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Supplementary note 1: Determining expert quantiles 
 
Thirteen experts participated in the expert elicitation on contribution to sea level rise from ice sheets, 
held at RFF, Washington DC, USA on Jan 25-26. Nine experts participated in a similar elicitation held 
near London, UK on Feb 20-21, 2018.  The two elicitations used the same elicitation protocol.  The 

assessments concerned Accumulation, Runoff and Discharge for GrIS, WAIS and EAIS for the time  
temperature scenarios shown in Figure S1. Experts were chosen based on whether they were research 
active in the topic, assessed on their publications over the last ~5 years and involvement in related 
initiatives such as NASA SeaRise, Delta Commission (Netherlands Govt), EU Ice2Sea project, Ice Sheet 
MIPS etc. A working minimum group size, from previous experience, is about six experts and more than 
20 provides diminishing returns in terms of the performance of the synthetic pooled expert. We also 
wished to obtain a balance in age, gender and specialism within the broad field of ice sheets and SLR 
and to avoid accessing multiple experts from the same group. In addition to the 22 that participated, 
nine experts were invited who could not attend (4) or did not wish to (5). 
 
The participating experts are listed below 
 
US elicitation 
Robert Bindschadler 
Rob DeConto 
Natalya Gomez 
Ian Howat 
Ian Joughin 
Shawn Marshall 
Sophie Nowicki 
Stephen Price 
Eric Rignot 
Ted Scambos 
Christian Schoof 
Helene Seroussi 
Ryan Walker 

EU elicitation 
Gaël Durand 
Johannes Fuerst 
Hilmar Gudmundsson 
Anders Levermann 
Frank Pattyn 
Catherine Ritz 
Ingo Sasgen 
Aimee Slangen 
Bert Wouters 

 
The assessments were combined using equal weighting and performance-based weighting1.  The 
combined assessments were convolved to obtain the overall ice sheet contribution to global sea level 
rise using dependence information provided by the experts.    

 

                                                 
1 In the EU expert panel, one expert provided judgments based on a conceptual interpretation of the three 
processes, Accumulation, Runoff and Discharge, that differed significantly from the definitional framework 
outlined in the questionnaire; the expert acknowledged this to be the case upon enquiry, and their judgments 
were not included in subsequent processing. In the US panel one expert misinterpreted the baseline values, as a 
result, their uncertainty judgments contained systematic discrepancies in relation to others in the panel. 
Unfortunately, there was not an opportunity to re-visit and correct this expert’s evaluations in a timely manner, 
and so the relevant inputs were removed from the analysis reported here. 
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Figure S1. The two temperature scenarios prescribed: L (+2° C) and H (+5° C). 

 

 
Figure S2. Probability density functions (PDFs) for the L (blue) and H (red) temperature scenarios for the combined 

ice sheet contribution at a) 2050; b) 2100; c) 2200; d) 2300. The horizontal bars show the 5th,17th, 50th (median), 

83rd and 95th percentile values. The baseline rate of 0.76 mm a-1 is included. Note change of x-axis scales. (See 

Supplementary note 5). 
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1.1 Overall Results 
In this exercise experts quantified their 5th, 50th and 95th percentiles for accumulation, for discharge and 
for runoff for each of GrIS, WAIS and EAIS as anomalies from the 2000-2010 baseline trend (see 
Supplementary note 5).   
 
They also quantified their dependence between these quantities at 2100 with 5˚ C warming with respect 
to pre-industrial. This same dependence structure was applied for all other scenarios. As an extension, 
more articulated dependence structures could be elicited for the different scenarios and applied to the 
present assessments. In the terminology of SEJ, a Decision Maker (DM) is a “synthetic pooled expert” 
that is some weighted combination of experts. Equal Weights (EW) is sometime referred to as “one 
person one vote”. Performance Weighting (PW) is where experts are weighted based on measures of 
their informative and accuracy quantified using a set of calibration questions or items (described in 
greater detail in SI Note 1.2). 
 
The results with Performance Weighting (PW) are shown in Table S1 in yellow.  For the final results, it 
was decided to use the performance weighted combination of all experts whose statistical accuracy (P-
value) was greater than 0.01 (PW01). EW denotes Equal Weighted combinations.  
 
Total ice-sheet SLR is the sum of SLR from all three ice sheets: however, this is a sum of stochastic 
variables. For 2300H the total mean of 287 cm is the sum of 63 cm, 113 cm and 111 cm, but the 
quantiles do not sum in this way.  For 2300H, the total 95th percentile, 966cm, is smaller than 498 cm + 
332 cm + 378 cm = 1208 cm.  Adding stochastic variables requires knowledge of their joint distribution. 
The quantiles will add only if the variables are completely rank dependent (sometimes called co-
monotonic).  In this case one variable is at or above its 95th percentile if and only if the others are as 
well. The chance of that happening is then 5%, which means that the sum of the 95th percentiles is 
exceeded with probability 5%.  If the variables are independent, then the chance that all three are at or 
above their respective 95th percentiles is 0.053 = 0.000125. In this case the 95th percentile will be much 
lower than the sum of the separate 95th percentiles. In fact, if the three ice sheets are independent the 

95th percentile of PW01 (Figure S9b) is 823 cm. The difference 966 cm − 823 cm reflects the effect of the 
dependence. 
 
The choice of a cutoff for statistical accuracy (P-value) beneath which experts are unweighted is 
imposed by the theory of strictly proper scoring rules (see Supplementary Information section 1.2). The 
scoring rule theory does not say what this cutoff should be, only that there should be some positive 
lower bound to the admissible statistical accuracy scores.  Optimal performance weighting (PWOpt) 
chooses a cutoff which optimizes the scores of the resulting combination.  PW01 reflects the choice to 
include all those experts who have acceptable statistical accuracy so as to ensure wider representation. 
The distributions of PW01 are somewhat wider than those of PWOpt. With the optimal cutoff of 0.399, 
only experts 3 and 14 are weighted. Cutoff = 0.01 forms a weighted combination of eight experts whose 
statistical accuracy is above 0.01; these are experts 3,6,8,9,12,14,24 and 27.  EW01 forms an equal 
weighted combination of these same eight experts.  All combinations concern the experts’ joint 
distributions based on the elicited dependence information.  
 
 

Ice Sheets contribution to SLR [cm]; eight US & EU experts with P-value > 0.01, All DMs;  
50k samples 

2300H Mean StDev 5% 50% 95%   2300L Mean StDev 5% 50% 95% 
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eu_pwopt 358 381 -10 245 982   eu_pwopt 154 167 -18 107 450 

eu_pwopt_e 70 159 -23 4 268   eu_pwopt_e 4 30 -17 0 25 

eu_pwopt_g 118 131 -19 71 367   eu_pwopt_g 53 65 -10 33 165 

eu_pwopt_w 170 136 -7 146 408   eu_pwopt_w 98 94 -8 73 291 

useu_ew01 316 346 -3 214 1070   useu_ew01 150 151 -13 105 448 

useu_ew_e 88 210 -44 14 632   useu_ew_e 22 55 -25 2 169 

useu_ew_g 102 111 -10 73 325   useu_ew_g 53 66 -8 37 199 

useu_ew_w 127 137 -28 90 400   useu_ew_w 76 89 -35 50 258 

useu_pw01 287 322 -9 202 966   useu_pw01 132 137 -22 97 403 

useu_pw01_e 63 195 -53 10 498   useu_pw01_e 10 41 -29 3 96 

useu_pw01_g 113 117 -10 81 332   useu_pw01_g 61 75 -10 38 220 

useu_pw01_w 111 136 -42 77 378   useu_pw01_w 61 88 -53 38 242 

us_ew01 312 345 3 209 1130   us_ew01 152 150 -11 105 451 

us_pw01 278 318 -9 196 973   us_pw01 129 133 -23 95 395 

us_pwopt 265 276 -15 211 750   us_pwopt 133 133 -32 109 394 

us_pwopt_e 35 162 -56 8 105   us_pwopt_e 9 39 -30 4 56 

us_pwopt_g 123 123 -15 89 339   us_pwopt_g 69 84 -12 38 236 

us_pwopt_w 107 134 -53 85 355   us_pwopt_w 55 87 -64 44 209 

2200H Mean StDev 5% 50% 95%   2200L Mean StDev 5% 50% 95% 

eu_pwopt 220 270 -16 142 610   eu_pwopt 80 87 -16 58 237 

eu_pwopt_e 43 122 -11 3 134   eu_pwopt_e 1 12 -13 0 17 

eu_pwopt_g 59 61 -11 44 167   eu_pwopt_g 30 38 -7 20 94 

eu_pwopt_w 117 117 -8 82 321   eu_pwopt_w 49 49 -7 38 144 

useu_ew01 217 278 -6 129 844   useu_ew01 82 78 -6 61 225 

useu_ew_e 66 169 -23 6 517   useu_ew_e 8 21 -14 1 58 

useu_ew_g 59 61 -6 44 184   useu_ew_g 33 41 -5 23 126 

useu_ew_w 91 119 -21 57 367   useu_ew_w 41 46 -20 28 133 

useu_pw01 189 260 -10 115 735   useu_pw01 74 72 -10 57 216 

useu_pw01_e 48 158 -29 6 398   useu_pw01_e 4 15 -15 2 34 

useu_pw01_g 66 69 -8 44 205   useu_pw01_g 38 47 -6 23 138 

useu_pw01_w 76 113 -29 47 320   useu_pw01_w 33 45 -28 22 124 

us_ew01 216 281 -3 125 904   us_ew01 82 75 -5 61 222 

us_pw01 184 258 -10 112 769   us_pw01 73 69 -9 56 212 

us_pwopt 164 209 -12 118 505   us_pwopt 78 71 -12 64 220 

us_pwopt_e 28 127 -30 6 45   us_pwopt_e 4 14 -15 4 24 

us_pwopt_g 74 77 -11 46 216   us_pwopt_g 45 53 -7 24 149 
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us_pwopt_w 63 97 -36 48 191   us_pwopt_w 29 44 -33 24 105 

2100H Mean StDev 5% 50% 95%   2100L Mean StDev 5% 50% 95% 

eu_pwopt 65 70 -5 42 198   eu_pwopt 17 26 -10 11 60 

eu_pwopt_e 10 18 -5 2 44   eu_pwopt_e 0 5 -6 0 7 

eu_pwopt_g 20 20 -4 15 53   eu_pwopt_g 10 11 -3 7 29 

eu_pwopt_w 35 38 -4 23 106   eu_pwopt_w 7 14 -4 3 25 

useu_ew01 63 60 -1 46 179   useu_ew01 25 27 -5 17 75 

useu_ew_e 10 20 -9 2 53   useu_ew_e 2 7 -7 1 15 

useu_ew_g 23 25 -3 18 80   useu_ew_g 11 13 -3 8 42 

useu_ew_w 30 35 -5 20 96   useu_ew_w 12 17 -5 6 44 

useu_pw01 59 56 -1 43 170   useu_pw01 24 25 -5 18 73 

useu_pw01_e 6 17 -11 2 46   useu_pw01_e 1 6 -8 0 12 

useu_pw01_g 27 30 -3 17 93   useu_pw01_g 13 16 -3 7 51 

useu_pw01_w 25 33 -7 16 91   useu_pw01_w 11 16 -5 6 42 

us_ew01 63 57 1 48 171   us_ew01 28 26 -3 21 77 

us_pw01 59 54 -1 44 166   us_pw01 25 25 -4 19 74 

us_pwopt 60 52 0 48 157   us_pwopt 27 25 -5 21 75 

us_pwopt_e 4 14 -12 3 21   us_pwopt_e 0 5 -8 1 9 

us_pwopt_g 33 34 -4 18 100   us_pwopt_g 15 19 -4 7 57 

us_pwopt_w 23 31 -9 18 68   us_pwopt_w 11 16 -5 8 34 

2050H Mean StDev 5% 50% 95%   2050L Mean StDev 5% 50% 95% 

eu_pwopt 7 12 -4 5 24   eu_pwopt 6 9 -4 4 21 

eu_pwopt_e 0 3 -4 0 5   eu_pwopt_e 0 2 -4 0 4 

eu_pwopt_g 4 5 -1 2 12   eu_pwopt_g 3 4 -2 2 11 

eu_pwopt_w 3 5 -1 2 11   eu_pwopt_w 3 5 -1 1 9 

useu_ew01 12 14 -2 7 41   useu_ew01 8 9 -3 5 25 

useu_ew_e 1 5 -5 0 11   useu_ew_e 0 3 -4 0 5 

useu_ew_g 5 6 -1 3 19   useu_ew_g 3 4 -1 2 12 

useu_ew_w 6 8 -1 3 24   useu_ew_w 4 6 -2 2 17 

useu_pw01 11 12 -3 8 34   useu_pw01 7 8 -3 6 23 

useu_pw01_e 0 4 -6 0 7   useu_pw01_e 0 2 -4 0 4 

useu_pw01_g 6 7 -1 3 24   useu_pw01_g 4 5 -1 2 15 

useu_pw01_w 5 7 -2 3 21   useu_pw01_w 3 5 -2 2 16 

us_ew01 13 14 -2 9 42   us_ew01 9 9 -3 6 25 

us_pw01 11 11 -2 8 34   us_pw01 7 8 -3 6 23 

us_pwopt 12 11 -3 9 34   us_pwopt 8 8 -3 6 22 

us_pwopt_e 0 4 -7 0 5   us_pwopt_e 0 2 -4 0 3 
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us_pwopt_g 7 9 -1 3 26   us_pwopt_g 4 5 -2 2 17 

us_pwopt_w 5 383 -2 4 14   us_pwopt_w 3 238 -2 3 10 

 
Table S1. Combined results for ice sheet contribution to SLR [cm], with dependence for the EU and US elicitations. 
PW denotes Performance Weighted combination, EW denotes Equal Weighted combination and “Opt” indicates 
that the cut-off P-value is chosen to optimize the combined score of the resulting combination. The designation 
“01” indicates that all experts with p-value greater or equal to 0.01 are weighted. “eu” denotes European experts 
only, “us” denotes US experts only, “useu” denotes both European and US experts, jointly. “e” denotes East 
Antarctica, “w” denotes West Antarctica, “g” denotes Greenland.  Without “e”, “w” or “g” denotes sea level rise 
contribution computed expert-wise as the stochastic sum of “e”, “w” and “g” using the elicited dependence 
information, combined with equal or performance weighting. (See Supplementary note 5 for quantitative 
definitions of the elicited ice sheet contributions). 

 
Figures S3 and S4 show the SLR medians and 90% confidence ranges for the eight experts with P-value > 
0.01 and for the combinations EW01, PW01 and PWOpt. 
 

 

 
Figure S3: Experts with P-value > 0.01 and combinations: EW01 equal weight combination of all experts with P-
value > 0.01; PW01 performance-based combination of all experts with P-value > 0.01, PWOpt, performance-based 
combinations of experts with P-values > 0.40, for ice sheet contribution to SLR [cm] in 2300, with 5° C warming. 
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Figure S4: Experts with P-value > 0.01 and combinations: EW01 equal weight combination of experts with P-value > 
0.01; PW01 performance-based combination of experts with P-value > 0.01, PWOpt, performance-based 
combinations of experts with P-values > 0.399, for ice sheet contribution to SLR [cm] in 2300, with 5° C warming. 

 
From Figures S3 and S4 it is apparent the medians are not midway between the lower and upper 
quantiles but are closer to the lower values. This suggests a heavy right tail in the PDF: probability dies 
off more slowly above the median than below. Kurtosis is a common measure of “tailedness” with 
values above 3 being “above normal”. Figure S5 shows the kurtosis of the three ice sheets over time for 
the 2C and 5C stabilization scenarios. 
 

   
Figure S5: Kurtosis paths for the +2° C and +5° C scenarios. 
 

In the +5° C scenario the tailedness in Antarctica peaks at 2200. In the +2° C scenario EAIS’s tailedness 
peaks in 2300; WAIS is associated with some instability up to 2100 but little thereafter. This implies that 
experts believe that a substantial dynamic response is unlikely in the next century for the L scenario. 

This interpretation is supported by the rationale plots shown in Figures S9 and S10. 
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1.2 Expert Scoring 
The expert judgment methodology applied here is termed the “Classical Model” because of its analogy 
to classical hypothesis testing (1). The key idea is that experts are treated as statistical hypotheses.  
Experts were given a PowerPoint presentation to explain the basic features of the method (see SI 
Section 8), on which this section is based. Expert scoring is shown in Table S2. For detailed explanations 
please refer to (2), especially the online supplementary material (Appendix A).  
 
An expert’s statistical accuracy is the P-value (column 2 in Table S2) at which we would falsely reject the 
hypothesis that an expert’s probability assessments are statistically accurate. Roughly, an expert is 
statistically accurate if, in a statistical sense, 5% of the realizations fall beneath his/her 5th percentile, 
45% of the realizations fall between the 5th and 50th percentile, etc. High values (near 1) are good, low 
values (near 0) reflect low statistical accuracy. An expert’s informativeness is measured as the Shannon 
relative information in the expert’s distribution relative to a uniform background measure over an 
interval containing all experts’ percentile assessments and the realizations, variable-wise. Columns 3 and 
4 give the average information scores for each expert for all variables (column 3) and all calibration 
variables (column 4). The number of calibration variables is shown in column 5 for each expert (in this 
case all experts assessed all 16 calibration variables). The product of columns 2 and 4 is the combined 
score for each expert. Note that statistical accuracy scores vary over seven orders of magnitude whereas 
information scores vary within a factor three. Therefore, by design, the ratios of the products of 
combined scores are dominated by the statistical accuracy.  If an expert’s P-value is above a cut-off 
value (in this case P=0.01) then the expert is weighted with weight proportional to the combined score. 
Normalized weights for weighted experts are shown in column 6.   
 
A combination of the experts’ distributions is termed a “decision maker” (DM). Column 7 gives each 
expert’s Shannon relative information with respect to the equal weight (EW) DM (1). These 
dimensionless numbers indicate the divergence among the experts themselves and are compared with 
perturbations caused by dropping a single expert or a single calibration variable (Supplementary Tables 
3 and 4). Note that the scores in column 7 are somewhat smaller than the scores in column 3. This 
suggests that EW is somewhat more informative than the background measure, relative to which the 
experts’ informativeness is measured in column 3. 
 
Other DMs in Table 2, besides EW, are PW01, the performance weighted combination of the eight 
weighted experts, and PWOpt, the performance weighted combination with the cutoff chosen to 
optimize the combined score of the DM. Indeed, the combined score of PWOpt (0.4914) is (only) slightly 
greater than that of PW01 (0.4795).  As is typical in such studies, the information of EW is about half 
that of PWOpt. Very roughly, this translates to EW’s average 90% confidence bands being twice as large 
as those of PWOpt.  Similarly, EW’s statistical accuracy (P-value) is inferior to that of PWOpt.  This is an 
“in-sample” comparison since DM’s are compared on the same set over which PWOpt is optimized. For 
“out-of-sample” comparisons see below. 
 
Six of the 13 US experts had a statistical accuracy score above 0.01. This is a high number for SEJ studies, 
especially considering the fact that 16 calibration variables were used, constituting a more powerful 
statistical test than the traditional number of ten calibration items.  Two of the eight EU experts had a 
statistical accuracy score above 0.01, which is in line with most SEJ studies. There is very little difference 
between the scores of PWOpt and PW01, though there are modest differences in SLR predictions (see 
Table S1).  A scoring system is asymptotically strictly proper if and only if an expert obtains his/her 
highest expected score in the long run by, and only by, stating percentiles corresponding to his/her true 
beliefs.  The combined score is an asymptotic strictly proper scoring rule if experts get zero weight when 



Page | 10  

 

their P-value drops below some threshold (1). If (s)he tries to game the system to maximize his/her 
expected weight, (s)he will eventually figure out that (s)he must say exactly what (s)he thinks. Honesty is 
the only optimal strategy.  The theory does not say what the cut-off value should be, so that is often 
chosen by optimization.  
 
In the Classical Model, the optimization works as follows: starting with a cutoff beneath the lowest P-
value includes all experts with weight proportional to their combined scores.  The combined score of the 
resulting DM is stored. Taking the expert with the lowest P-value, we next exclude that expert, 
normalize the remaining combined scores, compute the resulting DM, apply this DM to the calibration 
variables and store the resulting DM’s combined score. Then we remove the next lowest P-value expert 
and repeat. With N expert P-values this results in N-1 different DM’s. We choose the DM whose 
combined score is the highest.  In this case, setting the cut-off at 0.399 and retaining experts 3 and 14 
produced the highest scoring DM.  With this scoring system it is impossible that a weighted expert has a 
lower P-value than an unweighted expert, even though doing so might produce a higher DM score.  This 
system can thus be regarded as optimal weighting under a strictly proper scoring rule constraint. The 
theory was developed in the 1980s and is detailed in (1) and (2).    
 
The Classical Model has been applied in hundreds of expert panels and has been validated both in- and 
out-of-sample (2-5). In the absence of observations of the variables of interest, out-of-sample validation 
comes down to cross-validation whereby the calibration variables are repeatedly separated into subsets 
of training- and test variables. The PW model is initialized on the training variables and scored on the 
test variables. The superiority of PW over EW in terms of statistical accuracy and informativeness has 
been demonstrated using this approach.  
  
 

Expert         P-value Rel Inf 
total 

Rel Inf 
Calib vbls 

Nr Calib 
vbls 

normalized 
weight 

Rel Inf 
to EW 

exprt01  7.33E-06 2.83 2.44 16  2.34 

exprt02  1.37E-08 1.01 1.99 16  1.91 

exprt03  5.17E-01 1.09 0.95 16 0.28 0.40 

exprt04  8.88E-06 1.66 1.77 16  1.13 

exprt05  5.97E-04 1.83 1.45 16             1.18 

exprt06  2.62E-02 2.51 1.68 16 0.03 0.91 

exprt08  1.47E-01 1.82 1.28 16 0.11 1.06 

exprt09  8.97E-02 3.32 1.41 16 0.07 1.05 

exprt10  3.91E-03 1.12 1.96 16             1.37 

exprt11  1.50E-05 1.98 2.06 16             1.36 

exprt12  8.97E-02 1.25 1.68 16 0.09 1.20 

exprt14  3.99E-01 1.41 1.32 16 0.30 0.45 

exprt22  2.81E-04 2.25 1.83 16             1.30 

exprt21  2.81E-04 2.19 1.98 16             1.35 

exprt24  3.56E-02 2.80 1.96 16 0.04 1.42 

exprt25  3.57E-04 1.70 1.72 16             1.33 

exprt26  7.58E-04 1.56 1.70 16             1.24 

exprt23  8.66E-05 2.36 2.21 16             1.36 

exprt27  8.97E-02 1.66 1.51 16 0.08 0.93 
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exprt29  3.57E-04 2.11 2.32 16             1.56 

PW01    0.6286 1.10 0.76 16               

EW       0.1284 0.59 0.55 16               

PWOpt      0.5173 1.092 0.95 16               

 
Table S2: Scores and weights for all 21 experts when performance weights are not optimized but computed for all 
eight experts with statistical accuracy > 0.01. “P-value” denotes the significance level at which the hypothesis that 
an expert is statistically accurate would be falsely rejected. “Rel Inf Total/ Rel Inf calib vbls” denote the average 
Shannon relative information in an expert’s assessments for all variables and for calibration variables only.  “Nr 
calib vbls” denotes the number of calibration variables answered by an expert. “Normalized weight” for weighted 
experts is the normalized sum of the product of columns 2 and 4. “Rel Inf to EW” is an expert’s relative information 
with respect to the EW combination of all experts. 

 
1.3 Robustness on Experts 
Robustness on experts examines the effect on the PW01 “decision maker” (i.e. the synthetic pooled 
expert) of losing individual experts. Experts are removed one at a time and PW01 is recomputed.  Table 
S3 shows the resulting information and P-values of the “perturbed” PW01. The rightmost column of 
Table S4 shows the divergence among the experts themselves.  Comparison with the rightmost column 
of table S3 shows that the scoring results are very robust against loss of a single expert. 

 

Excluded  
expert 

Rel Inf total 
Rel Inf Calib 

vbls 
P-value 

Rel Inf Orig 
DM Total 

Rel Inf Orig DM 
Calib vbls 

expert 01  1.10 0.76 0.63 0.00 0.00 

expert 02  1.07 0.71 0.63 0.02 0.01 

expert 03  1.45 0.80 0.63 0.44 0.21 

expert 04  1.09 0.76 0.63 0.00 0.00 

expert 05  1.10 0.76 0.63 0.00 0.00 

expert 06  1.06 0.76 0.52 0.08 0.02 

expert 08  1.10 0.76 0.63 0.16 0.14 

expert 09  0.95 0.79 0.63 0.18 0.07 

expert 10  1.07 0.76 0.63 0.01 0.00 

expert 11  1.09 0.76 0.63 0.00 0.00 

expert 12  1.12 0.79 0.37 0.10 0.10 

expert 14  1.26 0.73 0.52 0.35 0.18 

expert 22  1.09 0.75 0.63 0.00 0.00 

expert 21  1.10 0.76 0.63 0.00 0.00 

expert 24  1.03 0.74 0.63 0.11 0.03 

expert 25  1.08 0.76 0.37 0.01 0.00 

expert 26  1.09 0.76 0.63 0.02 0.00 

expert 23  1.09 0.76 0.63 0.00 0.00 

expert 27  1.10 0.74 0.52 0.05 0.04 

expert 29  1.10 0.76 0.63 0.00 0.00 

None     1.10 0.76 0.63 0.00 0.00 

 
Table S3. Robustness on experts; for explanations of columns see section 1.2 
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A more complete sense of robustness would examine the effect of the method of recruitment of experts 
and of the elicitation team. Before the Classical Model was adopted for the European uncertainty 
analysis of accident consequence codes for nuclear power plants (6), the authorities in Brussels required 
that parallel elicitations be carried out using the same elicitation protocol, but with different elicitation 
teams independently recruiting different experts. The findings in this case indicate a strong convergence 
of elicitation results from the two groups (6). Such an approach is generally far beyond the budgets of 
most applications. However, the results here (Table S1) show good general agreement on SLR between 
the US and European panels who were elicited separately. A different type of robustness is gleaned from 
the 14 year running expert judgment assessments of risks from the Montserrat volcano (7). Those 
assessments concerned a consistent elicitation method, applied to the same variables under changing 
conditions, with some exchanging of participating experts over elicitations. The approach showed good 
consistency of performance for volcanic hazard assessment purposes, over more than seventy repeat 
elicitations. 

 
1.4 Robustness on Items 
Seed variables are removed one at a time and PW01 is recomputed. These scores are extremely robust 
against loss of a seed variable.  Comparing the rightmost columns of Supplementary Tables 3 and 5 
shows that the perturbation caused by loss of a single calibration variable is very small relative to the 
divergence among the experts themselves. 
 

Excluded vbl 
Rel Inf 
total 

Rel Inf Calib 
vbls 

P-value 
Rel Inf Orig 
DM Total 

Rel Inf Orig DM 
Calib vbls 

Calib vbl 1  0.94 0.71 0.60 0.22 0.10 

Calib vbl 2  1.13 0.79 0.66 0.10 0.06 

Calib vbl 3  1.17 0.76 0.66 0.12 0.06 

Calib vbl 4  1.30 0.80 0.66 0.33 0.05 

Calib vbl 5  1.34 0.76 0.39 0.29 0.12 

Calib vbl 6  1.01 0.73 0.29 0.22 0.14 

Calib vbl 7  1.04 0.81 0.39 0.15 0.07 

Calib vbl 8  1.26 0.83 0.39 0.23 0.06 

Calib vbl 9  1.02 0.79 0.66 0.17 0.08 

Calib vbl 10  1.12 0.79 0.66 0.18 0.15 

Calib vbl 11  1.02 0.77 0.60 0.17 0.05 

Calib vbl 12  1.44 0.73 0.39 0.38 0.08 

Calib vbl 13  1.45 0.77 0.30 0.38 0.07 

Calib vbl 14  1.29 0.73 0.39 0.28 0.04 

Calib vbl 15  1.39 0.77 0.66 0.38 0.13 

Calib vbl 16  1.14 0.87 0.36 0.24 0.15 

None           1.10 0.76 0.63               

 
Table S4. Robustness on calibration questions (calib vbl); for explanations of columns see section 1.2 and caption 
for Table S2. 
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1.5 Dependence Elicitation 
 
Dependence and especially tail dependence are unfamiliar concepts for many scientists. A PowerPoint 
presentation was given to the experts, before the elicitation, to introduce these notions, where the 
reader can find precise definitions (see Supplementary Section 8 for links). Figure S6 from the 

presentation shows how aggregation affects uncertainty. 3  or one in 1000 upper tail events are 
depicted for the sum of 10 zero mean normal variables. If the variables have a pairwise correlation of 

0.5, the distribution dilates such that the 3 event coincides with the 5 event of the sum of 

independent Normals. If this pairwise correlation is realized with an upper tail dependent copula, the 3 

event coincides with the 7 event for independent Normals. Thus an event whose probability is 1/1000 

(3) will appear to be an event with probability 1.2810−12(7) when tail dependence is present but 
ignored.  

3 5 7

Sum 10 standard normals
Independent 

pairwise corr=0.5
Pairwise tail dependent, corr=0.5

 
Figure S6: Effect of aggregation on uncertainty. 3  or one in 1000 upper tail events are depicted for the sum of 10 
zero mean normal variables. If the variables have a pairwise correlation of 0.5, the distribution dilates such that the 

3 event coincides with the 5 event (2.8710−7) of the sum of independent Normals. If this pairwise correlation is 

realized with an upper tail dependent copula, the 3 event coincides with the 7 event for independent Normals 

(1.2810−12). 
 

The dependence elicitation for pairs of variables was accomplished by eliciting conditional exceedance 
probabilities: for central correlation, experts answered: “what is the probability that variable X exceeds 
its median given that variable Y has exceeded its median?”.  Numerical and verbal answers were 
accepted (Table S8). For upper tail dependence, “median” was replaced by “95th percentile” in the above 
question and verbal responses were elicited as indicated in Table S8.  
 
Three random variables (Runoff, Discharge and Accumulation) for each of the three ice sheets yield 36 
pairs of variables.  Potential dependences between ice sheets were also identified.  Based on judgments 
of size and relevance, the analysis team pared this down to 10 pairs corresponding to the colored nodes 
in Figure S8, in addition to 3 inter-ice sheet relations. This structure is a “dependence vine” for 
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determining a high dimensional joint distribution based on bivariate and conditional bivariate 
distributions. Unspecified (conditional) bivariate distributions are conditionally independent, making it 
easy to extend a partially specified structure to the minimally informative realization of the specified 
structure. 
 
The basic “dependence vine” for expert 14, as an example, is shown in Figure S8. The ellipses represent 
the variables (GA = Greenland Accumulation; WD = West Antarctica Discharge; etc). The dependences, 
represented by arcs, are quantified by assessing exceedance probabilities. The colored nodes are those 
between which dependence is assessed. Conditional independence is assumed elsewhere. Calculations 
and sampling were performed with the freeware UNINET.  This exposition of vine theory is necessarily 
incomplete; a Wiki page provides more background and references. A full exposition is in (8, 9).  
 
For each of the eight experts with P-value > 0.01, a comparable regular vine was constructed using the 
dependence information elicited from each individual expert. These eight joint distributions were 
combined with the various weighting schemes shown in Table S2. 

 

 
Figure S8: Regular vine depiction of the joint distribution for expert 14. The colored nodes correspond to 
information elicited from the expert. Grey nodes are given values by taking the minimal information extension of 
the information from the colored nodes. 

 
 
  

http://www.lighttwist.net/wp/uninet
http://www.lighttwist.net/wp/uninet
https://en.wikipedia.org/wiki/Vine_copula
https://en.wikipedia.org/wiki/Vine_copula
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1.6 Exceedance Results and Graphs with Independence 
 

Ice Sheets contribution to SLR [cm];  20 US & EU experts;  15k samples for EW and PWOpt; 
assuming INDEPENDENCE 

2300H Mean StDev 5% 50% 95%   2300L Mean StDev 5% 50% 95% 

EWE 144 195 -37 69 432   EWE 39 58 -33 24 142 

EWG 149 130 -18 128 397   EWG 83 75 -11 73 223 

EWW 154 137 -38 135 397   EWW 83 92 -40 64 252 

PWE 49 151 -53 23 122   PWE 15 40 -29 9 67 

PWG 121 104 -4 95 311   PWG 72 67 -7 52 198 

PWW 117 124 -47 103 337   PWW 58 88 -63 50 221 

EW 447 271 72 414 936   EW 205 132 7 193 437 

PW 286 220 19 250 663   PW 145 117 -25 133 355 

2200H Mean StDev 5% 50% 95%   2200L Mean StDev 5% 50% 95% 

EWE 104 152 -24 39 316   EWE 14 23 -20 11 56 

EWG 81 71 -13 70 212   EWG 49 45 -8 43 132 

EWW 113 117 -28 83 320   EWW 44 47 -18 33 131 

PWE 35 119 -28 15 62   PWE 8 16 -15 6 35 

PWG 69 62 -7 52 184   PWG 44 40 -5 35 119 

PWW 68 92 -31 56 199   PWW 33 49 -35 28 123 

EW 298 203 34 267 672   EW 106 69 3 100 229 

PW 171 161 2 139 482   PW 84 65 -12 78 199 

2100H Mean StDev 5% 50% 95%   2100L Mean StDev 5% 50% 95% 

EWE 19 23 -11 13 62   EWE 4 9 -9 3 19 

EWG 30 25 -5 26 76   EWG 14 13 -4 12 38 

EWW 38 37 -9 29 106   EWW 16 19 -7 11 51 

PWE 8 16 -13 5 31   PWE 1 6 -8 1 12 

PWG 25 23 -4 21 69   PWG 13 13 -4 12 38 

PWW 24 28 -9 19 65   PWW 12 15 -5 9 36 

EW 86 51 12 81 177   EW 34 25 -2 31 78 

PW 56 40 1 51 130   PW 27 21 -3 24 64 

2050H Mean StDev 5% 50% 95%   2050L Mean StDev 5% 50% 95% 

EWE 2 5 -6 2 11   EWE 1 4 -5 1 7 

EWG 6 5 -1 6 16   EWG 4 4 -1 4 11 

EWW 8 8 -2 5 23   EWW 5 6 -3 3 16 

PWE 2 6 -7 1 13   PWE 0 3 -4 0 5 

PWG 6 6 -2 5 18   PWG 5 4 -1 4 12 

PWW 5 6 -2 4 15   PWW 3 4 -2 3 10 

EW 16 11 0 15 36   EW 10 8 -2 9 24 

PW 13 10 -2 13 31   PW 8 7 -2 8 19 

 
Table S5: Results for SLR [cm] assuming independence, for EW and PWOpt excluding the baseline values for 2000-
2010 (see Supplementary note 5). 
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Figure S9:  a) PW individual expert with independence (I), no tail dependence (NoTD), and including tail dependence 
(TD) for 2300 H contribution to SLR [cm]; b) EW and PW values with and without dependencies (as for a)). 

 
  

a) 

b) 
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Supplementary note 2: From expert quantiles to SLR 
 
The procedure of going from expert quantiles to distributions for SLR is as follows (for detailed 
information see (2), especially the online supplementary material Appendix A): 
 

1) For each variable we determine an “intrinsic range” (IR), the smallest interval that contains all 
expert assessments plus the realization (in case of seed variables) + a 10% overshoot below and 
above (10% is a parameter that can be adjusted in the code) 

2) We put a background measure on each IR. In the code the user can choose between the uniform 
and log-uniform background measure.  Log-uniform is indicated when experts reason in orders 
of magnitude. In this case all background measures are uniform.  Other choices could be made 
but would require re-coding. 

3) For each expert and each variable, we fit a density that is minimally informative with respect to 
the background measure and complies with the expert’s quantile assessments. For the uniform 
background, this is a piecewise uniform density.  This density “adds as little as possible” to the 
expert’s assessment. Note that fitting a two-parameter family such as the Gaussian distribution 
will often be unable to match 3 quantiles.   

4) ASSUMING INDEPENDENCE 
a. With N experts we form the EW combination by simple averaging of the experts’ 

densities.  DO NOT average the quantiles; that can give a very overconfident result.  
b. With PW, we take a weighted average of densities. 
c. Simple Monte Carlo sampling is used to build a distribution for SLR.  For each ice sheet 

we sample D, R and A and store D+R-A. 
d. Monte Carlo sampling is used to build a distribution of total SLR as SLRGr + SLREAIS + 

SLRWAIS.  Again, do not sum the quantiles.  
5) WITH DEPENDENCE, we build a joint density for each expert based on the elicited exceedance 

probabilities.  This cannot be done with generic software.  XL add-ons like @Risk and Crystal Ball 
impose the assumption of the Gaussian copula. Based on a pilot elicitation with the 2012 
experts, we anticipated that tail dependence could be significant, rendering the Gaussian copula 
inappropriate. For each expert we obtain a distribution for total SLR, and we take a weighted 
average of these densities to find the combined distribution for SLR.  Each expert’s total SLR 
distributions incorporates his/her dependence.  

 
Steps (1) – (3) can be done with freeware EXCALIBUR (EXpert CALIBRation). Step (4) can be done with 
Freeware UNICORN (UNCertainty analysis wIth CORelatioNs)– which has limited dependence modeling 
capability). Step (5) uses freeware UNINET which is much more powerful.  All these programs can be 
downloaded from http://www.lighttwist.net/wp/.   
 
  

   

http://www.lighttwist.net/wp/
http://www.lighttwist.net/wp/
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Supplementary note 3: Experts’ rationales 
 
This section summarizes and collates the expert responses to the rationale questionnaire that is 
reproduced in supplementary note 6. For descriptions of the processes considered see note 6. 

 
GrIS 
IV 

GrIS 
EF 

WAIS 
IV 

WAIS 
EF 

EAIS 
No trend 

EAIS 
No trend 

0.5 0.5 0.5 0.5   

 1 1    

 1 1    

 1 0.3 0.7   

 1  1   

0.5 0.5 0.5 0.5   

0.5 0.5 0.5 0.5   

 1 0.5 0.5   

 1 0.5 0.5   

 1  1   

0.1 0.9 0.3 0.7   

 1 0.9 0.1   

 1 0.7 0.3   

 1 0.5 0.5   

0.4 0.6 0.5 0.5   

0.3 0.7 0.7 0.3   

 1 0.5 0.5   

 1 1    

0.5 0.5 1    

 1  1   

 1 0.3 0.7   

 1  1   

      
2.8 19.2 11.2 10.8   

 
Table S6. Expert response to the first question in the descriptive rationales (supplementary note 6): “Are the recent 
~decadal trends in mass balance largely due to internal variability (IV) of the atmosphere/ice/ocean/climate system 
or external forcing (EF), for each ice sheet overall?
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(a)  (b) 

  
(c) (d) 

  
 
Figure S9: Descriptive rationales illustrated graphically; a) Internal Variability (IV) vs External Forcing (EF) for decadal mass trends, b) dynamical processes due to 
near field gravitational and vertical land motion effects (D=decrease, I=Increase, N=no change) , c) ocean circulation changes US experts only (CDW=circumpolar 
deep water, AMOC=Atlantic Meridional Overturning Circulation), d) polar amplification values assumed. For detailed descriptions see Supplementary Note 6.  
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(a) (b) 

  
(c) (d) 
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(e) (f) 

  
 
Figure S10: Rationale responses for +2° C and +5° C for EU experts only. a) processes that might influence ice dynamics for 2°C; b) as for a) but for 5°C; c) processes 
that might influence SMB for +2° C; d) as for c) but for +5 °C; e) ocean circulation changes that might influence ice dynamics for +2° C; f) as for e) but for +5° C. For 
detailed descriptions for the abbreviations and processes considered see Supplementary Note 6.  
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Figure S11. Comparison between the emulator results in Edwards et al (2019)(10) and this elicitation (SEJ2018) 
where the Marine Ice Cliff Instability (MICI) is excluded and included. The dashed lines are from a linear 
interpolation of SEJ2018 (at +2.0 ˚C and +5.0 ˚C, respectively) to the equivalent temperatures at 2100 for the RCP 
scenarios considered in (10): RCP8.5 (top panel), RCP4.5 and RCP2.6 (lower panel). 

 
It is apparent that SEJ2018 value spreads for Antarctic Ice Sheet contribution to sea level rise in 2100CE 
lie above Edwards et al (2019)(10) no-MICI but are substantially lower than the 50th and 95th percentile 
MICI values obtained using the emulator in (10). 
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Supplementary note 4: Briefing note sent to experts prior to elicitation 
 
The following briefing note was sent to all experts prior to the elicitation: 
 
Eliciting Ice Sheets’ Contribution to Sea Level Rise 
 

Sept 28, 2017 
 
Introduction: Probabilistic prediction for Ice Sheet contributions to Sea Level Rise 
With global warming, ice sheets in Greenland and Antarctica are likely to become the primary agents of 
Sea Level Rise (SLR) in the coming decades and centuries. In their normally slow, march to the sea, 
glaciers draining the ice sheets exhibit dynamics which are highly variable from place to place, with 
neighboring glaciers or ice streams responding in markedly different ways to the same external forcing.  
Dynamic models must account for things like bedrock properties (including slipperiness and 
topography), ice shelf buttressing, precipitation, melt water effects on ice stiffness, grounding line 
migration, ocean currents, and ice cliff instability. Some of these features are directly observable, many 
are not.  
 
Glaciologists focusing on individual glaciers must contend with many uncertainties when predicting 
future ice mechanics and dynamics out to, say 2100CE, or even 2300CE. Point predictions, whatever 
their pedigree, are of limited value when the uncertainties are very large. Scientists must therefore 
make probabilistic predictions; they must say, in effect “My best estimate is a +0.2mm contribution to 
SLR by 2100CE from this particular glacier, and I am 90% confident the contribution will be between -
3mm and +6mm”.  A narrative might explain, say, “the contribution could actually be negative (the ice 
sheet would actually grow) if warming and changing atmospheric and ocean circulation increased winter 
precipitation inland while leaving the buttressing ice shelves largely intact; a very high contribution 
might result if increased storminess and shifting ocean currents break up ice shelves or summer coastal 
precipitation causes increased calving and instability”. Capturing the narrative behind the uncertainty 
assessments is essential for understanding and communicating our current state of knowledge. 
 
That is the easy part. Judging the cumulative future effects of the main ice sheets on sea level rise raises 
a host of new questions and methodological challenges, lying further outside most physical scientists’ 
comfort zone.  What might be the joint impacts of ice sheet responses on SLR if extreme conditions 
were encountered under global climate change?   
 
A proof of concept 
We describe a proof-of-concept demonstration for using expert judgments to constrain quantitative 
estimates of dependences in potentially correlated processes that affect the ice sheet2, and indicate 
some preliminary trial results.  We also explore the influence on these results of different ways of 
combining expert judgments3. 
 

                                                 
2 A talk on this subject was given at the Banff research center in 2013 by Roger Cooke and can be streamed from 

http://www.birs.ca/events/2013/5-day-workshops/13w5146/videos/watch/201305221037-Cooke.html 
3 A talk on performance weighting was given at the Centers for Disease Control and Prevention in Atlanta GA on May 23, 2017 by Willy 

Aspinall, and may be streamed at  
https://www.youtube.com/watch?v=FPC-h-br8i8&feature=youtu.be 

 
 

http://www.birs.ca/events/2013/5-day-workshops/13w5146/videos/watch/201305221037-Cooke.html
http://www.birs.ca/events/2013/5-day-workshops/13w5146/videos/watch/201305221037-Cooke.html
https://www.youtube.com/watch?v=FPC-h-br8i8&feature=youtu.be
https://www.youtube.com/watch?v=FPC-h-br8i8&feature=youtu.be
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A recent study extending (Bamber and Aspinall, 2013, henceforth B&A) made a first pass at assessing 
dependences between macro process variables relating to the Greenland, West Antarctica and East 
Antarctica ice sheets.  Estimates of contributions to SLR were based on the B&A protocol. A typical 
question was 
 
In the case of Greenland, for a global mean annual Surface Average Temperature rise of 3°C by 2100 
with respect to pre-industrial, what will be the integrated contribution, in mm to SLR relative to 2000-
2010 of the following: 
 
i) accumulation 
5% value:  ___________   95% value: ___________      50%value:: ____________ 
 
ii) runoff 
5% value:  ___________   95% value: ___________      50%value:: ____________ 
 
iii) discharge 
5% value:  ___________   95% value: ___________      50%value:: ____________ 
 
Similar questions were directed to West and East Antarctica, and to different temperatures, out to 2200. 
 
The dependence elicitation was based on exceedance probabilities, as pioneered in the 1990’s by 
uncertainty analyses for nuclear power plants in the US and in Europe.  Whereas the earlier nuclear 
work used only the 50% exceedance probabilities, our ice sheet follow-on study asked also for 95% 
exceedance probabilities.   
 
Within ice sheet process dependencies to 2100CE 
Greenland Ice Sheet, 2100 3°C warming 
 

Given discharge  your 50% value, what is probability that runoff  also  your 50% =____ 
 

Given  discharge   your 95% value, what is probability that runoff  also  your 95% =____ 
 

Given  accumulation  your 50% value, what is probability that discharge also  your 50% =____ 
 

Given  accumulation  your 50% value, what is probability that runoff  also  your 50% =____ 
 
In answering questions concerning the 95% exceedances, the experts had to consider whether factors 
likely to produce extreme values in one variable would also produce extreme values in the other. 
 
An extensive procedures guide for structured expert judgment emerging from these nuclear studies has 
informed many subsequent applications, including B&A. Following the Classical Model for structured 
expert judgment (Cooke 1991; Cooke and Goossens 2008), calibration variables from the experts’ field 
were used by B&A to score the experts’ statistical accuracy and informativeness.  True values of 
calibration variables are known post hoc, they preferably concern near term future measurements, but 
can also involve unfamiliar intersections of past data or literature.  An illustrative calibration variable 
from B&A was 
 

https://academic.oup.com/rpd/article-abstract/90/3/311/1637396/Processing-Expert-Judgements-in-Accident
https://academic.oup.com/rpd/article-abstract/90/3/311/1637396/Processing-Expert-Judgements-in-Accident
https://academic.oup.com/rpd/article-abstract/90/3/311/1637396/Processing-Expert-Judgements-in-Accident
https://academic.oup.com/rpd/article-abstract/90/3/311/1637396/Processing-Expert-Judgements-in-Accident
https://academic.oup.com/rpd/article-abstract/90/3/303/1637395/Procedures-Guide-for-Structural-Expert-Judgement?redirectedFrom=fulltext
https://academic.oup.com/rpd/article-abstract/90/3/303/1637395/Procedures-Guide-for-Structural-Expert-Judgement?redirectedFrom=fulltext
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There are nine main glacier/ice caps on Iceland.  What was their 2009/2010 average climatic balance 
Bclim, in Kg/m2? (please indicate gain by +value, loss by -value) 
 
5% value:  ___________  95% value: ___________   50%value: ____________ 
 
Based on extensive experience with the Classical Model, an equally weighted combination of experts 
tends to give statistically accurate assessments exhibiting wide confidence bounds (low information).  
The goal of the Classical Model is to demonstrate high statistical accuracy with narrow confidence 
bounds. This is accomplished by differentially weighting the experts so as to favor those with high 
statistical accuracy and high information. Recent background on the Classical Model for climate 
uncertainty quantification may be found here. Other recent applications are summarized here, a 
Wikipedia page gives some background, and an extensive study of out-of-sample validation with 
complete mathematical exposition in supplementary material is here.  
 
Dependence and aggregation 
The SLR contribution of, say, the Jakobshaven glacier in western Greenland up to 2100CE is a random 
variable; it can be described mathematically by giving a range of possible values and a probability that 
each value would be realized. Quantifying the uncertainty in the contribution to SLR from the Greenland 
and Antarctic ice sheets involves adding together hundreds of random variables. Adding random 
variables is not like adding ordinary numbers. In adding two random variables, say the Jakobshaven and 
the Petermann glaciers’ contributions to SLR by 2100CE, we must consider all possible combinations of 
values for Jakobshaven and for Petermann, and 
consider the probability that these values arise together. Suppose the contribution from Jakobshaven 
were very large. According to the above narrative, that suggests certain influencing factors are in play; 
how would these influences affect the Petermann glacier, 1274 km to the north? If they would also tend 
to induce high contribution values for the Petermann, then this could indicate a positive dependence 
between the SLR contributions of the two glaciers. If, on the contrary, the drivers of elevated ice mass 
loss in the west of Greenland were conducive to more stable conditions in the north, then the inter-
glacier dependence might be negative. 
 
The more random variables we aggregate, the more important the effects of long range, global 
correlations can become, a feature which our intuitions easily under-appreciate.  A neglected weak 

global correlation of  = 0.2 when summing 500 normal variables underestimates the confidence 
interval of the sum by an order of magnitude.  Global correlations also amplify the correlation of 
aggregations. In the above example, the correlation between the sum of the first 250 variables and the 
sum of the second 250 variables is 0.992.  In contemplating the uncertainty in the effects of hundreds of 
glaciers, we must consider the overall effects of these dependencies. 
   
Tail Dependence 
The correlation coefficient represents a sort of average association between two random variables. This 
often yields an adequate measure of their association, but not always.  The linkage between two 
variables may be primarily due to factors driving the extreme values, not the more mundane, central 
values.   
 
For example, under normal conditions it may be that the mass loss at Jakobshaven and at Petermann 
vary according to local weather conditions, which are largely uncorrelated.  However, very large mass 
loss at Jakobshaven would implicate large scale warming factors, which in turn could imply large mass 
loss at Petermann as well.  In such cases one speaks of positive tail dependence between the two 

http://www.nature.com/nclimate/journal/v6/n5/full/nclimate2959.html
http://www.nature.com/nclimate/journal/v6/n5/full/nclimate2959.html
http://www.rff.org/blog/2017/respectability-looming-expert-judgment
http://www.rff.org/blog/2017/respectability-looming-expert-judgment
https://en.wikipedia.org/wiki/Structured_expert_judgment:_the_classical_model
https://en.wikipedia.org/wiki/Structured_expert_judgment:_the_classical_model
http://www.sciencedirect.com/science/article/pii/S0951832017302090
http://www.sciencedirect.com/science/article/pii/S0951832017302090
https://www.degruyter.com/view/j/demo.2016.4.issue-1/demo-2016-0009/demo-2016-0009.xml
https://www.degruyter.com/view/j/demo.2016.4.issue-1/demo-2016-0009/demo-2016-0009.xml
https://www.degruyter.com/view/j/demo.2016.4.issue-1/demo-2016-0009/demo-2016-0009.xml
https://www.degruyter.com/view/j/demo.2016.4.issue-1/demo-2016-0009/demo-2016-0009.xml
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variables, here glacier processes.  Tail dependence can be positive or negative, can affect the upper or 
lower tails of distributions, or both, and bears no direct relation to the ordinary correlation. Thus, two 
Gaussian variables are always tail independent.  Given that one of them exceeds its rth percentile, the 
probability that the second also exceeds its own rth percentile tends toward the independent value of 

(100-r)%  as r tends to 100% regardless of the correlation, provided it is strictly between 1 and −1.   
 
In other words, a very high value of one variable tends not to entrain a high value of the other with two 
Gaussian variables, but this will not be true for variables characterized by other distributions. 
 
Results 
The calculations were performed by Aspinall and Cooke defining a regular vine, using the experts’ 
responses. Regular vines capture dependence in terms of nested bivariate and conditional bivariate 
distributions on the ranks of random variables, called copulae. The copulae are chosen to mimic the 
elicited exceedance probabilities.  Our highest weighted experts evinced tail dependence between 
Greenland Discharge and Greenland Runoff, between West Antarctica Discharge and West Antarctica 
Runoff, and between West Antarctica Discharge and East Antarctica Discharge. Although the actual 
values of tail dependence varied between experts, they were comparable in magnitude. Other variables 
exhibited median dependence without tail dependence. 
 
Table 1 presents the overall results for the case of +3˚C global warming by 2100CE, and enables us to 
gauge the effects of dependence and of performance weighting. “EW” denotes the combination based 
on equal weighting of all nine experts, “PW” denotes the optimal performance weighting in which two 
experts were weighted, based on statistical accuracy and informativeness4.  “Indep” signifies that  
experts’ dependence information was not used. The contribution to SLR was computed, per ice sheet, as 

Runoff + Discharge − Accumulation as if these were independent random variables. “tail indep” signifies 
that tail dependence was ignored and dependence was based only on the 50% exceedance probabilities. 
“tail dep” includes the information on tail dependence. 
 
Table 1. “EW” denotes the combination based on equal weighting of all experts, “PW” denotes the optimal 
performance weighting in which the experts were weighted.  “Indep” signifies that no dependence information was 
used. “tail indep” signifies that dependence was based only on the 50% exceedance probabilities. “tail dep” includes 
the information on tail dependence. 

Ice sheet contribution to SLR by 2100CE with +3˚C warming [mm] 

    mean stdev 5% 50% 95% 

Expert combination 
method 

EW indep 615 270 238 581 1120 

PW Indep 335 200 71 307 719 

PW tail indep 337 216 64 305 749 

PW tail dep 338 229 71 292 785 

   

The largest effect is wrought by using performance-based weighting instead of expert equal weighting. 
The mean SLR of “EW indep” is nearly twice that of the PW combinations, and the 5- 50- and95-
percentiles are substantially shifted upwards, relative to any of the alternative combinations. Focusing 
on the PW combinations, the effect of including dependence information is most visible in the 95th 
percentiles; the corresponding means are notably consistent. Including ice sheet inter-dependence, 

                                                 
4 These are “linear pooling methods”; other methods have also been proposed for ice sheet uncertainty 

quantification, for a discussion see Bamber et al (2016). 

https://en.wikipedia.org/wiki/Vine_copula
https://en.wikipedia.org/wiki/Vine_copula
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without tail dependence, raises the 95th percentile by +37 mm relative to the independent case; 
including tail dependence raises this percentile by +66mm relative to the independent case. 
 
Conclusions 
Predicting the cumulative effect of ice sheets on Sea Level Rise by 2100CE involves large uncertainties. 
Developing science-based quantifications of these uncertainties obliges scientists to venture outside 
their comfort zone of deterministic model-based predictions and deal with expert subjective uncertainty 
assessments. Adding information on dependence and tail dependence increased the values of the upper 
tail 95th percentiles of the performance weight combination. However, that increase effect was 
dominated by the reduction in SLR predictions produced by restricting the elicitation solution to our 
statistically accurate experts. 
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Supplementary note 5: Reference values for ice-sheet processes 
 

GrIS Accumulation 700 Gt/yr 

Runoff 400 

Discharge 500 

Net -200 

EAIS Accumulation 1130 

Discharge 1130 

Net 0 

WAIS Accumulation 940 

Discharge 1015 

Net -75 

 
Table S7: Reference values assumed for 2000-2010, where WAIS includes the Antarctic Peninsula. 
 

In the elicitation workshops, there was extensive discussion of how to define ice sheet contributions to 
sea level over future periods of time in relation to the temperature rise trajectories shown in Fig. S1.  It 
was agreed that the ice sheet contributions would be expressed as anomalies from the 2000-2010 mean 
mass change states, as pre-defined in Table S7.   On this basis, the net baseline sea-level contributions 
for this period were prescribed as 0.76 mm yr-1 for overall SLR, and 0.56, 0.20, and 0.00 mm yr-1 for GrIS, 
WAIS, and EAIS, respectively.  (The resulting joint contribution of the three ice sheets is close to an 
observationally-derived value of 0.79 mm yr-1 for the same period, which was published subsequently to 
the SEJ workshops (4)). 
 
For the SLR results presented in the main text, baseline contributions --  integrated over the relevant 
time periods (i.e. from 2000CE to 2050CE; 2100CE; 2200CE and 2300CE) --  have been added to the 
elicited SLR values reported in Supplementary note 1. 
 
 

 

 
Table S8: Reference probabilities assumed for estimating central and tail dependencies. 
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Supplementary note 6: Prompts for discussion of rationales  
 
Some of the questions below give you options for answering that are not independent (e.g., on the 
second question, buttressing is not independent of hydrofracturing). In such cases, indicate the option 
that best captures your overall judgment. In cases where you feel more than one answer is absolutely 
necessary to best characterize your judgment, feel free to fit in more than one response. Where 
changes are referred to and a future period is specified, these are for the difference between the future 
period and the base period, 2000-2010. 
 
Mass change observations and assumptions 

• Are the recent ~decadal trends in mass balance largely due to internal variability of the 
atmosphere/ice/ocean/climate system or anthropogenic forcing, for each ice sheet overall?  

Sheet GrIS WAIS EAIS 

 IV EF IV EF (no trend)  (no trend) 

 
Dynamical processes 

• How will changes in near-field gravitational and vertical land motion due to past and future ice 
sheet unloading affect marine ice sheet instability: Decrease instability (D), Increase instability 
(I), or No significant change (N)? 

 

Sheet GrIS WAIS EAIS 

D    

I    

N    

 
Among buttressing by ice shelves (B), basal traction (BT), transverse stresses (TS), 
hydrofracturing (HF), ice cliff instability (IC), and dissipation after iceberg formation at exit gates 
(DI), which one will be the most important for controlling the overall 21st, 22nd, and 23rd century 
discharge rate and grounding line migration for key ice streams and outlet glaciers (recognizing 
time variations in the role of each)? Key ice streams are those that you expect to control overall 
discharge for that ice sheet.  
 

2°C scenario 

Sheet GrIS WAIS EAIS 

 21st 22nd 23rd 21st 22nd 23rd 21st 22nd 23rd 

B          

BT          

TS          

HF          

IC          

DI          

 
5°C scenario 

Sheet GrIS WAIS EAIS 

 21st 22nd 23rd 21st 22nd 23rd 21st 22nd 23rd 

B          
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BT          

TS          

HF          

IC          

DI          

 
Surface mass balance 

• Between atmospheric circulation/moisture transport changes (AM) and albedo changes (AC), 
which do you consider more important for determining surface mass balance of grounded ice 
during the 21st, 22nd, and 23rd century. 

 
2°C scenario 

Sheet GrIS WAIS EAIS 

 21st 22nd 23rd 21st 22nd 23rd 21st 22nd 23rd 

AM          

AC          
 

5°C scenario 

Sheet GrIS WAIS EAIS 

 21st 22nd 23rd 21st 22nd 23rd 21st 22nd 23rd 

AM          

AC          
 

• Among changes in summer sea ice extent (SI), atmospheric circulation/moisture transport 
changes (AM), and albedo changes (AC), which do you consider most important for determining 
surface mass balance and rate of thinning of ice shelves in 21st, 22nd, and 23rd century? 

 
 

2°C scenario 

Sheet GrIS WAIS EAIS 

 21st 22nd 23rd 21st 22nd 23rd 21st 22nd 23rd 

SI          

AM          

AC          

 
 

5°C scenario 

Sheet GrIS WAIS EAIS 

 21st 22nd 23rd 21st 22nd 23rd 21st 22nd 23rd 

SI          

AM          

AC          
 
 

Ocean processes 

• Among Antarctic circumpolar current changes (ACC), changes in intrusion of circumpolar deep 
water onto continental shelf (CDW), and changes in AMOC (MOC), which do you consider will 
have the largest effect on sub-shelf basal melt rates during the 21st, 22nd, and 23rd century? 
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2°C scenario 

Sheet GrIS WAIS EAIS 

 21st 22nd 23rd 21st 22nd 23rd 21st 22nd 23rd 

ACC          

CDW          

MOC          
 

5°C scenario 
Sheet GrIS WAIS EAIS 

 21st 22nd 23rd 21st 22nd 23rd 21st 22nd 23rd 

ACC          

CDW          

MOC          
 
Polar Amplification 
 
Please provide the polar amplification factor (e.g., 1.5x, 2x) or range of factors that you used in your estimates. 
 

 2050 2100 2200 2300 

 1.5°C 2.0°C 2°C 5°C 2°C 5°C 2°C 5°C 

North         

South         

 
Low-probability, high-consequence scenarios 
 
Are there high-outcome scenarios above the 95% values you provided that deserve attention? If so, what are they? 
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Supplementary Note 7: Ambiguity relating to discharge versus sea level contribution 
The questionnaire provided to experts asked for their estimate of changes in discharge (defined as the 
ice flux across the grounding line) that would contribute to SLR. For ice grounded below sea level, such 
as in large sectors of the WAIS and parts of the EAIS, the change in volume of discharge and the sea level 
contribution are not the same quantity. This is because it is only the volume above flotation (VAF) that 
contributes to SLR, while the change in discharge includes ice below flotation that will be displaced by 
sea water. 
 
This issue was identified during the second SEJ workshop held in Europe and to address it we asked all 
experts what value they were using for discharge: total discharge or VAF (the same as sea level 
equivalent). Of the 22 experts, four stated they had calculated total discharge and the rest VAF. Of these 
four, one had a high calibration score and a strong weighting in the PW01 solutions and a correction to 
these discharge values for the WAIS and EAIS were considered necessary. To do this, we utilized the 
output of a thermomechanical ice sheet model coupled to a solid earth deformation model in a climate 
forced deglaciation experiment (11, 12) and calculated the ratio of total discharge to VAF. This is shown 
in Figure S12 alongside the gradients for the ratio for the WAIS, EAIS and AIS. For the WAIS, the ratio 
changes after a volume loss of about 1 m sea level equivalent (SLE), while for the EAIS it is relatively 
constant. For the EAIS discharge we used a constant ratio, while for the WAIS it varied as a function of 
the discharge anomaly. The change in gradient is only significant for the 2300 L and H and 2200 H 
scenarios, where WAIS discharge anomaly exceeds 1 m for this expert. 

 
Figure S12. The ratio of volume above flotation to total ice discharge for a present-day deglaciation experiment for the 

Antarctic ice sheet. Fig a) AIS, b) WAIS, c) EAIS. Blue dots represent the first 400 years, red dots are for the remaining 20 Kyr. 
 
 

Supplementary Note 8: Elicitation questions 
 
The Elicitation questions are available as a pdf and Excel file at 
https://doi.org/10.5523/bris.23k1jbtan6sjv2huakf63cqgav 
 
 



Page | 33  

 

Supplementary References 
 
 
1. Cooke RM (1991) Experts in Uncertainty-Opinion and Subjective probability in science. 

(Oxford University Press). 

2. Colson AR & Cooke RM (2017) Cross validation for the classical model of structured 

expert judgment. Reliab. Eng. Syst. Saf. 163:109-120. 

3. Colson AR & Cooke RM (2018) Expert Elicitation: Using the Classical Model to 

Validate Experts' Judgments. Review of Environmental Economics and Policy 12(1):113-

132. 

4. Eggstaff JW, Mazzuchi TA, & Sarkani S (2014) The effect of the number of seed 

variables on the performance of Cooke's classical model. Reliability Engineering & 

System Safety 121:72-82. 

5. Flandoli F, Giorgi E, Aspinall WP, & Neri A (2011) Comparison of a new expert 

elicitation model with the Classical Model, equal weights and single experts, using a 

cross-validation technique. Reliability Engineering & System Safety 96(10):1292-1310. 

6. Cooke R (1994) Uncertainty in dispersion and deposition in accident consequence 

modeling assessed with performance-based expert judgmen. Reliability Engineering & 

System Safety 45(1-2):35-46. 

7. Wadge G & Aspinall WP (2014) A Review of Volcanic Hazard and Risk Assessments at 

the Soufrière Hills Volcano, Montserrat from 1997 to 2011. The Eruption of Soufrière 

Hills Volcano, Montserrat, from 2000 to 2010, ed G. Wadge REARaBV (Geological 

Society, London), Vol 39. 

8. Bedford T & Cooke RM (2001) Probability density decomposition for conditionally 

dependent random variables modeled by vines. Annals of Mathematics and Artificial 

Intelligence 32(1-4):245-268. 

9. Bedford T & Cooke RM (2002) Vines - A new graphical model for dependent random 

variables. Annals of Statistics 30(4):1031-1068. 

10. Edwards TL, et al. (2019) Revisiting Antarctic ice loss due to marine ice-cliff instability. 

Nature 566(7742):58-64. 

11. Konrad H, et al. (2014) The Deformational Response of a Viscoelastic Solid Earth Model 

Coupled to a Thermomechanical Ice Sheet Model. Surveys in Geophysics 35(6):1441-

1458. 

12. Konrad H, Sasgen I, Pollard D, & Klemann V (2015) Potential of the solid-Earth 

response for limiting long-term West Antarctic Ice Sheet retreat in a warming climate. 

Earth and Planetary Science Letters 432:254-264. 

 


