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Abstract:

Bivariate tree specifications are introduced to handle
the situation of ”partially known” joint probability
distributions that arise in Monte Carlo simulation
studies. Alternative approaches are found in (Iman
et al 1981, Iman and Conover 1982). Bivariate tree
specifications are distinguished by the fact that they
have Markov tree dependent realizations. These
Markov tree dependent realizations have a maximal
entropy property, are readily sampled, and are very
"smooth”. This smoothness can be used to reduce
the calculational burden in uncertainty analysis situ-
ations as has been shown in e.g. Cooke, Meeuwissen
& Preyssl (1991), Meeuwissen (1993) and Meeuwis-
sen & Cooke (1994). Algorithms for the generation
of samples of tree dependent random variables have
been implemented in computer programs by Cooke,
Keane & Meeuwissen (1990) and Cooke (1995), and
described in Meeuwissen & Bedford (1997).

Sections 1 through 4 collect results for bivariate
tree specifications. Section 5 introduces a more gen-
eral type of specification in which conditional mar-
ginal distributions can be stipulated or qualified.
The tree structure for bivariate constraints gener-
alizes to a ”vine” structure for conditional bivariate
constraints. A vine is a sequence of trees such that
the edges of tree T;_; are the nodes of 7;. Maximal
entropy results show how complicated conditional
independence properties can be obtained from vine
specifications in combination with entropy maximiz-
ation. Sampling from maximal entropy distributions
given marginal and (conditional) rank correlations
specified on a vine can be just as fast as independ-
ent samnpling.

1. Definitions and Preliminaries

We consider continuous invertible probability distri-
butions F on IR"™ equipped with the Borel sigma al-
gebra B. The one-dimensional marginal distribution
functions of F are denoted F; (1 < i < n) and the
bivariate marginal distribution functions are written
Fi; (1 €1 # j <n). The Fjj; denotes the distribu-
tion of variable ¢ conditional on j. If f is the dens-
ity of F, then the same subscript conventions apply.
Whenever we use the relative information integral,
the absolute continuity condition mentioned below
is assumed to hold.

Definition 1 (relative information)

If f and g are densities with f absolutely continuous
with respect to g then the relative information I(f|g)
of density f with respect to g is

f(=)
I = / z)log(—=) dz .
rlo) = [ sGay1oeZE)
Properties of I(f|g) are that I(f|g) > 0and I(f|g) =
0« f=g. I(flg) can be interpreted as measuring
the degree of “uniformness” of f (with respect to g).
See e.g. Kullback (1959) and Guiagu (1977).

Definition 2 (rank or Pearson correlation)
The rank correlation p,(X,Y) of two random vari-
ables X and Y with a joint probability distribution
Fxy and marginal probability distributions Fx and
Fy respectively, is given by

pr(X,Y) = p(Fx (X), Fy (Y)) -

Here p(U, V) denotes the ordinary product moment
correlation given by

p(U, V) = cov{U, V}/\/var{U}var{V}.

The rank-correlation has some important advant-
ages over the ordinary product-moment correlation:

o Independent of the marginal distributions Fix
and Fy it can take any value in the interval




[—1, 1] whereas the product-moment correlation
can only take values in a sub-interval I C [—1, 1]
where I depends on the marginal distributions
Fx and Fy,

e it is invariant under monotone increasing trans-
formations of X and Y.

These properties make the rank correlation a suit-
able measure for developing canonical methods and
techniques that are independent of marginal prob-
ability distributions.

Definition 3 (tree)

A tree T = {N,E} is an acyclic graph, where N is
a non empty set (nodes) and E (edges) is a set of
unordered pairs of nodes.

Definition 4 (rank correlation tree specfication)

(F, T, t) is an n-dimensional rank correlation tree
specification if:

1. F=(F,...,F,) is a vector of one-dimensional
distribution functions,

2. T is a tree with nodes N = {1,...,n} and edges
E.

8. The rank correlations of the bivariate distri-
butions Fi;, {i,j} € E, are specified by t =
{tijlti; € [=1,1], {i,J} € B, ti; =1, tii = 1}.

Definition 5 (bivarate tree specification)

(F,T,B) ts an n-dimensional bivariate tree specific-
ation if:

1. F=(F,...,Fy,) is a vector of one-dimensional
distribution functions,

2. T is a tree with nodes N = {1,...,n} and edges
E

3. B = {B(i,4);{i,7}b € E}; where B(ij) is a
subset of the class of distribution functions with
marginals F; and Fj.

Definition 6 (tree dependence)

(1) A multivariate probability distribution G on IR"
satisfies, or realizes, a bivariate tree specification
(F, T, B) if the marginal distributions G; of G equal
F; (1 <1< n)and if for {i,j} € E the bivariate
distributions Gi; of G are elements of B(ij).

(ii)) G has tree dependence order M for T if
{i,k1},...,{km, 7} € E implies that X; and X;
are conditionally indepedent given any M of kg,
1 < £ < m; and if X; and X; are independent if
there are no such k1,...,km (i, € N).

(1ii) G has Markov tree dependence for T if G has
tree dependence order M for all M for all M € N,

_‘K:(le"'

The following results are proved in (Meeuwissen and
Cooke 1994). The first is similar to results with influ-
ence diagrams (Oliver and Smith, 1990), the second
uses a construction of (Cuadras 1992)

Theorem 1 Let (F,T,B) be a consistent n-
dimensional bivariate tree specification that specifies
the marginal densities f;, 1 < i < n and the bivariate
densities fi;, {i,j} € E the set of edges of T. Then
there is a unique density g on IR® with marginals
fi, ..., fa; and bivariate marginals f;; for {i,j} € E
such that g has Markov tree dependence described by
T. The density g is given by

2,) = H(i,j)eE fij (i, z5)
v erN(fi(l’i))d(i)_l ’

where d(i) denotes the degree of node i; i.e. the num-
ber of neighbours of i in the tree T.

(1)

g(:cl,..

The following theorem states that a rank correla-
tion tree specification is always consistent.

Theorem 2 Let (F,T,t) be an n-dimensional rank
correlation tree specification, then there exists a joint
probability distribution G realizing (F,T,t) with G
tree dependent.

Theorem 2 would not hold if we replaced rank
correlations with product moment correlations in
Definition 4. Given arbitrary continuous and invert-
ible one-dimensional distributions and an arbitrary
p € [—1, 1], there need not exist a joint distribution
having these one-dimensional distributions as mar-
ginals with product moment correlation p.

Any random vector X with multivariate probab-
ility distribution function Fx can be obtained as a
n-dimensional marginal distribution of a realization
of a bivariate tree specification of an enlarged vector

(X, £).

Theorem 3 Given a vector of random wvariables
, Xn) with joint probability distribution
Fx(z), there erists an (n+ 1)-dimensional bivariate
tree specification (G, T, B) on the random variables
(Z4,...,2Zn, L) with a Markov tree dependent real-
ization Gz, such that [ Gz c(z,£) df = Fx(z).

2. Entropy of Markov Tree Depend-
ent Distributions

From Theorem 1 it follows immediately that for
the Markov tree dependent density g given by the
theorem:




6 T = > Iislfif) -

ieN {i.j}eE

If the bivariate tree specification does not completely
specify the bivariate marginals f; ;, {¢,7} € E, then
more than one Markov tree dependent realization
may be possible. In this case relative information
with respect to the product distribution [];¢ fi is
minimized, within the class of Markov tree depend-
ent realizations, by minimizing each bivariate relat-
ive information I(f; ;|fif;), {¢,j} € E.

In this section we show that Markov tree depend-
ent distributions are optimal realizations of bivariate
tree specifications in a maximal entropy sense (i.e.
minimal relative information). In other words, we
show that a maximal entropy realization of (con-
sistent) bivariate tree specification has Markov tree
dependence. This follows from a very general result
stating that maximal entropy distributions, relative
to independent distributions, subject to overlapping
marginal constraints, are conditionally independent
given the overlap.

To prove the theorem, we first formulate three
lemmas. We assume in this analysis that the dis-
tributions have densities and that the absolute con-
tinuity condition is always fulfilled. Throughout this
section, Z, Y, and X are finite dimensional random
vectors having no components in common. To recall
notation, gx,y,z(«,y,2) is a density with marginal
densities gx (), gy (v) and gz (z); and bivariate mar-
ginals gxv, 9x,z. gx|v and gy|x are the conditional
densities of X given ¥ and of Y given X respectively.

Lemma 4

Let

=gxy(z,¥)9zx(z, z)
=gx,z(z, 2)gy|x(z,v) .

Ixy,z(z,y,2) {
Then §x,v,z satisfies
9z =9z ,
gxy =gxy , X,z =9X,Z ,

and Y and Z are conditionally independent given X
under §.

Proof
The proof is a straigthforward calculation. O

Lemma 5 With g as above, let px(z) be a density.
Then

/gy W (gxylpx) dy > I{gx|px)

and equality holds if and only if X and Y are inde-
pendent under g; i.e. gxy(2,y) = gx(z).

Proof
By definition

/gY(y)I(gxwlpx) dy > I(gx |px)

is equivalent to

//g}'(y)gxw(x,y) log%z’)—y)- dedy >

9x(z)
/gx (z)log px (@) dz

or to

/ / ox.y (x, 1) log gxy (x, ) dedy >

/‘/gxyy(x,y) loggx (z) dzdy .

This can be rewritten as

gX|Y(‘T)y)
z,y)log =———= dzdy > 0
//QX,Y( y) log 9% (@) zdy >

or as

// gxy(z,y)log 9xy(z,y)

dzdy >0 .
ax(@ar (W) Y=

This last equation equals I(gx,y|9xgy). It al-
ways holds and it holds with equality if and only if
gxy = 9xgy, (Kullback, 1959). This guantity is
also called mutual information. m|

Lemma 6
Let gx,v,z(z,y, 2) and §xy,z(x,y, z) be two probab-
ility densities defined as in Lemma 4, then

i) I(gx,yzlgxgvez) > I(xy,zlaxgv9z) ,

i) I(Gxyv.zloxgvgz) = I(gx,yloxgy) + 1(9x,z|9x9z2) -

and equality holds in (?) if and only if g = §.

Proof
By definition we have

Igx,yzl9xgvgz) =




9x,Y,2(2, Y, %)
,y,2) 1o < dzdyd
//_/gx'y»z(” v:2) & ox(@ay Wz (z) TV

which by conditionalization is equivalent with

///gx’Y.Z(zay,Z) log

dedydz =

:I(gxy|gx,gy)-I-///HX,Y,Z(“’,%Z)

9z\x,Y (1’, Y, Z)
9z(2)

The second term can be written as

///QX,Y(TI,y)ngXY(z)IOggﬂ%

dzdzdy =

=//gx,y(m,y)f(gzmy|gz)d$dy=

gx.y(z,¥)9z1x,y (2,9, 2)
9x(z)gy (v)92(2)

log dzdydz

=/gx/9}’|x(w,y)f(92|xy lgz)dydz

> /yxf(gzmlgz) de =
9zx (2)gx (z)
dzdr =
/ / 9x921x 1087 Y ox (@)
Igxzl|9x 92)

where lemma b is used for the inequality. Hence

Hgx,y,zlaxgvaz) > I(gxy |lgxgy) + I(9xzloxgz) (2)

with equality if and only if Z and Y are independent
given X, which holds for § (lemma 4). O

We may now formulate

Theorem 7 Assume that gxy is a probability
density with marginals fx and fy that uniquely min-
imizes I(gx,v | fx fy) within the class of distributions
B(X,Y) Assume similarly that gx,z is a probability
density with marginals fx and fz that uniquely min-
imizes I(gx,z|fx fz) within the class of distributions
B(X,Z). Then gxy,z = gx,y9zix is the unique
probability density with marginals fx, fy and fz
that minimizes I(gx,v,z|fx fv fz) with the margin-
als gx,y and gx,z members of B(X,Y) and B(X, Z)
respectively.

Proof

Let fx,y,z be a joint probability density with mar-
ginals fx, fy, fz, whose two dimensional margin-
als satisfy the constraints B(X,Y) and B(X, Z).
Assume that f satisfies I(fxyvz|fxfrfz) <
I(gx,y,z|fx fr fz) Then by Lemma 4 we may as-
sume without loss of generality that fxyz =

fxyz = fxy fz1x. By Lemma 6 we have

I(fxy.z|fxfrfz) = I(fxy|fx fv)+ 1(fx,z|fx fz).

But
I(fxy|fxfy)+ 1(fx.z|fxfz)

> Igx,y|fxfr)+ I(gx,z|fx fz) =
= I(gx,y,z|fx fr fz) >
I(fxyzlfx frfz) =
=I(fxy|fxfr) + 1(fx,z|fx fz)

By the uniqueness of gx,z and gx,y, this entails
Ixy,z=TIxvyz. D

Corollary 8 Let (F,T, B) be a consistent bivariate
tree specification. For each (i,j) € E, let there be a
unique density g(z;, z;) which has mazimal entropy
relative to the product measure f;f; under the con-
straint B(ij). Then is the unique density with maz-
imal entropy relative to the product density HieN fi
under constraints B(4,j),{i,j} € E.

Proof
Using the notation of Theorem 1, the proof is by
induction on n. The densities g; are the unique max-
imum entropy densities for the subtrees T}, j € D;,
by the induction hypothesis. If g;;; = g;/fi, then
the density g = f; HJEDi gjli» has maximal entropy
by Theorem 7 under the constraints implied by T}
for all j € D;. These are the same constraints as
(F,T, B). Hence, g is a maximal entropy realization
of (F,T,B).

O

If B(i,j) fully specifies g(z;,z;) for {7,j} € E,
then the above corollary says that there is a unique
maximal entropy density given (F,T,B) and this
density is Markov tree dependent.




3. Vines

Tree specifications are limited by the maximal num-
ber of edges in the tree. For trees with n nodes, there
are at most n—1 edges. This means we can constrain
at most n — 1 bivariate marginals. By comparison
there are n(n—1)/2 potentially distinct off-diagonal
terms in a (rank) correlation matrix. We seek a more
general structure for partially specifying joint distri-
butions, and obtaining minimal information results.
For example, consider a density in three dimension.
In addition to specifying marginals g1, 92, and gs,
and rank correlations p,(z1,z2), pr(z2, x3), we also
specify the conditional rank correlation as a function
of zq:

pr(z1, z3lz2) = pr((z1]22), (z3]22)).

For each value of 5 we can specify a conditional
rank correlation in [—1,1] and find the minimal
information conditional distribution, provided the
conditional marginals are not degenerate !. This will
be called a vine specification, and will be defined
presently. Sampling such distributions on a com-
puter is easily implemented; we simply use the min-
imal information distribution under a rank correla-
tion constraint, but with the marginals conditional
on z3. Figures 1 and 2 show (regular) vine specific-
ations on 5 variables. Figure 3 shows an irregular
vine specification. Each edge of a regular vine is
associated with a restriction on the bivariate or con-
ditional bivariate distribution shown adjacent to the
edge.

Note that the top level restrictions on the bivariate
marginals form a tree 77 with nodes 1, ...5. The next
level forms a three T> whose nodes are the edges
E, of Ty, and so on. There is no loss of generality
in assuming that the edges F;, i = 1,..n — 1 have
maximal cardinality n — ¢, as we may “remove” any
edge by associating with it the vacuous restriction.

The results obtained for vines are slightly different
than the results of Theorem 7. There, we started
with marginals satisfying the constraints and built a
joint satisfying the tree specification. Now, we can-
not rely on factoring the joint, and must settle for
slightly weaker results: A joint satisfying the con-
straints is assumed; if the constrains are satisfied in
a minimally informative way, then the joint is min-
imally informative. The following illustrates this in
the notation of the previous section.

Theorem 9 Let X,Y,Z be as in the previous sec-
tion and let g be a density on X,Y,Z. Sup-
pose that gy x 1is the unique density satisfying By x

! We ignore measurability constraints here

and minimizing I(gy x|gygx), suppose that gzx is
the unique density satisfying Bzx and minimiz-

ing I(gzx|92z9x), and suppose that gyz x is the
unique conditional density satisfying Bygzx and

minimizing I(gy|x |9y |x9z|x). Then g is the unique
density satisfying these constraints and minimizing

I(glgxgygz)-

Proof
We sketch the proof, leaving details to the reader.

I(glagxgv9z) = gy xl9vgx)+ EvxI(gzivx|9z) =

I(9zx|92z9x) + ExzI(g9v|xzl9y),

where E;; denotes expectation taken over ¢, ;.
Further

EyxI(9ziyxl9z) + ExzI(gy|xslgy) =

ExI(gyzixlovix9zix) + I(glgxgv9z).
Adding the two expressions for I(g|lgx gy 9z),

Iglgxgygz) = I{gyxlgvyx) + I(9xzl9xgz)+

ExI(gyzixl9yix9z|x)-

The last term is the expectation of a non-negative
function. By assumption, the terms on the right
hand side above are uniquely minimized, under the
constraints, by g.

0

Definition 7 (vine)
V(n) is a vine on n elements if

1. V(n) = (T1,..Tazy)

2. Ty is a tree with nodes Ny = {1,...,n} and
edges E1,

3. Ti,i={2,...,n— 1} is a tree with nodes N; =
E;_1 and edges F;, #E; = n — i, where #F; 1is
the cardinality of the set E;.

Definition 8 (constraint set)
CV(n) is the constraint set associated with V(n) if

1. CV(n) = {Ci,jk,D,',jk,A,',jk,;i =

2. Crky = {s,k}. Fori=2,.n-1; Cijx =
Cic1,;UCi-1 .
Note that Ci_1; is well defined, as j € E;_1 is
an edge in T;_1. When no confusion can arise,
we write Cj ;. instead of Cy(;xy. The same
convention will apply for the following terms.

l.n —




3. Dijk =@, fori=2,.n—1;D;r = Ci—1; N
Cic1k

4. Al,jk = {j,k},‘ fori = 1,...n—- I;A;,J‘k =
Ci-1,;ACi-1k, where A denotes the symmetric
difference.

Definition 9 (vine specification)
(F,V, B) is a vine specification if

1. F = (F1, e
functions for random vectors (X1, ..
no common coordinates.

,Fn) is a vector of distribution

Xn) with

te

V(n) is a vine on n elements

3. B={Bijr;i=1,..n—1; {j,k} € E;}; where
for {j,k} € Ey By ;i is a subset of the set of
two dimensional marginals Fj having margin-
als Fj, F,. Fori=2,.n—1; 1if A;'jk ;é @
and D; jx # @, then Bj jx is a subset of the set

of marginals-on A; ji conditional on Dj ;x, and

B; jk is vacuous otherwise, that is, B; ;i is the
entire set of conditional marginals Fa; ,.\D;

For the vines in Figures 1,2 and 3, and for edge
{j, k} € E;, the term A; ;i appears to the left of the
”|”, and the term Dj ;i appears to the right of the
?|”. C jx is the union all terms, left and right of ”|”.

We say that a distribution F realizes a vine spe-
cification, or exhibits vine dependence, if it satisfies
all constraints. The notion of a vine specification is
very general, and it is not always easy to identify the
constraint sets visually. In practice it is convenient
to specify large joint distributions in terms of (condi-
tional) correlations, and this means that constraint
sets will be such that #4;;x = 2. Vines satisfy-
ing this condition are termed regular and a proxim-
ity property provides a mechanism for constructing
regular vines.

Definition 10 (regularity and proximity)

1. V(n) is regular if for i = 1,.n—1,{j,k} €
By, #Aijk =2

2. V(n) has the prozimity property if for i =
2,..n—1, and {a,b} € Ej; #alb= 2.

The proximity property states that two edges in
Ti—1 (nodes in T;) are joined by an edge in T; only
if the edges in T;_; share a common node in T;_».
The proximity property does not restrict the tree 73.
The vine in Figure 3 does not satisfy the proximity
property, as the edge labelled [1234|0] joins edges in
Ty which do not share a common node in T5.

We note that a regular vine on n elements is
uniquely determined if the nodes N; have degree at
most 2 in 77. If 71 has nodes of degree greater than
2, then there is more than one regular vine. Figure
1 shows a regular vine that is uniquely determined,
the regular vine in Figure 2 is not uniquely determ-
ined. The edge labelled [25]3] could be replaced by
an edge [45(3].

Lemma 10 IfV(n) satisfies the prozimity property,
then it is regular. Moreover, #Cj jx =1+ 1.

Proof

The proof is by induction on 7 = 1, ...n—1. The basis

case is trivial; assume that #A,, jx = 2 for m < i.

We claim that for h < n—1; #C} jr = h+1. This is

trivial for h = 1 and if two sets X, Y satisfy #X =

#Y = h and #XAY =2, then #XUY =h + 1.
We now write

Ciab = Ci—1,a1a, U Ci1,6,0,

T U
M ~ A

= Cf—z.axlﬂlz U C'f—z,azxazz U
v w

A

s ” ) ™~
u Ci—Z,bubu U Ci~2.b21b22

By induction #TAU = 2, and since the #7T =
U, one element of their symmetric difference must
be in T and one element must be in U. Similar reas-
oning holds for VAW. By the proximity property,
one of {T, U} is equal to one of {V,W}. It follows
that

#(Ci“zyﬂlzdxz U Ci—z.dzlﬂzz)A

(Ciza,b12b1: U Cim2by1az,) = 2.

Recalling notation, ¢ is a density on IR® for which
all marginal and conditional marginal densities sat-
isfy the absolute continuity conditions implicit in
the relative information integrals. g; . x denotes the
marginal over i, ...z, g1,..k—1|k,..n denotes the mar-
ginal over z1,...xx—1 conditional on ,...zn. B, &
denotes expectation taken over zy,...z.

The following lemma contains useful facts for com-
puting with high dimensional relative information. -
The proof is similar in spirit to the proofs of the
previous section, and will be indicated summarily
here.

Lemma 11




1.
IgI T] 9) = I(gk,..al T ] 90)+
i=1 - i=k
k-1
Ex, nI(91,. k-1)k,..nl H gi)-
i=1
2.
n n-1
@[] o) = > Br,..i1(gi41n,...il9541)-
i=1 i=1
3.
EZ,...nI(gllz...nlgl) + El‘..n-—-l-[(gnll...n—lwn) =
= E3,. .n-1(I(91,n]2,..n~11012,..n~19n]2,..n-1)
+1(91,n)2,..n—11919n))
4.
21(g| T] o) = (92, [ [ 9)+
i=1 i=2
n—-1
I(g1,..n-1] H gi)+
i=1
By, . n-11(91,n]2,..n-1l91]2,..n=19n]2,..n—1)+
I(gl919n92,..n-1)
Proof

We indicate the main steps, leaving the computa-
tional details to the reader.

1. For g on the left hand side fill in g =
91,...k=1]k,..n9k,...n+

2. This follows from the above by it_era,tion.

3. The integrals on the left hand side can be com-
bined, and the logarigthm under the integral
has the argument:

99
92,..n91,.n-1919n

This can be re-written as

91,n)2,..n-1 gi,nj2,..n-1

9112,..n—19n|2,..n-1 g1dn

Writing the log of is product as the sum of log-
arithms of its terms, the result on the right hand
side is obtained.

4. This follows from the previous statement by
noting

Es,..n-11(g1,n)2,..n-1919n) = I(glg19293,..n~1)-

m}

Theorem 12 Let g be an n—dimensional density
satisfying the regular vine specification (F,V,B),
and suppose g4, ;,|D; ;. 1S the unique density which
minimizes

I(gAi,jlei,jk IgAli,jlei,jkgA2i,jk|Di,jk);

i=1,.n—1;{jk} € E};

where Ai,jk = {Ali;k, A2¢ ;x}. Then g is the
unique density satisfying (F,V, B) and minimizing

1(9|H9:‘)~

Proof

The proof is by induction on n. E,_; has one
element, say {1,2}, and we may assume that
Aln—l,lZ = I, A2n_1)12 = Zp. We define a vine
specification (F1, V!, B!) on {z,..z,}:

Fl = Fg, ...Fn;

N} = Ni\zg

E!' = E\{j,k}ifj=z; 0rk =ay;
B;‘l,jk = Bk if Cijx C {z2,...20n}.

We define vine specifications (F”,V™, B") on
{z1,...zp-1} and (FL, V1" BY™) on'{zs,...xn_1}
in the same manner. From the definition of regu-
larity it follows immediately that V!, V* and Yi"
are regular. gs ., 91,.n-1 and g» i satisfy the
conditions of the theorem for these specifications. In
other words,

n—1
I(gl,...n-ll 1—_[ gi)

i=1

is minimal for densities satisfying B™, and

I(g2,..n) [ ] 1)

i=2

is minimal for densities satisfying B?.
We now claim that

]([]!Hgi) = Z EDi,jk.
i=1

i=1,...n=1

{j,k}€E;




I(gAi,jlei.jk |9AI.',,'k|D.‘.jk9A2a,jk|D.',jk)~

The claim is proved by applying lemma 11(4); the
last term in the above sum is the expectation in
lemma 11(4). Applying the induction hypothesis to
the vine specification (F}", Y1n BL.™) we note that
the terms in the expansion of I(g2,.n—1]|[Tiey 9i)
are exactly those terms which are counted twice in
the expansion of

n n—1
I(g2,..n| Hg;) + I(g1,..n-1| H gi)-
=2

=1

from which the claim follows.

Since g minimizes each information term in
equation(3.), it also minimizes each expectation and
the theorem is proved. o

We note that if any constraint B; ;i in a regular
vine is vacuous, then the variables A; ;i are condi-
tionally independent given D; ;x. Hence, if we rep-
resent a joint distribution via a regular vine, and
indicate which constraints are vacuous, then we can
immediately infer the corresponding conditional in-
dependence statements.
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Figure 1

A (unique) regular vine on 5 elements

23

24]3 253
14123 25|34
5
15{234
\___/
Figure 2
A (non-unique) regular vine on 5 elements
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Figure 3

An irregular vine on 5 elements




