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choice data for valuation of health states
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1 Introduction

Savage [21] formulated axioms for rational preference of an individual, and showed that the prefer-

ences of a rational agent can be represented as expected utility, where the individual’s subjective

probability over possible states of the world is unique and the utility function over consequences

is affine unique. The representation of a preference relation by a utility function implies that if an

individual assigns higher (expected) utility to choice alternative a than to alternative b, then the

individual prefers, selects or orders an alternative a above b.

Whereas the theory of subjective probability has flourished; it is fair to say that the modeling

of utility has lagged behind. Without reviewing the activity in this area, suffice to say that, in our

opinion, there are two major causes for this. First, modelling techniques like multi attribute utility

theory (MAUT), multi criteria decision making (MCDM), analytical hierarchy process (AHP), etc.

focus on capturing ”the” utility function over choice alternatives. If an individual’s utility function

conformed to additional (rather severe) constraints, such a representation might be possible at an

individual level. However, there is no reason to believe that ”a” utility function exists for groups of

individuals; the search for such is a fool’s errand. Based on the theory of rational decision, the proper

goal of utility modeling should be to capture the distribution over utility functions characterizing a

group. Second, and perhaps not wholly unrelated, there has been a near total absence of attempts to

validate the utility models produced by these various methods. As such, the field of applied utility

theory remains parochial. There is a wealth of literature demonstrating that stakeholders often

violate the axioms of rational preference. This does not threaten the normative status of the theory

any more than the prevalence of invalid inferences imperils logic. However, it does lend urgency to

the issue of validation.

The prospects for utility theory are brighter within the literature of discrete choice and random

utility theory. Thurstone [25] pioneered this field with his celebrated law of comparative judgment.

Assuming that utilities are normally distributed over a population of stakeholders, he fits the pa-

rameters of this distribution, under various correlation assumptions, using discrete choice data from

pairwise comparisons. Later the Logit model was derived by Luce [14], [20], [15] under one of the

consequences of his choice axioms namely the Independence of Irrelevant Alternatives(IIA). McFad-

den[17] also derived the Logit model under the random utility maximization principle. The Logit

models assume that the error terms are generalized extreme value (GEV) distributed with mean

zero and some constrained covariance matrix. Unhappy with the IIA assumption, McFadden and

Train [18] picked up the thread of random utility maximization and extended the standard version

of the Logit and Probit model, to deal with the limitations they pose. Whereas goodness of fit tests

have been developed for many random utility models, true out-of-sample validation is not part of

standard operating procedure.

The problem of inferring a distribution over utility functions from discrete choice data is a prob-

lem of probabilistic inversion. Theory tells us that each (rational) stakeholder has a utility function;

if we knew these utility functions for a group of stakeholders we could predict the distribution of

responses in discrete choice situations. We observe the distribution of responses and wish to in-

fer the distribution over utility functions. Even more, we wish to model these utility functions as

functions of physical attributes of the choice alternatives, and we wish to infer rather than impose

dependence relations between utilities. This program is quite feasible, albeit that the techniques

for solving probabilistic inversion problems are new to this field. A few applications are in press, or

have been published [19], [2], [24], [12].

This paper introduces probabilistic inversion methods within the random utility community. The

next section provides an intuitive introduction, followed in section 3 by an example on stakeholders’

preferences and probabilistic inversion. An recent application on valuing health states is used to

illustrate the methods. The application was designed and carried out by Dr. V. Flari 1

1 Dr. V.A. Flari, Policy and Regulation Programme B, Food and Environment Research Agency, Sand
Hutton, York, YO41 1LZ
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2 Intuitive Motivation

The goal of stakeholder preference modeling is to derive a distribution over the utility functions

on a set of A of choice alternatives characterizing a population S of stakeholders. To motivate the

approach we consider the health state valuation problem. Currently, health states are described

and valued using EQ-5D2. EQ-5D is a standardized measure of health states developed by the

EuroQol Group in order to provide a simple, generic measure of health for clinical and economic

appraisal. Each health state is characterized by five criteria (mobility, self-care, usual activities, pain-

discomfort, and anxiety-depression) which are measurable quantities that increase in a monotonic

scale taking values one, two, three. An extended version (i.e. EQ-5D+C; see Table A.1 in the

Appendix) of the system was introduced by Stouthard[23], which we will use. These different health

states are possible outcomes of therapeutic procedures, and their valuation is critical in deciding

which procedures to support and supply.

With 6 criteria taking 3 possible values, there are 36 = 729 possible health states. The most direct

approach would be to ask a group of stakeholders randomly chosen from the target population, to

state their utility values for each health state. To estimate the distribution of utility functions, each

stakeholder should apply a standardized utility scale with common zero and unit. The assessment

burden for the stakeholders would be forbidding.

Although the distribution over utilities of these health states is the immediate goal; we want also

to model the utility of health states in terms of the attribute scores. Existing approaches will often

ask stakeholders to value the attributes and the attribute scores. This however is problematic for a

number of reasons: (1) Whereas we choose health states in choosing a therapeutic procedure, we

don’t choose attributes as such. (2) The value attached to one attribute (eg ”mobility”) will depend

on the whole set of attributes, as we must know what exactly falls under ”usual activities” and ”self

care” to avoid double counting. Of course, valuing mobility score 3 versus mobility score 2 assumes

that these values are unaffected by the values of other attributes. (3) It is unclear how the resulting

distribution over health state utilities would be validated.

By adopting a simple model of the utility of a health state in terms of its attribute scores, we

can simultaneously lighten the assessment burden and enable validation of the model. The score

(utility) of health state i for subject s is modeled as:

us(ai) =

6∑
j=1

ωs,j × ci,j ;

6∑
j=1

ωs,j = 1; ωs,j > 0. (2.1)

where ωs,j is the weight for attribute j for subject s and ci,j is the score of health state i on

attribute j. If this model is adequate, the distribution of utility functions over the set of stakeholders

may be captured as a distribution over attribute weights (ω1, ...ω6). If the model is not adequate,

a better model must be sought. Instead of asking each stakeholder for his/her weight vector, we

will ask them to rank order subsets of the 729 health states, and look for a distribution over weight

vectors which recovers the pattern of rankings. Given a single ranking of a set of health states, we

could in principle recover the set of weight vectors which would yield this ranking under model

(2.1). For a set of rankings we could take the union of the corresponding sets of weight vectors.

The uniform distribution over this set could be taken as our distribution over utility functions.

Although this is a feasible approach, it is not the one we adopt. To understand why, we must

discuss the discrete choice format.

729 health states is much too many for stakeholders to rank order. A discrete choice format is

needed render the assessment burden bearable. Best practice suggest that stakeholders can rank at

most 7 items at a time. The most popular discrete choice format is simple pairwise comparisons:

subjects are presented with all pairs of choice alternatives and asked to choose one of the two

offered. This is obviously infeasible for 729 alternatives, as there are 265,356 pairs. An economical

2 Further information can be found in http://www.euroqol.org
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discrete choice format is acceptable if it enables validation of the model on which it is based. For

the present study we selected 17 non-dominated health states3. These 17 health states are broken

into 5 overlapping groups of 5, where stakeholders then rank the health states in each group. The

overlap structure is shown in Figure (2.1)

Fig. 2.1: Overlap structure

Some pairs of states occur in two groups of 5, which enables us to screen stakeholders for consis-

tency. A stakeholder who ranks health state i above health state j in group k is called inconsistent

if he ranks health state j above health state i in group k + 1. With this discrete choice format we

gather data which we then use to infer a distribution over the utility values. One of the goals in

choosing a discrete choice format is to enable the analyst to identify inconsistent experts. Removing

inconsistent experts can produce better results. Depending on the format, it may be unrealistic to

expect perfect consistency. In pairwise comparisons, for example, it is usually sufficient that the

number of inconsistencies (circular triads) is small enough to reject the hypothesis that a subject

is choosing his/her preferences at random. Thus a solution technique for finding a distribution over

utility vectors must be able to deal with inconsistency: even if there is no distribution over utility

vectors which exactly reproduces the stakeholders’ responses, it may be possible to minimize the

lack of fit and thus arrive at a reasonably well validated model. Choosing a discrete choice format

mixes science and craft, and as this approach to utility quantification is relatively recent, the craft

is still evolving.

The necessity of dealing with inconsistencies drives our choice of solution technique. If the problem

is feasible, the solution algorithm should converge to a unique solution, if the problem is not feasible,

then it should converge to a unique distribution which minimizes lack of fit in some appropriate

sense. We proceed as follows. For each group we define a square preference ranking matrix whose

i, j−th entry gives the proportion of stakeholders who ranked health state i in the j−th position, in

that group. The task is to find a distribution over the weights that reproduce the preference ranking

matrices. Initially a distribution is chosen over the weights from which a large sample is drawn. For

each sample weight vector we can compute how a stakeholder with that weight vector and model

(2.1) would rank the health states in each 5-group. The entire sample will lead to 5 preference

ranking matrices which will not agree with those from our stakeholder data. Iterative re-weighting

schemes will then assign differential weights to the original sample such that if we resample this

distribution using the weights, the resulting preference ranking matrices agree - as much as possible -

with those of the stakeholders. If the problem is feasible then perfect agreement is possible and these

techniques converge quickly. The solution is unique and is minimally informative with respect to

the initial distribution over the weights. In case the problem is infeasible these techniques guarantee

a solution that is the least infeasible in an appropriate sense. Solution techniques are explained in

section 4.

Having obtained a solution using the solution techniques, we validate the solution by recovering

the entries of the five preference ranking matrices using just a subset of the entries. In other words,

we solve the model using a subset of entries and see if this model successfully predicts the remaining

entries. We call this procedure out-of-sample validation. In the following sections we give detailed

information about the discrete choice format, solution techniques and out-of-sample validation.

3 The attribute scores increase in severity: pain score 3 is worse than pain score 1, etc. Health state i
dominates health state j if i′s score on each criteria is greater than j′s.
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3 Stakeholders’ Preference and Probabilistic Inversion

Fig. 3.1: Response to D1 and D2 : us = (us (a1) , us (a2) , us (a3) , us (a4)) , G1 (us) = a2, G2 (us) =

a4

Figure (3.1) illustrates a mental projection of a stakeholder s faced with two groups of choice

alternatives, D1 and D2. In this simple example, the stakeholder has to choose one most preferred

alternative from each set. With the utilities as shown, s prefers alternative a2 from subset D1

and alternative a4 from subset D2. Section A.2 in the appendix gives a general formulation of the

problem pictured in Figure (3.1). Another stakeholder might arrange the four alternatives differently

on the utility scale, leading to other responses. In practice we can’t observe the utility values that

stakeholders assign to the alternatives, but we do observe their preferences in terms of responses to

the subsets presented. Suppose that a set of stakeholders induce marginal distributions Q shown in

Table (3.1.

Table 3.1: Marginal distribution Q over the responses

a1 a2 a3 a4
D1 0.5 0.3 0.2 N/A
D2 N/A 0.25 0.5 0.25

If we knew the utility function of a stakeholder s ∈ S, then we could obviously predict with

certainty how s would respond to a discrete choice problem. Equivalently, if we are given a vector

of utility values over the choice alternatives, we can uniquely determine how a stakeholder with

that utility would respond in any discrete choice problem. Our problem is to infer a distribution

over (standardized) utility functions given a set of responses from stakeholder population S. We

solve this problem using a technique called ”probabilistic inversion”. Probabilistic inversion (PI) is

similar to ordinary inversion. In ordinary inversion there are quantities x, y, and a function g that

maps x to y. The quantity y is observed and the task then is to find an x∗ such that y = g (x∗). In

the probabilistic setup, the quantities x, y are random vectors instead of numbers. There are two

formulations to solve a problem of probabilistic inversion namely, the measure theoretic approach

and the random variable approach [10] from which we choose the latter.

Definition 1 Let X,Y be random vectors taking values in RN and RM respectively. Further

let G : RN → RM be a measurable function. X is called a probabilistic inverse of G at Y if

G (X) ∼ Y,where ∼ means ”has the same distribution as”. If C is a set of random vectors taking

values in RM , then X is an element of the probabilistic inverse of G at C if G(X) ∈ C.
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There are two main algorithms to carry out PI, namely IPF(Iterative Proportional Fitting)[11],[22],[7]

and PARFUM (PARameter Fitting for Uncertainty Models)[1],[5],[13]. IPF was first described by

Kruithof [11] and later rediscovered by Deming and Stephan [4], and many others. Csiszar [3] proved

the convergence of IPF in case of a feasible problem. He shows that if the IPF algorithm converges,

then it converges to the unique distribution (called the I-projection) which is minimally infor-

mative relative of the starting distribution, within the set of distributions satisfying the marginal

constraints. PARFUM was introduced and studied by Cooke [1] . If the problem is feasible, PAR-

FUM converges to a solution which is distinct from the IPF solution. Unlike IPF, PARFUM always

converges, and it converges to a solution which minimizes a suitable information functional [5]. The

convergence of PARFUM (and its canonical variations) was proved by Matus[16] but has not yet

been published. When the problem is feasible IPF is preferred, because of its fast convergence. PAR-

FUM is used when the problem is infeasible, because it insures a solution such that I (G (X) |Y) is

minimal.

The idea now is to infer a distribution over the utility values given the marginal distributions Q

over the responses using PI. We denote the distribution over the utility values by P. For the diffuse

initial distribution we take u1, u2, u3, u4 to be independent and uniformly distributed on [0, 1]. This

distribution would then yield the following distribution over responses see Table 3.2. It does not

comply with (3.1). Note that we could use other distributions as the initial distribution.

Table 3.2: Marginal distribution Q over the responses given uniform distribution

a1 a2 a3 a4
D1 1/3 1/3 1/3 N/A
D2 N/A 1/3 1/3 1/3

With either IPF or PARFUM it is possible to find a distribution P over the utility values

u1, u2, u3, u4 such that this distribution complies with the distribution over the responses Q. As

mentioned, IPF and PARFUM are sample based algorithms for obtaining a probabilistic inverse.

These algorithms re-weight a starting distribution to get a distribution satisfying the constraints

(3.1). We first draw a number of samples from the starting distributions and then compute the

responses to D1, D2 for each sampled utility vector. These constitute the values of the functions

G1, G2. For demonstration purposes we use ten samples, but a far greater number of samples

are needed in real applications. Table (3.3) shows ten samples for u1, u2, u3, u4 from a uniform

distribution together with the computed outputs G1, G2.

Table 3.3: Ten input and output samples

Sample u1 u2 u3 u4 G1 G2

1 0.6047 0.13987 0.8202 0.39849 a3 a3
2 0.20205 0.34152 0.47065 0.88651 a3 a4
3 0.11747 0.78388 0.81113 0.36028 a3 a3
4 0.1898 0.25268 0.04756 0.84957 a2 a4
5 0.86156 0.89332 0.20379 0.25159 a2 a2
6 0.14059 0.09522 0.30707 0.28061 a3 a3
7 0.29232 0.20926 0.73012 0.36256 a3 a3
8 0.87431 0.65964 0.42908 0.31673 a1 a2
9 0.36005 0.08888 0.12888 0.03023 a1 a3
10 0.31374 0.82145 0.00599 0.59636 a2 a2

The samples (u1 (l) , u2 (l) , u3 (l) , u4 (l) , G1 (l) , G2 (l)), on the l-th sample (l-th virtual stake-

holder), are drawn from the starting joint distribution P0. Each sample has probability 0.1 under

P0. The successive joint distributions obtained after m-th iterate of IPF or PARFUM will be de-

noted by Pm.
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Next we compute the marginal distributions for outputs of G1 and G2

P0 (G1 = a1) ,P0 (G1 = a2) ,P0 (G1 = a3),

P0 (G2 = a2) ,P0 (G2 = a3) ,P0 (G2 = a4)

which are presented in table (3.4). Evidently these probabilities do not comply with the target

probabilities in (3.1).

Table 3.4: Marginal distribution Q over the responses given P0

a1 a2 a3 a4
D1 0.2 0.3 0.5 N/A
D2 N/A 0.3 0.5 0.2

An I-projection is an operation that adjusts a joint distribution such that it meets a given marginal

constraint. The IPF procedure successively I-projects onto each margin, and repeats until conver-

gence is reached. If the problem is feasible IPF converges to a P∗ which satisfies all constraints

and is minimally informative with respect to the starting distribution P0. PARFUM on the other

hands averages the I-projections of each margin to obtain the next iterate. The I-projection of a

distribution P0 onto the margins of G1 is defined as follows, where Qk,i is the (k, i) entry of Table

(3.1)

IG1

(
P0
)

= IG1=a3

(
IG1=a2

(
IG1=a1

(
P0
)))

(3.1)

with

IGk=ai

(
P0
l

)
=

{
P0
l ∗

Qk,i

P0(Gk=ai)
, Gk (l) = ai

P0
l , Gk (l) 6= ai

(3.2)

The I-projection of P0 onto the margins of G2 is computed in the same way as G1, but P0 replaced

by IG1

(
P0
l

)
. Table (3.5) shows how an I-projection of P0 onto the margins of G1 is computed.

Note that only the third column are weights that sum to 1, as (3.1) requires cycling through all

values of Gi.

Table 3.5: I-projection of the margin of G1; I1,2 ◦ I1,1 denotes IG1=a2
◦ IG1=a1

(
P0
)
, etc.

IG1=a1

(
P0

)
I1,2 ◦ I1,1 I1,3 ◦ I1,2 ◦ I1,1

0.1 0.1 0.2
0.5
∗ 0.1=0.04

0.1 0.1 0.2
0.5
∗ 0.1=0.04

0.1 0.1 0.2
0.5
∗ 0.1=0.04

0.1 0.3
0.3
∗ 0.1=0.1 0.1

0.1 0.3
0.3
∗ 0.1=0.1 0.1

0.1 0.1 0.2
0.5
∗ 0.1=0.04

0.1 0.1 0.2
0.5
∗ 0.1=0.04

0.5
0.2
∗ 0.1=0.25 0.25 0.25

0.5
0.2
∗ 0.1=0.25 0.25 0.25

0.1 0.3
0.3
∗ 0.1=0.1 0.1

The I-projections ontoG1, G2 are respectively equal to (0.04, 0.04, 0.04, 0.1, 0.1, 0.04, 0.04, 0.25, 0.25, 0.1)

and (0.0488, 0.0714, 0.0488, 0.1786, 0.0556, 0.0488, 0.0488, 0.1389, 0.3049, 0.0556). The next joint dis-

tribution P1 is equal to last I-projection

P1 = (0.0488, 0.0714, 0.0488, 0.1786, 0.0556, 0.0488, 0.0488, 0.1389, 0.3049, 0.0556) (3.3)
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Table 3.6: Marginal distributions G1, G2

Step m G1 = a1 G1 = a2 G1 = a3 G2 = a2 G2 = a3 G2 = a4

1 0.4437669 0.2896825 0.2665505 0.25 0.5 0.25
5 0.4998888 0.3001261 0.1999851 0.25 0.5 0.25
10 0.4999959 0.3000048 0.1999993 0.25 0.5 0.25
15 0.4999998 0.3000002 0.2 0.25 0.5 0.25
17 0.5 0.3 0.2 0.25 0.5 0.25

The marginal distributions for G1, G2 given several IPF iteration steps are presented in Table 3.6.

After 17 iterations IPF has converged. Let PIPF be the solution of the IPF procedure. PIPF is

then equal to

PIPF = (0.03625, 0.055, 0.03625, 0.195, 0.0525, 0.03625, 0.03625, 0.145, 0.355, 0.0525) (3.4)

For PARFUM, the next iterate is computed by first I-projecting onto the margins of G1, G2 and

then averaging the result. The next iterate P1 is equal to

P1 = (0.07, 0.0825, 0.07, 0.1125, 0.0917, 0.07, 0.07, 0.1667, 0.175, 0.0917) (3.5)

The marginal distributions for G1, G2 given several PARFUM iteration steps are presented in

Table 3.7.

Table 3.7: Marginal distributions G1, G2

Step m G1 = a1 G1 = a2 G1 = a3 G2 = a2 G2 = a3 G2 = a4

1 0.3416667 0.2958333 0.3625 0.35 0.455 0.195
5 0.4744914 0.2919279 0.2335807 0.2847194 0.4803188 0.2349619
25 0.5000717 0.2999113 0.200017 0.2500172 0.4999107 0.2500721
50 0.5000018 0.2999979 0.2000003 0.2500003 0.499998 0.2500017
75 0.5 0.3 0.2 0.25 0.5 0.25

Finally after 75 iterations PARFUM converges. The PARFUM solution is then equal to

PPARFUM = (0.0363, 0.0547, 0.0363, 0.1953, 0.0524, 0.0363, 0.0363, 0.1453, 0.3547, 0.0524)

(3.6)

As expected IPF converges faster to a solution than PARFUM. Note that the sample weights

obtained from IPF (3.4) are slightly different those obtained using PARFUM (3.6). The utilities of

the choice alternatives under IPF and PARFUM are also close (see Tables 3.8,3.9). The resulting

joint distribution over the choice alternatives induces correlations, as shown in Table 3.10 for IPF.4

Thus a stakeholder who values a2 highly is also likely to value a1 highly, but little can be said about

his/her valuation of a4. More information on iterative methods for probabilistic inversion may be

found in [13]

Table 3.8: Means and Standard Deviations of Utility Values using IPF

a1 a2 a3 a4
Mean 0.40629 0.32981 0.25088 0.36642
Standard Deviation 0.25053 0.27967 0.23545 0.32350

4 The correlation matrix 3.10 is not semi-positive definite due to rounding and the small number of samples
used.
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Table 3.9: Means and Standard Deviations of Utility Values using PARFUM

a1 a2 a3 a4
Mean 0.4063 0.3298 0.2510 0.3665
Standard Deviation 0.2506 0.2796 0.2356 0.3234

Table 3.10: Correlation coefficients of the Utility Values using IPF

a1 a2 a3 a4
a1 1.00 0.78 0.24 0.23
a2 0.78 1.00 0.69 0.16
a3 0.24 0.69 1.00 0.60
a4 0.23 0.16 0.60 1.00

3.1 Model Validation with IPF and PARFUM

In many applications we do not simply want utility values for alternatives, we want to model the

utility values as functions of underlying physical variables. The paradigm case is Multi Attribute

Utility Theory (MAUT) where utility is expressed as a weighted combination of physical attributes,

such as price, weight, reliability, maintainability, etc. The reservations regarding standard utility

modeling expressed in the introduction can be dispelled to some extent within the probabilistic

inversion approach.

First, we may assume that the utility of stakeholder s for alternative ai, us(ai) can be expressed

as some function

us (ai) = Φ (ci, ωs) (3.7)

where ci is a vector of ’criteria scores’ which depend on i but not on s, and ωs is a vector of

parameters which depend on s but not on i. The population of stakeholders S would be described

by a distribution over ωs. The most familiar form is the standard MAUT expression:

us(ai) =

M∑
j=1

ωs,j × ci,j . (3.8)

MAUT assumes that the ω are normalized weights. The solution algorithms using IPF and PAR-

FUM procede exactly as before: we begin with a diffuse starting distribution over ω from which

a large number of samples are drawn. Using (3.8) we compute the joint distribution of utility val-

ues associated with the starting distribution. IPF and/or PARFUM are applied to re-weight the

starting distribution to comply with the discrete choice data. We hasten to add that a wide vari-

ety of functional forms would be tractable. For example, we might add quadratic and interaction

terms of arbitrary order to (3.8) without compromising solvability. Constraints on the parameters

ω, (non-negativity, normalization) can also be imposed. Sampling the resulting joint distribution

of ω we obtain the joint distribution of utilities for all alternatives, characteristic for S. Note that

no assumption regarding the dependence of utility values across S is imposed; rather, dependencies

emerge from the fitting algorithms themselves. Of course the simple linear form (3.8) has distinct

advantages; because of the linearity of expectation, the expected utility of an alternative can be

simply computed by plugging in the expected values of ω.

To exploit the modeling freedom afforded by probabilistic inversion, and to conform with sound

science, it is essential to evaluate and validate model forms. As mentioned in the introduction, the

near absence of validation has rendered the field of utility theory more confessional than scientific.

To effectuate validation, we use part of the discrete choice data to derive the distributions over

the parameters ω, or indeed over the utilities us(ai). For example we used the ranks that received
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more than 30% of the vote to infer a distributions over the parameters ω using IPF. Then we use

these to predict the empirical distribution of responses in the remaining part of the discrete choice

data. This is true out-of-sample validation, and should be recognized as an essential part of any

application. The application discussed in the next section illustrates these ideas. There are many

issues to be addressed with regard to utility model validation; the approach presented below is not

the last word; it is intended to introduce this subject, not close it.

4 Application: Valuing Health States

As mentioned in section 2, this valuation study uses the extended version EQ-5D+C (see table A.1

in the Appendix) introduced by Stouthard[23].

Although the EuroQol descriptive system is non disease specific, health states can be associated

with diseases and/or disease stages via the use of questionnaires filled by patients, proxies and/or

physicians. Due to human variability, as well as variability in symptoms and stages of a disease, a

particular disease could be associated with a number of health states[6]. The number of health states

used is 17 The health states were the scenarios that stakeholders participating in the current study

judged. The number of participating stakeholders was 19. A great majority (17/19) of stakeholders,

represented a panel of ”non-health care professionals” defined as people with academic background

but with no health care professional experience. This did not exclude any health care personal

experience, however they were asked to declare this in advance.

The scenarios where presented in five groups of five. Figure (A.1) in the appendix illustrate the

questions asked to rank the scenarios per group. Scenarios overlapped among the groups; the last

two in each group were repeated as the first two in the consecutive group (see Figure 2.1). This

design ensured that we could test stakeholders for consistency in their results and to test if we get

similar weights for the criteria in each 5 group. The 17 scenarios are non-dominated.

4.1 The Model

We used two models in the analysis. The first is the so called unmodelled scores where us (ai) = ui
as in the IPF and PARFUM example of section 3, taking values between zero and one. The second

is the linear model formulated by equation 3.8. An overview of the health criteria is illustrated by

Figure (A.2) in the appendix. The criteria took values 1, 2, 3 and we assumed that a higher values

are always worse. As a result, the health scores will take values between -1 and -3.

The unmodelled scores can be seen as a composition of both observed and unobserved criteria and

will be used as a benchmark. If we can fit the unmodelled scores, but fail to fit linear model then

we know the lack of fit is due to the linear model.

The number of health states used is 17 so A = {a1, . . . , a17}. The five groups of five lead to the

following the discrete choice problem.

D = {D1, . . . , D5}
D1 = {a1, a2, a3, a4, a5}
D2 = {a4, a5, a6, a7, a8}
D3 = {a7, a8, a9, a10, a11}
D4 = {a10, a11, a12, a13, a14}
D5 = {a13, a14, a15, a16, a17} (4.1)
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Stakeholders were asked to rank the health states within each group. The task was to find a

distribution over the weights (ω1, . . . , ω6) which reproduces the distributions over the rankings.

P
(
ω1, . . . , ω6 |u(aki

) is j-th ranked in u(Dk)
)

=

#{s ∈ S | s ranks aki
in j-th position in Dk}

#S (4.2)

If an stakeholder ranks health state ai above aj in group k then we consider an stakeholder to

be inconsistent if he ranks aj above ai in group k + 1.

4.2 Results and Validation

4.2.1 Model Adequacy

Of the 19 stakeholders who participated in the study, 13 consistently ranked all of the health states.

Using Kendall’s coefficient of concordance W [9],[8] we also looked if the stakeholders rankings are

random in each group. If W is one, then each stakeholder has assigned the same order to the choice

alternatives. If W is zero, then there is no overall agreement among the stakeholders, and their

responses may be regarded as essentially random. Intermediate values of W indicate a greater or

lesser degree of agreement among the various responses.

Let R (ai, s) be the rank given to health state ai by stakeholder s. Then the sum of ranks given

to ai is

R (ai) =
∑
e

R (ai, e) (4.3)

The mean value of these sum ranks is equal to

R̄ =
1

2
m (n+ 1) (4.4)

with m the number of stakeholders and n the number of health states. The sum of squared deviations

is defined as

S =

n∑
i=1

(
R (ai)− R̄

)2
(4.5)

The coefficient of concordance is then equal to

W =
12S

m2 (n3 − n)
(4.6)

The null hypothesis that stakeholders choose ranks at random can be tested in terms of the values

for S given n and m. Friedman[8] derived a Table which contains the critical values ∗ of S at 5%

significance level, for n between 3 and 7 and m between 3 and 20. For each group we computed the

values of S and W , shown in Table (4.1).

Table 4.1: Values of S and W for each group

Group 1 Group 2 Group 3 Group 4 Group 5

S 1166 1854 1744 1282 1597
W 0.323 0.514 0.483 0.355 0.443

Friedman’s Table doesn’t contain the critical values for S given m = 19; we therefore used the

values for m = 20. The null hypothesis would be rejected at the 5% level for m = 20 if S > 468.5.

With this criterion the null hypothesis is rejected for all groups
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We fitted both the rank data of all stakeholders and the rank data of the consistent stakeholders to

the MCDM model (3.8). Each point is an alternative-rank in each of the sets Dk. Each alternative

could possibly be ranked in any of the five positions; yielding 5× 5× 5 points; however the actual

number of points is smaller as the stakeholders confined some alternatives to a smaller number

of ranks, and zero probabilities are not plotted. The observed probabilities of rankings are on the

horizontal axis, and the probabilities recovered by the linear model of the utilities are on the vertical

axis. We used linear regression as goodness of fit measure for our method. The slope tells us how

accurate the predictions are on average. And the coefficient of determination tells us how much of

the variation of the observed frequencies is explained by the predicted frequencies. Both fits have a

accuracy of around 95% and a high coefficient of determination (R2 = 0.896), (R2 = 0.964) which

suggests that the preferences of the stakeholders are consistent with the linear model (3.8). We

continue the analysis using the rankings of the consistent stakeholders.

4.2.2 Criteria Weights

We fitted the model to each health state group separately to see how it affects the weights for the

criteria. Figures (4.1), (4.2), (4.3) illustrate the low, mean and high values for the weights. The low

and high values are computed by respectively subtracting and adding one standard deviation to the

means of the weights.

Criterion Pain Discomfort seems to be the most important factor followed by Cognitive Function-

ing, which values seems to be stable for all groups. However if we look at the weights from fitting the

rank data in each group we notice that criterion Pain Discomfort no longer is the most important

factor, but Self Care. We could also read the most important criteria from the cumulative distri-

bution over the weights see Figure (4.4). The cumulative distribution over the weights is computed

from the distribution over the weights obtained from the distribution over the rankings. The most

important criterion is represented by the right most distribution.

Fig. 4.1: Low Values Weights Obtained from Fitting Experts’ Rankings

Fig. 4.2: Mean Values Weights Obtained from Fitting Experts’ Rankings
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Fig. 4.3: High Values Weights Obtained from Fitting Experts’ Rankings

Fig. 4.4: Cumulative Distribution of the Weights

We say that the stakeholder weights have interactions if, for example, knowledge that a stakeholder

assigns high weight to the Self Care criterion gives significant information regarding weights for other

criteria. Detailed analysis of interactions is not undertaken, but the correlation matrix presented

in Table (4.2) suggests that the mobility - anxiety depression; self care - cognitive functioning;

self care - usual activities; pain discomfort - anxiety depression interactions are rather strong. The

requirement that the weights sum to one imposes an overall negative correlation.

Table 4.2: Correlation coefficients of the weights.

Mobility Self Care Usual Act. Pain Disc. Anxiety Depr. Cognitive Func.

Mobility 1 -0.2812 0.1018 0.1044 -0.4669 -0.1695

Self Care -0.2812 1 -0.5247 -0.3103 0.1577 -0.5574

Usual Act. 0.1018 -0.5247 1 -0.0104 -0.0146 -0.0362

Pain Disc. 0.1044 -0.3103 -0.0104 1 -0.4643 -0.1107

Anxiety Depr. -0.4669 0.1577 -0.0146 -0.4643 1 -0.1880

Cognitive Func. -0.1695 -0.5574 -0.0362 -0.1107 -0.1880 1

4.2.3 Health State Scores

Fitting the MCDM model not only gives us statistics about the disability weights, but also statistics

about the health scores. In the introduction we mentioned that utility is affine unique, which we
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have used to transform the health scores to the zero one interval. Initially the health scores given the

MCDM model vary between -3 and -1, which have no tangible meaning. However if we standardize

these scores we can think of them as the relative impact on health see Figure (A.3).

4.2.4 Unmodelled Scores

Fitting the unmodelled scores yields a near perfect fit (R2 = 0.999). This means that we can assign

a distribution over the utilities for the 17 health states, such that the probabilities of observing

each health state at each rank in each Dk are predicted nearly perfectly. This merely says that our

population of stakeholders can be modeled as rational in the sense of Savage.

The unmodelled scores presented by Figure (A.4) are assumed to take values between -1 and 0.

The variance of the unmodelled scores seems to be higher than the variance of the health scores

from the linear model (3.8). Note that the ranks of the health states have slightly changed with

respect to the scores from the linear model.

4.2.5 Validation

Finally we validated the results by fitting the model to the ranks that got more than 30% of the

votes from the stakeholders, and then predicted the remaining ranks using the fitted model. At first

glance, from Figure (4.5) the prediction doesn’t look good at all; but if we zoom in on the ranks

that got less than 30% and take the average of these predicted ranks we get a fit that is not so bad,

see Figure (4.6). However the unmodelled scores seems to give better prediction both overall and

on the unpopular ranks, see Figures (4.7) and (4.8).

The out-of-sample validation is not overwhelming; the distribution over weights derived from

the ”popular rankings” (i.e. those rankings assigned by more than 30% of the stakeholders, did

not accurately predict the probabilities for the ”unpopular rankings” (i.e. rankings assigned by

less than 30% of the stakeholders). Nonetheless, the average predictions do align with the observed

predictions. Without undertaking an in-depth analysis, it seems that the unpopular ranks concerned

primarily the lowest ranked health states, and one possible explanation for these results is that the

preference judgments for the ’less important’ health states were less discerning.

Fig. 4.5: Prediction of Rank Percentages Using Rank Percentages Greater Than 30%
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Fig. 4.6: Average Prediction of Rank Percentages Less Than 30%

Fig. 4.7: Prediction of Rank Percentages Using Rank Percentages Greater Than 30%
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Fig. 4.8: Average Prediction of Rank Percentages Less Than 30%

5 Conclusion

Probabilistic inversion methods can be used to infer a distribution over utility functions based on

discrete choice data. This type of application is rather new and more experience in real applications

is needed. In particular, questions regarding the optimal format of the discrete choice data, the best

approach to out-of-sample validation are still largely open. Equally important is how best to model

utilities in terms of physical attributes. It is hoped that out-of-sample validation will eventually

yield utility models with a solid scientific foundation.
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A Appendix

A.1 Figures and Tables

Fig. A.1: Questions group 1
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Table A.1: The extended, six dimensional version of the original EuroQol descriptive system, i.e.

EQ-5D+C

Value Mobility Self Care Usual Activities Pain Discomfort Anxiety Depression Cognitive
Functioning

1 No problems
in walking
about

No problems
with self care

No problems
with performing
usual activities
(e.g. work,
study, house-
work)

No pain or dis-
comfort

Not anxious or de-
pressed

No problems
in cognitive
functioning

2 Some prob-
lems in
walking
about

Some prob-
lems washing
or dressing
self

Some problems
with performing
usual activities

Moderate pain or
discomfort

Moderately anxious
or depressed

Moderate
problems in
cognitive
functioning

3 Confined to
bed

Unable to
wash or dress
self

Unable to per-
form usual ac-
tivities

Extreme pain or
discomfort

Extremely anxious
or depressed

Severe prob-
lems in
cognitive
functioning

Fig. A.2: Criteria Values Per Health State

Fig. A.4: Unmodelled Health Scores
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Fig. A.3: Standardized Health Scores Obtained From Fitting The Model To The Discrete Choice

Data

A.2 Definitions

Discrete choice or random utility models describe and analyze the preferences of a group of stakeholders
S for set of choice alternatives A = {a1, . . . , aN}. The preferences of each stakeholder are denoted in the
customary way as ai � aj . If necessary to distinguish s ∈ (S), we will write �s.

Savage’s [21] theory of rational decision ensures that the preferences of a single rational stakeholder can be
expressed in terms of expected utility. Each s ∈ S may be assigned a utility function over choice alternatives
that is unique up to a positive affine transformation, i.e. unique up to choice of zero and unit. If u : A → R
is a utility function for a given stakeholder, then cu + d, c > 0, d ∈ R, is also a utility function for this
stakeholder. We will assume that our set of stakeholders have utility functions which can be assigned the
same unit. This means that there are two consequences, say g and b, not necessarily belonging to the choice
set A, such that all stakeholders agree that g is strictly preferred to b. Each stakeholder would then choose
respectively g and b as the unit and zero of his utility scale. We call such a set of stakeholders orientable. For
an orientable set of rational stakeholders, the utilities over A may be represented as standardized A-vectors
taking values in [0, 1], that is, as elements of [0, 1]A.

Definition A.2 D is called a discrete choice problem on A if

1. A = a1, . . . , aN is a finite non-empty set of N choice alternatives
2. D = {D1, . . . , DK |Di ⊆ A, Di 6= ∅, i = 1, . . . ,K}

A familiar type of a discrete choice problem is paired comparisons. Choice alternatives are presented in(
N
2

)
pairs from which stakeholders pick their preferred alternative.

The response of a stakeholder to a discrete choice problem may take many forms. For example, (s)he
may choose a unique preferred alternative from each set Dk ∈ D (strict choice) or a set of non-dominated
alternatives in Dk ∈ D (non-dominated choice) , or (s)he may order the elements of Dk ∈ D, such that the
response is a permutation π ∈ Dk! (strict preference order), or (s)he may produce an ordered partition of
elements Dk where the alternatives in each element of the partition are equivalent (non-dominated preference
order). These are captured in

Definition A.3 – A strict choice response r = (r1, ...rK) to discrete choice problem D is a set of
mappings rk : S → Dk, k = 1...K.

– A non-dominated choice response r = (r1, ...rK) to discrete choice problem D is a set of mappings

rk : S → 2
Dk
+ , with 2

Dk
+ = 2Dk\∅, k = 1...K.

– A strict preference order response r = (r1, ...rK) to discrete choice problem D is a set of mappings
rk : S → Dk! where Dk! is the set of permutations of Dk, k = 1...K .

– A non-dominated preference order response r = (r1, ...rK) to discrete choice problem D is a set of
mappings rk : S → Πk where Πk is the set of ordered partitions of Dk, k = 1...K .

The set of responses to D for all s ∈ S will be denoted by rD. Many other response forms are conceivable,
but the above are the most straightforward. Note the difference between strict and non dominated choice. In
the standard versions of random utility theory, when a stakeholder chooses element ai from a set {a1, . . . an},
this is interpreted to mean that ai is at least as good as the other elements. On this choice data alone we
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cannot distinguish strict preference from equivalence in preference. While this might not be severe in modeling
the preferences of one individual, for populations of stakeholders, such ambiguity can cause problems. Thus
if 50% of stakeholders preferred a red bus to a blue bus, and 50% preferred the blue to red bus, this might
either mean that everyone had strict preferences evenly divided over the population, or alternatively it might
mean that everyone in the population was indifferent to the busses’s color, and was choosing one color at
random. Failure to distinguish these cases can cause problems in modeling the preferences of the population.
These issues are important and have dominated a good deal of the discrete choice literature. Nonetheless,
they are not the point of the present study. The tools that we develop for deriving a distribution over utility
functions, given a distribution of responses to a discrete choice problem, apply equally well for strict and
non-strict preference. However, allowing for equivalence in preference considerably complicates the notation,
as can be inferred from Definition A.3. We therefore restrict attention in this study to strict preference.


