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Abstract
New measurement systems are often expensive and need a solid economic justification. Traditional tools based on the value 
of information are sometimes difficult to apply. When risks are traded in a market, it may be possible to use market instru-
ments to monetize the reductions in uncertainty. This paper illustrates such market-based methods with a satellite system 
designed to reduce uncertainty in predicting soil moisture in the USA. Soil moisture is a key variable in managing agricultural 
production and predicting crop yields. Using data on corn and soybean futures, we find that a 30% reduction in the weather-
related component of uncertainty in corn and soybean futures pricing yields a yearly US consumer surplus of $1.44 billion. 
The total present value of information from the satellite system for the USA—calculated with a 3% discount rate—is about 
$22 billion, assuming the system is in operation for 20 years. The global value of the improvements in weather forecasting 
could be $63 billion.

Keywords Value of information · Options pricing · SMAP · Bachelier formula · Black–Scholes-Merton model
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1 Introduction

As measurement systems become more complex and more 
costly, political leaders may become less engaged with sci-
ence. The market makes resources available for technologi-
cal innovation but, as often pointed out (e.g., Weatherhead 
et al. 2018; Archer 2016), resourcing the research on which 
innovation depends may be challenging. Fields like climate 
science—with studies that show obvious near- and medium-
term impacts on human welfare but with little immediate 
market value—are underfunded. For example, world outlays 
for climate research amount to about 5% of the yearly prof-
its of Exxon Mobil.1 A key question for leveraging market 
forces to support more research is how to monetize reduc-
tions in uncertainty. This paper focuses on monetary value 
rather than on utility of social welfare generally.

Traditional value of information (VOI) theory (see, e.g., 
Lawrence 2012; Keisler et al. 2014) is very well anchored 
in decision theory. However, traditional VOI techniques face 

several challenges in application. Baseline uncertainty, prior 
to costly measurements, must be quantified. A decision con-
text also must be identified—in which uncertainty reduction 
can be parlayed into better decisions with higher expected 
values. Of the 252 VOI applications reviewed by Keisler 
et al. (2014) only 74 are applied to actual problems; more 
real applications have emerged since then (see, e.g., Cooke 
et al. 2017, 2015, 2013; Gradowska and Cooke 2013).

This paper explores a new approach based on options 
theory. The approach applies in cases where risks are traded 
on a market, and it can be used either ex ante or ex post. 
An ex ante (i.e., prospective) VOI study is an assessment 
of the economic value of an information-gathering mission 
conducted prior to mission completion. Typically, an ex ante 
assessment will be performed during the mission design and 
early operational phases to give a ballpark indication of the 
economic value that the mission could potentially harvest. 
In contrast, ex post (i.e., retrospective) studies quantify the 
economic value actually harvested after mission completion.

NASA’s Soil Moisture Active Passive (SMAP) mission, 
launched in 2015, provides a workbench for monetizing 
future information. SMAP is an Earth-observing satellite 
that measures and maps the moisture and freeze/thaw states 
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of soil on the planet, aiming to provide better data that can 
inform drought monitoring, flood prediction, and crop man-
agement among many other efforts. Agricultural risks are 
actively traded in large markets, thus rendering SMAP a 
good candidate for ex ante market-based monetization of 
uncertainty reduction.

Soil moisture strongly affects plant growth and agricul-
tural productivity, especially during water shortages and 
droughts. Crop conditions shift quickly due to changes in 
soil moisture, temperature, fertilization, or disease. High-fre-
quency, high-resolution geospatial data—especially during 
growing seasons—are critical for food security, assessments 
of crop yields, and informed decision making in agricultural 
production and commodity markets.

Currently, no global in situ network exists for monitoring 
soil moisture. Predictions are model-based with relatively 
low resolution and large uncertainties. SMAP aims to dra-
matically improve model predictions. The technologies for 
model improvement are still under development—but tools 
for monetizing future reductions in uncertainty are needed 
now.

The present study focuses on the value that could be har-
vested by reducing uncertainty in US corn and soybean crop 
yields. This does not target the total value of the mission. We 
show that a 30% reduction in the weather-related uncertainty 
(standard deviation) in the price of US corn and soybeans 
is worth $1.44 billion per year. Similar computations could 
be done for other crops or, indeed, for any commodity with 
risks that are traded on the market. This provides a new line 
of attack for making the economic value of new information 
visible to policymakers and to the general public.

This paper is structured as follows: in Sect. 2, we discuss 
an introductory example of risk trading. Section 3 explains 
the risk quantification methodology based on options pric-
ing. Section 4 explains the selection of a simplified option 
pricing formula for VOI analysis. Section 5 establishes 
the methodology for monetizing uncertainty reduction in 
weather predictions. In Sect. 6, we apply this methodology 
to illustrate VOI calculation assuming uncertainty reduction 
of the weather predictions by 30%. The final section draws 
conclusions; the “Annex” presents historical data.

2  Simple example of risk trading

Markets have mechanisms for trading risks between those 
who will pay to remove a risk and those who will accept 
payment to assume that risk. An early example is the corn 
futures market. Farmers need to purchase seed corn before 
planting. Because the future price of seed corn is uncertain, 
farmers are willing to pay a premium in September to guar-
antee that they can purchase a given quantity of seed in April 

of the following year at a given price—the “strike price.”2 If 
the actual price in April is below the strike price, the seller 
of the futures option makes money as he can buy at the 
market and sell for a higher price to the farmer. If the actual 
price is above the strike price, the seller loses. In any event, 
the farmer purchases his seed corn at the price he anticipated 
in September. If no uncertainty existed in the future price of 
seed corn, there would simply be no futures market. If the 
April price were known with certainty to be within $0.50 per 
bushel of the September price, then the price of the futures 
option could not exceed $0.50 per bushel. As the uncertainty 
of the April price increases, so does the price of the futures 
option.

The idea of using options prices to value reductions in 
uncertainty depends on having pricing models that translate 
options prices into quantifications of uncertainty. Since the 
introduction of the corn futures markets, the market instru-
ments for risk trading have expanded enormously. The fol-
lowing example introduces the simplest instruments in a 
more general setting.

3  Risk quantification using option pricing

Suppose a family has a college savings of $50,000, and the 
savings will be needed in 2 years to cover tuition. At present, 
the $50,000 is invested in an exchange-traded fund (ETF) 
DIA that replicates the Dow Jones Index and should yield 
a similar return. Over the last 8 years, the assets invested in 
DIA increased in value about 2.5 times (about 11.5% per 
year). The family has 200 shares of DIA. At the beginning 
of September 2018, the shares were traded at around $260 
per share, thus the current market value of the investment 
is about $52,000. If the shares continue to grow at 11.5% 
per year, then by September 2020 the value will be about 
$65,000.

However, if the market goes down, the family may lose a 
critical fraction of savings meant to cover college tuition in 
2 years. During 2 years, in April 2007 to April 2009, DIA 
shares dropped by 45%. The market value of this downside 
risk could be calculated as a value of a “European put option 
at-the-money” on DIA shares. This option gives the family 
the right, but not the obligation, to sell its shares at $260 
per share on August 1, 2020. The put option contract costs 
$20 per share and the total cost to hedge the entire position 
is about $4000. In case DIA value is below $260 per share 
on August 1, 2020, the family exercises the options contract 
and protects its savings. The family is exposed to risk with 

2 A futures contract is a legal agreement to buy or sell a particu-
lar commodity or asset at a predetermined price at a specified time in 
the future.
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a market value of $4000. There are many different types 
of options. For example, an “American put option at-the-
money” allows the family to sell its DIA shares for $260 
at any time prior to August 1, 2020. Options need not be 
“at-the-money” but may involve a strike price different from 
the current price.

Suppose our family also wants to make a down payment 
of $50,000 on a house in September 2020 and has a sepa-
rate portfolio of shares of TFT.3 The shares of TFT have 
about the same volatility as DIA, also with a hedging cost 
of $4000. Hedging both positions would cost $8000. How-
ever, since DIA and TFT are not completely correlated, it is 
quite possible that one option would be exercised in Septem-
ber 2020 but not the other. If the family shops around, they 
might find an options trader who would hedge both positions 
for $7000. The options market provides many exotic and 
complex hedging strategies. For simplicity and because of 
the availability of market data, we do not further consider 
exotic strategies here.

To use options prices to value a reduction in uncertainty, 
we must relate the market value of the risk ($4000 in the 
above example) to uncertainty in the underlying asset. This 
is accomplished by options pricing models relating the mon-
etary risk to a measure of uncertainty called “volatility.” 
Volatility is the standard deviation of the one-period per-
centage change in the price of the underlying asset. Given 
a pricing model and knowing the options price, we can 
back out the volatility of the underlying asset. A measure 
of volatility obtained in this way is called “implied vola-
tility.” Using reported data on option pricing, the implied 
volatility of DIA is about 14% (1-year volatility). In other 
words, if the price of the underlying at period one is $260, 
the 1 confidence band for the price in the next period is 
$260 × (1 ± 0.14) = ($223.6, $296.4); the 2σ confidence band 
is ($187.2, $332.8). Implied volatility can thusσ be related to 
the uncertainty distribution of the underlying asset.

We can now run this argument in the other direction. If 
we reduce the standard deviation of the underlying, we can 
compute the resulting reduction in the options price, and this 
translates to consumer surplus. If our family can buy off its 
risk for $2000 instead of $4000, it will have $2000 to spend 
on other things. If the reduction of uncertainty is expressed 
as a reduction in the standard deviation of a risky asset, that 
will affect all types of options on that asset. There is no 
need to compute the price reduction of European, American, 
calls, puts, at-the-money, not at-the-money, etc.—as they are 

all functions of the volatility. For a prospective VOI study, it 
is sufficient to consider a simple European call option at-the-
money and the total volume of trade in the underlying asset.4

It is important to emphasize that the market is not presci-
ent. The fact that the buyer and seller agree on the price of 
an option does not mean that the volatility implied by that 
price is correct. If the buyer and seller both believe that climate 
change is a hoax, they may trade options on climate-related 
risky assets at a very low price. If they believe there is a signifi-
cant chance that climate damages will occur, they would trade 
such options at much higher prices. The market does not know 
which price is “right”—it only reflects the players’ beliefs.

4  Option pricing formulas

Several option pricing formulas are described in the litera-
ture (see, e.g., Haug 2007; Rouah and Vainberg 2007). The 
first known and the simplest formula is the Bachelier for-
mula for at-the-money options (Haug 2007, p. 13):

where c denotes the price of an at-the-money call option; p 
stands for the price of an at-the-money put option; denotes 
the standard deviation of the price of the underlying security 
during a one-time period. T is time to maturity (until expi-
ration). Formula (1) could be used as an approximation for 
the more advanced Black–Scholes–Merton (BSM) model 
for option pricing, but there are some discrepancies for a 
high volatility and for a longer period to maturity of the 
option. The Polya approximation (see Pianca 2005) provides 
a close tracking of the BSM at-the-money price. The Polya 
approximation formula is:

where S denotes a spot price of the underlying asset and v 
denotes the price volatility defined as the standard deviation 
of the price divided by the price:

If v2t∕2𝜋 ≪ 1 , then 
√

1 − e−v
2t∕(2�) ∼

√

v2t∕2�, from 
which the relation to the Bachelier formula is evident.

Volatility is dimensionless but is often expressed as a 
percent. Thus, if σ = S/3, then = 33%. In the literature, there 
are several more sophisticated option pricing formulas that 
consider skewness and kurtosis of price distribution, account 

(1)c = p = �

�

T

2�
≈ 0.4�

√

T ,

(2)c = S
√

1 − e−v
2t∕(2�),

(3)v = �∕S.

3 TFT is the iShares 20 + Year Treasury Bond ETF. The fund seeks 
to track the investment results of an index composed of US Treasury 
bonds with remaining maturities greater than 20  years (see: https ://
www.ishar es.com/us/produ cts/23945 4/ishar es-20-year-treas ury-bond-
etf).

4 According to put-call parity property for an at-the-money European 
option, the value of both call and put options is equal as long as the 
spot price of the underlying asset equals the strike price.

https://www.ishares.com/us/products/239454/ishares-20-year-treasury-bond-etf
https://www.ishares.com/us/products/239454/ishares-20-year-treasury-bond-etf
https://www.ishares.com/us/products/239454/ishares-20-year-treasury-bond-etf
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for stochastic volatility, accommodate jump-diffusion pro-
cesses, and so forth. For our analysis, Polya approximation 
or Bachelier pricing provide a sufficient precision, and offer 
a direct way to attribute a fraction of risk to the variance in 
weather prediction.

5  Attribution: market risk versus accuracy 
of weather prediction

Consider a stylized model of corn prices with two major 
sources of uncertainty:

• weather in June–July that determines supply of corn and 
soybeans

• state of the global economy that determines demand and 
non-weather–related factors in general

A relation between weather and corn and soybean yields 
is well described in the literature (see, e.g., Westcott and 
Jewison 2013) and summarized in the “Annex.” Weather 
factors and the state of the global economy are effectively 
independent. Let �2

c
 denote the variance of the corn price and 

�
2
s
 denote the variance of the soybean price, then:

where �2

Wc
 and �2

Ws
 denote the variance in price attributed to 

weather-related uncertainty for corn and soybeans, whereas 
�
2

Mc
 and �2

MS
 denote the price variance attributed to market 

uncertainty and represent the market risk associated with 
holding one bushel of corn and one of soybeans, respec-
tively. We are interested in the terms �2

Wc
 and �2

Ws
 for the 

next section (we continue with corn, since calculations for 
soybeans are similar):

By definition, �wc , �C and �Mc are in dollars per bushel 
($/BU).

Formulas (4) and (4A) imply that the prices of corn and 
soybeans have Pearson correlation close to 1. Data do show 
that this correlation is about 90%, suggesting that this model 
is indeed a good approximation (see Fig. 4a, b in Annex). 
Unlike the example in Sect. 3, this simple model gives no 
advantage for joint hedging of corn and soybean positions.

As in the example in Sect. 2, we use DIA as a proxy for 
the market risk. To calculate �MC (the market risk associated 
with holding one bushel of corn), we first should calculate 

(4)�
2

c
= �

2

Wc
+ �

2

Mc

(4A)�
2

s
= �

2

Ws
+ �

2

Ms

(5)
�
2

Wc
= �

2

c
− �

2

Mc
∶

�wc =

√

�
2
c
− �

2

Mc

how many shares of DIA could be bought for the same 
amount as one bushel of corn. The ratio k is the price of 
corn (PC) divided by the price of DIA 

(

PD

)5:

Let �DIA denote standard deviation of DIA, then:

Applying market data, we can estimate the standard devi-
ation of corn prices and standard deviation of DIA. For the 
numerical analysis, we use an ETF—“CORN”—that repli-
cates the corn futures market6 and DIA (another ETF) that 
represents market factors not specifically related to corn. 
DIA tracks the Dow Jones Index and is widely used to char-
acterize stock market dynamics. Based on historical data on 
daily CORN and DIA pricing (from 2010 to the end of Sep-
tember 20187), we calculated daily volatility of CORN and 
DIA as well as annualized volatility.8 Then, from Formula 
(3) we estimate standard deviation ( =v * S).

Annualized corn volatility is 23% and DIA volatility is 
14%. The price of corn is about $3.8/BU and DIA is about 
$260 per share. Then:

kc =
PC

[

$

BU

]

PD

[

$

Share

] .

�Mc

$

BU
= kc

Share

BU
�DIA

$

Share
.

(6)
kc =

3.8

(

$

BU

)

260

(

$

Share

) ≈ 0.0146 and

�wc =

√

�
2
c
− �

2

Mc
=

√

�
2
c
−
(

kc�DIA
)2

5 In other words, one can be long one bushel of corn and be exposed 
to the volatility of corn price or, alternatively, sell a bushel of corn 
(short of corn) to buy DIA and be exposed to market volatility. The 
difference in risk could be attributed to weather prediction (holding 
corn is riskier than holding DIA).
6 The “Teucrium Corn Fund (NYSE: CORN) provides investors 
unleveraged  direct exposure to corn without the need for a futures 
account. CORN provides transparency to investors by investing in 
a known benchmark (described below), listing all holdings nightly, 
and providing  future roll dates. CORN was designed to reduce the 
effects of rolling contracts (and  contango and backwardation) by 
not investing in front-month (spot) futures contracts and thus limiting 
the number of contract rolls each year.” See: https ://teucr iumco rnfun 
d.com/.
7 For volatility calculation, we consider longer time than for average 
annual price. To be on the conservative side for calculation of VOI, 
we excluded a period of elevated prices from calculation of an aver-
age weighted price. For example, in 2012–2013, an average price was 
about $6.5/BU.
8 For a detailed explanation of volatility calculation see: https ://www.
fool.com/knowl edge-cente r/how-to-calcu late-annua lized -volat ility 
.aspx

https://teucriumcornfund.com/
https://teucriumcornfund.com/
https://www.fool.com/knowledge-center/how-to-calculate-annualized-volatility.aspx
https://www.fool.com/knowledge-center/how-to-calculate-annualized-volatility.aspx
https://www.fool.com/knowledge-center/how-to-calculate-annualized-volatility.aspx
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so that

Thus, the standard deviation of the corn price (Formula 
3) is 0.23 3.8 = 0.87[$/BU]; from (7, the share of weather-
related uncertainty is about 0.69[$/BU]; and share of mar-
ket-related uncertainty is about 0.53

[

$

BU

]

 (Formula 8).
We apply the same methodology for soybeans, calculating 

volatility using data on the Teucrium Soybean Fund (NYSE: 
SOYB) that, like CORN, provides direct exposure to soy-
beans futures without the need for a futures account.

Annualized volatility for soybeans is 21%; the price of 
soy was about $9.9/BU9 and DIA $260 per share—then 
ks = 0.038 , so that

The standard deviation of the price of soybeans (Formula 
3) is about 2.08 [$/BU]; the share of weather-related uncer-
tainty is about 1.55[$/BU]; and the share of market-related 
uncertainty is about 1.38

[

$

BU

]

 . The squares of these quanti-
ties (i.e., the variances) add but the “shares” do not. Table 1 
summarizes uncertainty attributed to weather and market 
calculated per bushel of corn and soybeans.

(7)

�wc =
√

(0.23 ∗ 3.8)2 − (0.0146 ∗ 0.14 ∗ 260)2 ≈ 0.69

�

$

BU

�

(8)

�Mc = 0.0146

[

Share

BU

]

∗ 0.14 ∗ 260

[

$

Share

]

≈ 0.53

[

$

BU

]

.

(9)

�ws =
√

(0.21 ∗ 9.9)2 − (0.038 ∗ 0.14 ∗ 260)2 ≈ 1.55

�

$

BU

�

(10)

�Ms = 0.038

[

Share

BU

]

∗ 0.14 ∗ 260

[

$

Share

]

≈ 1.38

[

$

BU

]

.

6  Calculating value of information

Annual corn production in the USA is about 15 billion 
bushels; for soybeans, about 4.2 billion bushels.10 The daily 
average price of corn (weighted by daily trading volume) 
is $3.8/BU, calculated for the period from January 2014 to 
the end of August 2018; the daily average price for soy-
beans is $9.9/BU. The total annual volume of corn is worth 
about $57 billion per year; for soybeans, about $42 billion 
per year. As with any other commodity, corn and soybeans 
are primarily traded on the futures market. Several different 
futures contracts with different expiration dates are traded 
on the futures market simultaneously. Low predictability of 
commodity prices is an important factor of risk for com-
modity consumers and producers. Prices for corn and soy-
beans exhibit relatively high volatility (see “Annex”). Price 
fluctuations depend both on the weather (which determines 
corn supply at the time of harvesting) and on the state of the 
economy (which determines demand).

Using approximations of the BSM11 option pricing model 
for an at-the-money call option (Bachelier’s option pricing, 
Formula 1, is a good approximation of the price for an at-
the-money call option), an annualized value of risk asso-
ciated with price uncertainty (standard deviation) per one 
bushel of corn is 0.4 ∗ �C and per one bushel of soybeans 
is 0.4 ∗ �s (in this calculation we use an annual volatility, 
therefore T = 112).

Using historical data, an annualized value of risk asso-
ciated with the price uncertainty is 1/2 × implied volatil-
ity × price = 0.4 * 0.87[$/BU] = $0.35 [$/BU] for corn; 
and 0.4 * 2.08 [$/BU] = $0.83 [$/BU] for soybeans. The 
total annual risk for the corn market due to price volatil-
ity is therefore about $5.25 billion (= 0.35 [$/BU] * 15 
[BBU]) and about $3.5 billion in case of soybeans. In 
other words, the uncertainty (standard deviation) in the 

Table 1  Attribution of price uncertainty (standard deviation) to 
weather and market per bushel of corn and soybeans

Price uncer-
tainty 

[

$

BU

]

Weather-related 
uncertainty 

[

$

BU

]

Market-related 
uncertainty 
 
[

$

BU

]

Corn 0.87 0.69 0.53
Soybeans 2.08 1.55 1.38

Table 2  Total value of risk associated with price uncertainty (stand-
ard deviation) and its attribution to weather and market

Price uncer-
tainty [$B]

Weather-related 
uncertainty [$B]

Market-related 
uncertainty 
[$B]

Corn 5.25 4.20 3.18
Soybeans 3.5 2.69 2.34

9 Average spot price for the period 2014–2018.

10 Calculated for the period from 2014 to 2018.
11 See: https ://www.inves toped ia.com/unive rsity /optio ns-prici ng/
black -schol es-model .asp
12 The fraction of corn price variance attributed to weather predic-
tions changes during the year. It is highest in spring and lowest in late 
fall. It may be advisable to consider seasonal fluctuation of weather-
related risk. It will require calculating an option value for shorter than 
a 1-year period.

https://www.investopedia.com/university/options-pricing/black-scholes-model.asp
https://www.investopedia.com/university/options-pricing/black-scholes-model.asp
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price of corn costs society about $5.25 billion per year; 
uncertainty in the price of soybeans costs about $3.5 bil-
lion per year (Table 2).

Assume that the weather-related standard deviation 
were reduced by 30%—then the new value of �wc , using 
Formula (7), is 0.7 * 0.69$/BU = 0.48 $/BU. This reduc-
tion in the weather-related standard deviation will result 
in a reduction in the standard deviation for corn prices:

The reduction in the standard deviation attributed to an 
improved weather forecast is

We apply the Bachelier formula (1) for an at-the-money 
call option to calculate the benefits of an improved weather 
forecast per bushel of corn:

With annual US corn production of about 15 billion 
bushels, the total value of information leading to a 30% 
reduction in weather uncertainty is about $0.9B (0.06[$/
BU] * 15[BBU] = $0.9 billion).

For soybeans, the new value of �ws is 1.76[$/BU]. Reduc-
tion in the standard deviation of the market price of soybeans 
attributed to improved weather forecasting is about 0.32[$/
BU] (2.08[$/BU] − 1.76[$/BU] = 0.32[$/BU]).

Applying the Bachelier formula (1) for an at-the-money 
call option to calculate VOI for soybeans: 0.4 * $0.32/
BU = $0.128/BU. Annual production of soybeans in the USA 
is about 4.2 billion bushels—thus, the total value of infor-
mation is about $0.54B (0.128[$/BU] * 4.2[BBU] = $0.54 
billion). Therefore, the total annual benefit of risk reduction 
(both for corn and soybeans) is $1.44 billion.

Calculations of VOI for corn and soybeans are sum-
marized in Table 3.

The total VOI for corn and for soybeans attributed to a 
30% reduction in the standard deviation of weather pro-
duction is about $1.44 billion per year.

If the weather uncertainty is totally eliminated, then 
residual volatility equals 0.14—and the total annual risk 
for the corn market due to price volatility is therefore 
about $3.19 billion. The theoretical maximum VOI (value 
of perfect weather information) equals the difference 
between an actual and residual value of risk for corn:

√

(0.48)2 + (0.0146 ∗ 0.14 ∗ 260)2 = 0.72

�

$

BU

�

.

0.87

[

$

BU

]

− 0.72

[

$

BU

]

= 0.15

[

$

BU

]

.

0.4 ∗ $0.15∕BU = $0.06∕BU.

(0.23 − 0.14) ∗ 3.8

[

$

BU

]

∗ 0.4 ∗ 15[BBU] = $2.05B.

Ta
bl

e 
3 

 S
um

m
ar

y 
of

 V
O

I c
al

cu
la

tio
n

SD
 st

an
da

rd
 d

ev
ia

tio
n

Pr
ic

e 
vo

la
til

ity
 

[%
]

SD
 o

f 
pr

ic
e 

$/
B

U

SD
 o

f 
m

ar
ke

t [
$/

B
U

]

SD
 o

f 
w

ea
th

er
 

[$
/B

U
]

Re
du

ct
io

n 
w

ea
th

er
 S

D
 

[%
]

SD
 o

f w
ea

th
er

 
af

te
r r

ed
uc

tio
n 

[$
/

B
U

]

SD
 o

f p
ric

e 
af

te
r 

w
ea

th
er

 re
du

ct
io

n 
[$

/B
U

]

M
ar

ke
t v

al
ue

 o
f r

is
k 

be
fo

re
 

re
du

ct
io

n 
(B

ac
he

lie
r)

 [$
B

il-
lio

n]

M
ar

ke
t v

al
ue

 o
f r

is
k 

af
te

r 
re

du
ct

io
n 

(B
ac

he
lie

r)
 [$

B
il-

lio
n]

V
O

I o
f 

re
du

ct
io

n 
[$

B
ill

io
n]

C
or

n
0.

23
0.

87
0.

53
0.

69
30

0.
49

0.
72

5.
25

4.
32

0.
9

So
yb

ea
ns

0.
21

2.
08

1.
38

1.
55

30
1.

08
1.

76
3.

49
2.

96
0.

54



Environment Systems and Decisions 

1 3

For soybeans, the theoretical maximum VOI is $1.16B 
per year.

The annual value of improved weather forecasting for 
the USA is about $1.44 billion per year. The total present 
VOI calculated with a 3% discount rate is about $22 bil-
lion, assuming the Earth-observing system is in operation 
for 20 years.

This accounts for about 36% of global corn production 
and about 34% of soybean production. Thus, the global value 
of the improvements in weather forecasting could be up to 
$63 billion.

Figure 1 illustrates the benefits of standard deviation 
reduction (for corn and soybeans) and the additional value 
of learning (weather prediction). The reduction of standard 
deviation (in percentage terms) is on the horizontal axis; the 
corresponding benefits (solid blue line) and remaining value 
of risk (dashed red line) are on the vertical axis.

The VOI is a concave function of the standard deviation 
reduction. The value of perfect weather information would 
be around $3.3 billion per year. A complete elimination of 
weather-related variance in price forecasts for corn and soy-
beans is impossible—but even a 30% reduction in the stand-
ard deviation yields slightly less than half of the theoretical 
maximum.

7  VOI in welfare indicators

Section 6 examined the VOI in a partial equilibrium context 
presenting a gross VOI. In this section, we put the valuation 
problem in a general equilibrium framework. In a general 
equilibrium model, somebody’s expenses could be some-
body else’s revenue. General equilibrium models allow 
quantifying the net losses for society attributed to price vola-
tility. Low predictability of commodity prices is an impor-
tant risk factor for commodity consumers and producers. 
Prices for corn and soybeans exhibit relatively high volatility 
(see Fig. 4a, b). Fluctuations of these prices depend on both 
the weather that determines the supply of corn and soybeans 
by the time of harvesting and the state of the economy that 
determines demand. Uncertainty influences the business 
decisions of both consumers and producers of grain. Most 
market participants actively hedge commodity prices using 
futures (and/or options) contracts. Application of an optimal 
hedging strategy using futures allows market participants to 
“lock in” a price level. Higher predictability of price means 
lower cost of hedging. Application of a hedging strategy 
creates assurance regarding price but costs money for the 
market agents that are coping with risk.

The cost of hedging should be treated as a part of the 
cost of producing and consuming corn and soybeans. In the 
presence of these costs, the economy may reach a relatively 
low equilibrium and will experience a corresponding welfare 
loss. We illustrate this in Fig. 2.

In Fig. 2, D1 denotes demand in the absence of uncer-
tainty and D2 is a risk-adjusted demand curve, both as func-
tions of supply, Q. For the sake of argument, we assume 
that consumer is always hedging the grain price. The cost 
of hedging equals C. Here we assume that the grain buyer 
makes the best possible prediction of the future price, given 
all available information about soil moisture, weather fore-
casts, and so on. In order to guarantee this price, the grain 
buyer also purchases a call option with strike price equal to 
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Fig. 1  Benefits of risk reduction for corn and soybeans. The solid line 
depicts benefits of risk reduction (i.e., VOI) in millions of dollars as 
a function of reduced standard deviation in weather predictions, cal-
culated in percentage terms; the dashed line is remaining risk attrib-
uted to remaining uncertainty in the accuracy of weather predictions. 
Source Authors calculations

Fig. 2  Price uncertainty and net welfare loss. D1 is demand function 
in a risk-free case. S1 is supply function. D2 is a “modified” demand 
function that reflects hedging cost equal to C, which is the difference 
between P*** and P**.
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P** and an up-front premium of C. By paying this premium, 
the consumer guarantees a price less than or equal to P**.

As a result, the demand curve shifts downward. A new 
demand curve is D2. The equilibrium price drops from P* to 
P**. Grain producers are also exposed to price uncertainty. 
In order to guarantee both price and required volume, they 
also bear some additional cost. An initial supply curve S1 
should shift upward; however, the introduction of hedging 
instruments like futures and options allows the buyer and 
seller to split hedging costs. For graphical illustration we 
assume that the buyer always pays the seller an up-front 
premium, C(σ), to guarantee the future price, and this pre-
mium is sufficient to cover the seller’s cost of uncertainties. 
The supply curve, S1, doesn’t shift upward, but the suppler 
receives actual compensation for one bushel of grain less 
than or equal to P*** =  P** + C. If an actual spot price falls 
below P**, the buyer does not exercise the call option and 
buys grain on the spot market for a price below P**, letting 
the call option expire.

In the presence of uncertainty, society reaches a relatively 
lower equilibrium and therefore experiences welfare losses. 
The new equilibrium grain production shifts from Q* to Q** 
and society experiences the net losses equal to the area of 
triangle ABE. Welfare loses are equal to C × (Q* − Q**)/2. 
The area of ABE is determined by slopes of D2 and S1 and 
by C(σ). Let the absolute slope of the demand function be d 
and the slope of the supply function be s. Then the area of 
ABE equals (C2/(d + s))/2. Recall C denotes cost of hedging. 
The cost of hedging equals the value of the at-the-money call 
option. From (1) C = 0.4 * σ (where σ denotes the standard 
deviation of the grain price). The welfare loses are 0.08σ2/
(d + s). Reduction of the standard deviation by α (0 < α < 1) 
results in welfare loses of 0.08σ2/(d + s)(2α − α2). The hedg-
ing cost C has a negative effect on demand, similar to the 
impact of a tax on consumption. The production contracts. 
Like taxes on consumption, hedging cost shift the demand 
curve downward and result in contraction of production rela-
tive to a “risk-free” case. The net welfare losses equal to the 
area of triangle ABE that represents reduction of consumers 
and producers surplus. In the economics literature, the net 
welfare losses are known as a “deadweight losses.”

8  Conclusions

Options theory provides tools for monetizing reductions in 
uncertainty with regard to risks that are traded on options 
markets. Buyers and sellers agree on a price for hedging 
risky positions. Familiar options pricing models translate 
this price into a standard deviation for the underlying risky 
quantity. Reductions in uncertainty of this quantity, com-
bined with market information on the price and volume of 
the market, can then be monetized as consumer surplus in a 
partial equilibrium model, or as higher equilibrium value in 
a more general setting.

The application of these techniques is illustrated in a styl-
ized example involving NASA’s SMAP mission for reduc-
ing uncertainty in soil moisture. By decomposing the price 
variance for soybeans and corn into a market and a weather 
component, it is possible to quantify the effect of uncer-
tainty reduction in the weather component on the price of 
corn and soybeans futures. A 30% reduction in the weather 
component leads to a yearly US consumer surplus of $1.44 
billion. As this uncertainty is reduced, the value of addi-
tional reductions shrinks. Nearly half of the value of perfect 
weather information is obtained by reducing the weather 
uncertainty by 30%.

A complete VOI study requires several additional aspects 
not covered here—additional impacts of uncertainty reduc-
tion on other crops, flood prediction, insurance prices, global 
markets, and so on—should be factored in, as well as mis-
sion costs.13 Further, the SMAP contributions must be com-
pared to other measurement programs targeting soil moisture 
prediction. Finally, the actual uncertainty reduction achieved 
by SMAP relative to existing prediction methods must be 
established. The goal of the present study is to show how 
such information could be used in combination with market 
tools to monetize uncertainty reductions.
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Annex: Variability of crop production 
and price volatility

The analysis of historical soybean and corn yields suggests 
a notable variability (see Fig. 3a, b).

Fig. 3  a Corn yield variability and long-term trend (bushels per acre). 
Source https ://www.nass.usda.gov/Chart s_and_Maps/Field _Crops /
corny ld.php. b Soybean yield variability and long-term trend (bushels 
per acre). Source https ://www.nass.usda.gov/Chart s_and_Maps/Field 
_Crops /soyyl d.php

◂

13 The mission costs (or costs to collect information) should be sub-
tracted from the value of information in order to calculate the net VOI 
for the benefit cost analysis.

https://www.nass.usda.gov/Charts_and_Maps/Field_Crops/cornyld.php
https://www.nass.usda.gov/Charts_and_Maps/Field_Crops/cornyld.php
https://www.nass.usda.gov/Charts_and_Maps/Field_Crops/soyyld.php
https://www.nass.usda.gov/Charts_and_Maps/Field_Crops/soyyld.php
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Fig. 4  a Historical corn prices of corn ($ per bushel). Source https ://www.nass.usda.gov/Chart s_and_Maps/Field _Crops /corny ld.php. b Histori-
cal soybean prices ($ per bushel). Source https ://www.nass.usda.gov/Chart s_and_Maps/Field _Crops /soyyl d.php

https://www.nass.usda.gov/Charts_and_Maps/Field_Crops/cornyld.php
https://www.nass.usda.gov/Charts_and_Maps/Field_Crops/soyyld.php
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Westcott and Jewison (2013) provide detailed analysis 
of the weather effect on corn and soybean productivity and 
established the relationship between weather and crops 
yields.14 Variation in the productivity of corn and soybeans 
leads to variations in the supply of these crops with corre-
sponding variations in corn and soybean prices. While devi-
ation of corn and soybean production from trend is about 
7%15 of an expected value, the price volatility is above 20%.

Deviations from trend is the reason for supply shocks. A 
limitation in predictability of an actual supply is the founda-
tion for price volatility (see Fig. 4a, b).

Based on an extensive econometric analysis, Westcott and 
Jewison (2013) concluded that “weather during the growing 
season is critical for corn and soybean yield development.” 
Improved weather predictions should improve predictions 
of corn and soybean production, closing gap between an 
actual and predicted production and therefore reducing price 
volatility.
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