a small global correlation causes the growth to be linear inN. To appreciate this, let ρ be the global correlation
of the amount of forest carbon per hectare; wewish to assess the uncertainty of global forest carbon based on
the average variance in the estimates per hectare. The number of hectares of forest on the earth is N = 4E9.
With ρ = 0.001, we have

σNρ1/2

σN1/2 = 2000.

The di�erence between the cases ρ = 0 and ρ = 0.001 is huge. Recall the
Cauchy-Schwarz Inequality: for any x, y ∈ RN , we have( N∑

i=1
xiyi

)2

≤
( N∑
i=1

x2i

)( N∑
i=1

y2i

)
. (3)

Equality in (3) holds if and only if yi = Axi for some A ∈ R. With yi = 1, we have( N∑
i=1

xi

)2

≤ N
N∑
i=1

x2i , (4)

with equality if and only if the xi are constant. Equivalently, if x =
∑N

i=1 xi/N we have

N
N∑
i=1

x2i ≥ (Nx)2 (5)

or x2 ≤
∑N

i=1 x
2
i /N (a version of Jensen’s inequality) with equality if and only if the xi are constant.
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3 Results and Discussion
Lemma 1. For all x ∈ RN , we have (N − 1)

∑N
i=1 x

2
i ≥
∑

i= ̸k xixk .

Proof. Put x =
∑N

i=1 xi/N. Then (N − 1)
∑N

i=1 x
2
i ≥

∑
i= ̸k xixk ⇔ (N − 1)

∑N
i=1 x

2
i ≥

∑N
i=1 xi(Nx − xi) = (Nx)2 −∑N

i=1 x
2
i ⇔ N

∑N
i=1 x

2
i ≥ (Nx)2 which is (5).

Lemma 2. With the notation as above for ρ, σ, c; with σi = VAR(Xi)1/2, cik = COV(Xi , Xk), ρik = cik/(σiσk)
and the average correlation de�ned as

ρ* =
∑

i= ̸k ρik
N(N − 1) ,

we have:

(i) If σi = σk for all i = ̸ k, then ρ = ρ*;
(ii) ρ ≤ 1;
(iii) If ρ = 1 then ρik = 1 for all i = ̸ k.

Proof. (i) is immediate. (ii)
∑

i= ̸k(σi − σk)
2 ≥ 0⇔ 2N(N − 1)σ2 ≥ 2

∑
i= ̸k σiσk and using cik ≤ σiσk it follows

that σ2 ≥ c. (iii) Suppose ρ = c/σ2 = 1; then
∑

i= ̸k cik/(N(N − 1)) =
∑N

i=1 σ
2
i /N or

∑
i= ̸k cik = (N − 1)

∑N
i=1 σ

2
i ≤∑

i= ̸k σiσk since cik ≤ σiσk. However, from Lemma 1 we see that (N − 1)
∑N

i=1 σ
2
i ≥

∑
i= ̸k σiσk. Hence (N −

1)
∑N

i=1 σ
2
i =

∑
i= ̸k σiσk or N

∑N
i=1 σ

2
i = (

∑N
i=1 σi)

2. By the Cauchy-Schwarz inequality (see (4)) all the σi are
the same. By (i) ρ = ρ* = 1. Since each ρik ≤ 1 and ρ* = 1, it follows that ρik = 1.

Writing ρN = ρ
(∑N

i=1 Xi ,
∑N

i=1 Yi
)
we construct a continuous version of ρN as follows. Solve (2) for the

global correlation ρ:
ρ = ρN

N − (N − 1)ρN
. (6)

Replace ρN by f (x), x > 1. For 0 ≤ ρ ≤ 1 write:

f (x) = ρ[x − xf (x) + f (x)]. (7)

Di�erentiating both sides of (7):
f ′(x) = ρ[1 − f (x) − xf ′(x) + f ′(x)],

f ′(x)[1 + ρ(x − 1)] = ρ[1 − f (x)],

f ′(x)
1 − f (x) = −

d[ln(1 − f (x))]
dx =

ρ
1 + ρ(x − 1) ,

f (x) = 1 − exp

− ∫
1<u≤x

ρ
1 + ρ(u − 1)du

 . (8)

Equation (8) provides a graphical representation of the relation between ρN and ρ (see Figure 1).
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4 Example: crop loss
Crop loss claims per US county per year are tabulated from 1980–2008 (data available at http://www.r�.
org/events/event/data-climate-change-and-extreme-events). Restricting to counties without zero entries, a
dataset of 1334 counties is obtained. For this dataset the average variance over all counties and the average
covariance between pairs of counties can be computed. Their ratio is the global correlation, 0.103, as shown
in Table 1. Random aggregation of disjoint pairs of size 1, 10, 20, 50, 100 and 200 counties are also con-
structed and correlations of the aggregates are computed. Iterating this process 2000 times, the correlation
of disjoint randomly drawn aggregates are estimated by averaging over the 2000 iterations. Plugging these
estimates into (6) yields estimates of the global correlation, also shown in Table 1.

Table 1: US crop loss insurance claims from 1330 counties without null entries, 1980 - 2008.

Global	Correlation	and	Uncertainty	Accounting	
 

4 
 

 
Estimates	of	Global	Correlation	from	Aggregate	Correlation,	2000	iterations	

Aggregation	size	 1	 10	 20	 50	 100	 200	

Average	correlation	 1.98E-01	 5.89E-01	 7.30E-01	 8.73E-01	 9.31E-01	 9.64E-01	

STDev	of	correlations	 2.64E-01	 1.71E-01	 1.11E-01	 4.92E-02	 2.47E-02	 1.33E-02	

Global	correlation	estimate	 1.97E-01	 1.30E-01	 1.20E-01	 1.18E-01	 1.16E-01	 1.16E-01	

Average	Variance	 6.33E+12	

Average	Covariance	 6.49E+11	

Global	Correlation	 1.03E-01	

 
 
 
Table 1: US crop loss insurance claims from 1330 counties without null entries, 1980 - 2008.  
 
To illustrate the use of eqn (6), suppose the global correlation is estimated by averaging the 
correlations of 2000 samples of disjoint pairs of counties of size 20. The value from Table 1 is 
0.120.  Plugging this value of ρ into eqn (6), the curve f(x), approximating ρ(N) is plotted in 
Figure 1. The true values of ρ(N) computed with the true global correlation 0.103 are given for N 
= 20, 50, 100, 200. In this case, averaging the correlations of 2000 aggregations of size 20 would 
give a reasonable estimate of the global correlation and of the correlations of larger aggregations. 
 

 
Figure 1:  f(x) (eqn(6) ) using ρ  estimated from 2000 aggregations of size 20, and true values of ρ(N), N = 
20,50,100,200, computed with the actual global correlation. 
 
Example: Uncertainty in Global Forest Carbon 
 
There are 11.3 E9 global hectares of biologically productive surface, of which approx 4E9 are 
forested. The terrestrial biosphere reservoir contains carbon in organic compounds in vegetation 

To illustrate the use of (8), suppose the global correlation is estimated by averaging the correlations of
2000 samples of disjoint pairs of counties of size 20. The value from Table 1 is 0.120. Plugging this value of ρ
into (8), the curve f (x) approximating ρN is plotted in Figure 1. The true values of ρN computed with the true
global correlation 0.103 are given for N = 20, 50, 100, 200. In this case, averaging the correlations of 2000
aggregations of size 20 would give a reasonable estimate of the global correlation and of the correlations of
larger aggregations.

Figure 1: Plot of f (x) (see (8)) using ρ estimated from 2000 aggregations of size 20, and true values of ρN , N =
20, 50, 100, 200, computed with the actual global correlation.

http://www.rff.org/events/event/data-climate-change-and-extreme-events
http://www.rff.org/events/event/data-climate-change-and-extreme-events
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5 Example: Uncertainty in global forest carbon
There are 11.3E09 global hectares of biologically productive surface, of which approx 4E09 are forested. The
terrestrial biosphere reservoir contains carbon in organic compounds in vegetation living biomass (450 to
650 PgC, IPCC AR5 https://www.ipcc.ch/report/ar5/). [7] gives 385 - 650 GtC, stating that 70 ∼ 90% of
that pool as forest. Using 80% gives a range of 360 ∼ 520 (IPCC) or 308 ∼ 520 [7] GtC in Earth’s forests.
The IPCC values give a forest carbon global density range of 90 ∼ 130 tC/ha. Assuming that 360 and 520 GtC
are two independent samples from our uncertainty on the global forest carbon pool, we may ballpark this
uncertainty as

VAR(global forest carbon pool) ∼ 1/2(160)2 [GtC]2.

StDev(global forest carbon pool) = 113E09 [tC].

Using (1):
113 E09 = σ4E09((4E09)−1 + ρ)1/2[tC],

28.25 = σ(2.5E−10 + ρ)1/2, (9)

where σ is the root of the average variance of forest carbon in [tC/ha], and ρ = c/σ2. The challenge is to �nd
values of σ and ρ that “harmonize” with uncertainty in forest carbon at the global level and themean density
of 90 ∼ 130 tC/ha.

If ρ = 0, then σ = 1.8E06 tC. This would be an extremely fat tailed distribution that is not prima facie
plausible. If ρ = 1, then the average uncertainty (standard deviation) of tC/ha would be 28.3. In itself, this
value is not preposterous, but ρ = 1 is. In this case Lemma 2(iii) entails that the uncertainty of the carbon in
any two hectares is perfectly correlated.

[14, Table II] suggest σ is in the order of 10% of the measured value up to 100 tC/ha, linearly interpolated
between 10% and 30%up to 150 tC. For the above global density range, that yields an estimate of σ = 9 ∼ 18.
Putting σ = 9 ∼ 18tC/ha in (9), we get ρ = 2.5 ∼ 9.9, which is impossible.

Either the estimates of uncertainty at the global level (LHS of (9)) must come down or the uncertainty
at the hectare scale (σ) must be larger than suggested in [14], in order that the two can be combined with a
plausible value of ρ in (9). If ρ = 0.1 then σ = 89.5tC which is in the range of the average density but larger
than expected on the basis of existing literature.

6 Conclusion
Correlations of random aggregations can be used to estimate global correlation. This quantity is important
when trying to relate uncertainty at global scales to uncertainty at local scales. The IPCC AR5 estimates of
uncertainty in global forest carbon must come down, or local estimates of uncertainty in carbon measure-
ments per hectare must go up to achieve consistency. Statistical properties of estimators of global correlation
remain to be explored, andmore inequalities between global and average correlation can probably be found.
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