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Abstract

We review the applications of structured expert judgment uncertainty quantification using the ‘‘classical model’’ developed at the Delft

University of Technology over the last 17 years [Cooke RM. Experts in uncertainty. Oxford: Oxford University Press; 1991; Expert

judgment study on atmospheric dispersion and deposition. Report Faculty of Technical Mathematics and Informatics No.01-81, Delft

University of Technology; 1991]. These involve 45 expert panels, performed under contract with problem owners who reviewed and

approved the results. With a few exceptions, all these applications involved the use of seed variables; that is, variables from the experts’

area of expertise for which the true values are available post hoc. Seed variables are used to (1) measure expert performance, (2) enable

performance-based weighted combination of experts’ distributions, and (3) evaluate and hopefully validate the resulting combination or

‘‘decision maker’’. This article reviews the classical model for structured expert judgment and the performance measures, reviews

applications, comparing performance-based decision makers with ‘‘equal weight’’ decision makers, and collects some lessons learned.

r 2007 Elsevier Ltd. All rights reserved.
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0. Introduction

The pros and cons of different weighting schemes remain
a subject of research. The European Union contracted the
TU Delft to review its applications both within EU
projects, and elsewhere, in which experts assessed variables
in their field of expertise for which the true values are
known, in addition to variables of interest [1,2]. These are
called seed, or calibration, variables. Since then, the TU
Delft expert judgment data base has nearly doubled. We
now have studies involving over 67,000 experts’ subjective
probability distributions. The main sectors and summary
information are given in Table 1.

The authors believe that this data base represents a
unique source from which much can be learned regarding
the application of structured expert judgment in quantita-
tive decision support. The entire data, appropriately
anonymized, may be obtained from the first author. It is
hoped that others will use this data to further develop
methods for using structured expert judgment.

We assume that uncertainty is represented as subjective
probability and concerns results of possible observations.
For a discussion of foundational issues, the reader is
referred to [3]. Section 1 discusses goals of a structured
expert judgment study; Section 2 provides an explanation
of the concepts and methods underlying the Delft expert
judgment method. Section 3 gives an updated summary of
the results, comparing equal weighting with performance-
based weighting and with the best expert. Section 4
discusses seed variables and robustness, and Section 5 is
devoted to lessons learned and anecdotal information,
common pitfalls, and misconceptions. A concluding sec-
tion identifies possible topics for future research. Another
article in this issue compares the performance of social
network weighted combinations, based on citations, and
likelihood weighted combinations. One recent study from
the Harvard Kuwait project is discussed in detail in
another article in this issue.

1. Structured expert judgment

Expert judgment is sought when substantial scientific
uncertainty impacts on a decision process. Because there is
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uncertainty, the experts themselves are not certain and
hence will typically not agree. Informally soliciting expert
advice is not new. Structured expert judgment refers to an
attempt to subject this process to transparent methodolo-
gical rules, with the goal of treating expert judgments as
scientific data in a formal decision process. The process by
which experts come to agree is the scientific method itself.
Structured expert judgment cannot pre-empt this role and
therefore cannot have expert agreement as its goal. We may
broadly distinguish three different goals to which a
structured judgment method may aspire:

� census,
� political consensus, and
� rational consensus.

A study aiming at census will simply try to survey the
distribution of views across an expert community. An
illustration of this goal is found in the Nuclear Regulatory

Commission’s Recommendations for Probabilistic Seismic

Hazard Analysis: Guidance on Uncertainty and Use of

Experts:

To represent the overall community, if we wish to treat
the outlier’s opinion as equally credible to the other
panelists, we might properly assign a weight (in a panel
of 5 experts) of 1/100 to his or her position, not 1/5.
[4, p. 36]

The goal of ‘‘representing the overall community’’ may in
this view lead to a differential weighting of experts’ views
according to how representative they are of other experts.
A similar goal is articulated in [5]. The philosophical
underpinnings of this approach are elaborated in [6].
Expert agreement on the representation of the overall
community is the weakest, and most accessible, type of
consensus to which a study may aspire. Agreement on a
‘‘distribution to represent a group’’, agreement on a
distribution and agreement on a number are the other
types of consensus, in decreasing accessibility.

Political consensus refers to a process in which experts
are assigned weights according to the interests or stake-
holders they represent. In practice, an equal number of

experts from different stakeholder groups would be placed
in an expert panel and given equal weight in this panel. In
this way the different groups are included equally in the
resulting representation of uncertainty. This was the
reasoning behind the selection of expert panels in the EU
USNRC accident consequence studies with equal weight-
ing [7].

Rational consensus refers to a group decision process.
The group agrees on a method according to which a
representation of uncertainty will be generated for the
purposes for which the panel was convened, without
knowing the result of this method. It is not required that
each individual member adopt this result as his/her
personal degree of belief. This is a form of agreement on
a distribution to represent a group. To be rational this
method must comply with necessary conditions devolving
from the general scientific method. Cooke [8,9] formulates
necessary conditions or principles which any method
warranting the predicate ‘‘scientific’’ should satisfy:

� Scrutability/accountability: All data, including experts’
names and assessments, and all processing tools are
open to peer review and results must be reproducible by
competent reviewers.
� Empirical control: Quantitative expert assessments are

subjected to empirical quality controls.
� Neutrality: The method for combining/evaluating expert

opinion should encourage experts to state their true
opinions, and must not bias results.
� Fairness: Experts are not pre-judged, prior to processing

the results of their assessments.

Thus, a method is proposed which satisfies these conditions
and to which the parties pre-commit. The method is
applied and after the result of the method is obtained,
parties wishing to withdraw from the consensus incur a
burden of proof. They must demonstrate that some
heretofore unmentioned necessary condition for rational
consensus has been violated. Absent that, their dissent is
not ‘‘rational’’. Of course any party may withdraw from
the consensus because the result is hostile to his or her
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Table 1

Summary of applications per sector

Sector No. of experts No. of variables No. of elicitations

Nuclear applications 98 2203 20,461

Chemical ind. & gas industry 56 403 4491

Groundwater/water pollution/dike ring/barriers 49 212 3714

Aerospace sector/space debris/aviation 51 161 1149

Occupational sector: ladders/buildings (thermal physics) 13 70 800

Health: bovine/chicken (Campylobacter)/SARS 46 240 2979

Banking: options/rent/operational risk 24 119 4328

Volcanoes/dams 231 673 29,079

Rest group 19 56 762

In total 521 3688 67,001

R.M. Cooke, L.L.H.J. Goossens / Reliability Engineering and System Safety 93 (2008) 657–674658
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interests—this is not rational dissent and does not threaten
rational consensus.

The requirement of empirical control will strike some as
peculiar in this context. How can there be empirical control
with regard to expert subjective probabilities? To answer
this question we must reflect on the question ‘‘when is a
problem an expert judgment problem?’’ We would not
have recourse to expert judgment to determine the speed of
light in a vacuum. This is physically measurable and has
been measured to everyone’s satisfaction. Any experts we
queried would give the same answer. Neither do we consult
expert judgment to determine the proclivities of a god.
There are no experts in the operative sense of the word for
this issue. A problem is susceptible for expert judgment
only if there is relevant scientific expertise. This entails that
there are theories and measurements relevant to the issues
at hand, but that the quantities of interest themselves
cannot be measured in practice. For example, toxicity of a
substance for humans is measurable in principle, but is not
measured for obvious reasons. However, there are toxicity
measurements for other species which might be relevant to
the question of toxicity in humans. Other examples are
given in Section 4. If a problem is an expert judgment
problem, then necessarily there will be relevant experiments
or measurements. Questions regarding such experiments
can be used to implement empirical control. Studies
indicate that performance on so-called almanac questions
does not predict performance on variables in an expert’s
field of expertise [10]. The key question regarding seed
variables is this: Is performance on seed variables judged
relevant for performance on the variables of interest? For
example, should an expert who gave very overconfident
off-mark assessments on the variables for which we knew
the true values be equally influential on the variables of
interest as an expert who gave highly informative and
statistically accurate assessments? That is indeed the choice
that often confronts a problem owner after the results of an
expert judgment study are in. If seed variables in this sense
cannot be found, then rational consensus is not a feasible
goal and the analyst should fall back on one of the other
goals.

The above definition of ‘‘rational consensus’’ for group
decision processes is evidently on a very high level of
generality. Much work has gone into translating this into
a workable procedure which gives good results in
practice. This workable procedure is embodied in the
‘‘classical model’’ of Cooke [8,9] described in the following
section.

Before going into details it is appropriate to say
something about Bayesian approaches. Since expert
uncertainty concerns experts’ subjective probabilities many
people believe that expert judgment should be approached
from the Bayesian paradigm. This paradigm, recall, is
based on the representation of preference of a rational
individual in terms of maximal expected utility. If a
Bayesian is given experts’ assessments on variables of
interest and on relevant seed variables, then (s)he may

update his/her prior on the variables of interest by
conditionalizing on the given information. This requires
that the Bayesian formulates his/her joint distribution
over

� the variables of interest,
� the seed variables, and
� the experts’ distributions over the seed variables and the

variables of interest.

Issues that arise in building such a model are discussed in
[8,9]. Suffice to say here that a group or rational individuals
is not itself a rational individual, and group decision
problems are notoriously resistant to the Bayesian para-
digm.

2. The classical model

The above principles have been operationalized in the
so-called ‘‘classical model’’, a performance-based linear
pooling or weighted averaging model [8,9,11]. The weights
are derived from experts’ calibration and information
scores, as measured on seed variables. Seed variables serve
a threefold purpose:

(i) to quantify experts’ performance as subjective prob-
ability assessors,

(ii) to enable performance-optimized combinations of
expert distributions, and

(iii) to evaluate and hopefully validate the combination of
expert judgments.

The name ‘‘classical model’’ derives from an analogy
between calibration measurement and classical statistical
hypothesis testing. It contrasts with various Bayesian
models.
The performance-based weights use two quantitative

measures of performance, calibration and information.
Loosely, calibration measures the statistical likelihood that
a set of experimental results correspond, in a statistical
sense, with the expert’s assessments. Information measures
the degree to which a distribution is concentrated.
These measures can be implemented for both discrete

and quantile elicitation formats. In the discrete format,
experts are presented with uncertain events and perform
their elicitation by assigning each event to one of several
pre-defined probability bins, typically 10%; 20%; . . . ; 90%.
In the quantile format, experts are presented an uncertain
quantity taking values in a continuous range, and they give
pre-defined quantiles, or percentiles, of the subjective
uncertainty distribution, typically 5%, 50%, and 95%.
The quantile format has distinct advantages over the
discrete format, and all the studies reported below use this
format. In five studies the 25% and 75% quantiles were
also elicited. To simplify the exposition we assume that the
5%, 50%, and 95% values were elicited.

ARTICLE IN PRESS
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2.1. Calibration

For each quantity, each expert divides the range into 4
inter-quantile intervals for which his/her probabilities are
known, namely p1 ¼ 0:05: less than or equal to the 5%
value, p2 ¼ 0:45: greater than the 5% value and less than or
equal to the 50% value, etc.

If N quantities are assessed, each expert may be regarded
as a statistical hypothesis, namely that each realization falls
in one of the 4 inter-quantile intervals with probability vector

p ¼ ð0:05; 0:45; 0:45; 0:05Þ.

Suppose we have realizations x1; . . . ;xN of these quantities.
We may then form the sample distribution of the expert’s
inter-quantile intervals as

s1ðeÞ ¼ #fijxip5% quantileg=N,

s2ðeÞ ¼ #fij5% quantileoxip50% quantileg=N,

s3ðeÞ ¼ #fij50% quantileoxip95% quantileg=N,

s4ðeÞ ¼ #fij95% quantileoxig=N,

sðeÞ ¼ ðs1; . . . ; s4Þ.

Note that the sample distribution depends on the expert e.
If the realizations are indeed drawn independently from a
distribution with quantiles as stated by the expert then the
quantity

2NIðsðeÞjpÞ ¼ 2N
X

i¼1;...;4

si lnðsi=piÞ (1)

is asymptotically distributed as a chi-square variable with 3
degrees of freedom. This is the so-called likelihood ratio
statistic, and I(s|p) is the relative information of distribu-
tion s with respect to p. If we extract the leading term of the
logarithm we obtain the familiar chi-square test statistic for
goodness of fit. There are advantages in using the form in
(1) [8,9].

If after a few realizations the expert were to see that all
realization fell outside his 90% central confidence intervals,
he might conclude that these intervals were too narrow and
might broaden them on subsequent assessments. This
means that for this expert the uncertainty distributions
are not independent, and he learns from the realizations.
Expert learning is not a goal of an expert judgment study
and his joint distribution is not elicited. Rather, the
decision maker wants experts who do not need to learn
from the elicitation. Hence the decision maker scores
expert e as the statistical likelihood of the hypothesis

He: the inter-quantile interval containing the true value for

each variable is drawn independently from probability vector p.
A simple test for this hypothesis uses the test statistic (1),

and the likelihood, or p-value, or calibration score of this
hypothesis, is

calibration scoreðeÞ ¼ p� value

¼ probf2NIðsðeÞjpÞXrjHeg,

where r is the value of (1) based on the observed values
x1; . . . ; xN . It is the probability under hypothesis He that a
deviation at least as great as r should be observed on N

realizations if He were true. Calibration scores are absolute
and can be compared across studies. However, before
doing so, it is appropriate to equalize the power of the
different hypothesis tests by equalizing the effective
number of realizations. To compare scores on two data
sets with N and N0 realizations, we simply use the minimum
of N and N0 in (1), without changing the sample
distribution s. In some cases involving multiple realizations
of one and the same assessment, the effective number of
seed variables is based on the number of assessments and
not the number of realizations.
Although the calibration score uses the language of

simple hypothesis testing, it must be emphasized that we
are not rejecting expert hypotheses; rather we are using this
language to measure the degree to which the data support
the hypothesis that the expert’s probabilities are accurate.
Low scores, near zero, mean that it is unlikely that the
expert’s probabilities are correct.

2.2. Information

The second scoring variable is information. Loosely, the
information in a distribution is the degree to which the
distribution is concentrated. Information cannot be mea-
sured absolutely, but only with respect to a background
measure. Being concentrated or ‘‘spread out’’ is measured
relative to some other distribution. Commonly, the uni-
form and log-uniform background measures are used
(other background measures are discussed in [12].
Measuring information requires associating a density

with each quantile assessment of each expert. To do this,
we use the unique density that complies with the experts’
quantiles and is minimally informative with respect to the
background measure. This density can easily be found with
the method of Lagrange multipliers. For a uniform
background measure, the density is constant between the
assessed quantiles, and is such that the total mass between
the quantiles agrees with p. The background measure is not
elicited from experts as indeed it must be the same for all
experts; instead it is chosen by the analyst.
The uniform and log-uniform background measures

require an intrinsic range on which these measures are
concentrated. The classical model implements the so-called
k% overshoot rule: for each item we consider the smallest
interval I ¼ ½L;U � containing all the assessed quantiles of
all experts and the realization, if known. This interval is
extended to

I� ¼ ½L�;U��; L� ¼ L� kðU � LÞ=100;

U� ¼ U þ kðU � LÞ=100.

The value of k is chosen by the analyst. A large value of k

tends to make all experts look quite informative, and tends
to suppress the relative differences in information scores.

ARTICLE IN PRESS
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The information score of expert e on assessments for
uncertain quantities 1; . . . ;N is

information scoreðeÞ

¼ average relative information wrt background

¼ ð1=NÞ
X

i¼1;...;N

Iðf e;ijgiÞ,

where gi is the background density for variable i and fe,i

is expert e’s density for item i. This is proportional to the
relative information of the expert’s joint distribution
given the background, under the assumption that the
variables are independent. As with calibration, the
assumption of independence here reflects a desideratum
of the decision maker and not an elicited feature of the
expert’s joint distribution. The information score does not
depend on the realizations. An expert can give himself a
high information score by choosing his quantiles very close
together.

Evidently, the information score of e depends on the
intrinsic range and on the assessments of the other experts.
Hence, information scores cannot be compared across
studies.

Of course, other measures of concentratedness could be
contemplated. The above information score is chosen
because it is

� familiar,
� tail insensitive,
� scale invariant, and
� slow.

The last property means that relative information is a slow
function; large changes in the expert assessments produce
only modest changes in the information score. This
contrasts with the likelihood function in the calibration
score, which is a very fast function. This causes the product
of calibration and information to be driven by the
calibration score.

2.3. Decision maker

A combination of expert assessments is called a
‘‘decision maker’’ (DM). All decision makers discussed
here are examples of linear pooling. For a discussion of
pros and cons of the linear pool see [8,9,13,14]. The
classical model is essentially a method for deriving weights
in a linear pool. ‘‘Good expertise’’ corresponds to good
calibration (high statistical likelihood, high p-value) and
high information. We want weights which reward good
expertise and which pass these virtues on to the decision
maker.

The reward aspect of weights is very important.
We could simply solve the following optimization problem:
find a set of weights such that the linear pool under
these weights maximizes the product of calibration and
information. Solving this problem on real data, we have

found that the weights do not generally reflect the
performance of the individual experts. An example of this
is given in Section 4.
As we do not want an expert’s influence on the decision

maker to appear haphazard, and we do not want to
encourage experts to game the system by tilting their
assessments to achieve a desired outcome, we must impose
a strictly scoring rule constraint on the weighing scheme.
Roughly, this means that an expert achieves his maximal
expected weight by and only by stating assessments in
conformity with his/her true beliefs.
Consider the following score for expert e:

waðeÞ ¼ 1aðcalibration scoreÞ � calibration scoreðeÞ

� information scoreðeÞ, ð2Þ

where 1aðxÞ ¼ 0 if xoa and 1aðxÞ ¼ 1 otherwise. Cooke
[8,9] shows that (2) is an asymptotically strictly proper
scoring rule for average probabilities. This means the
following: suppose an expert has given his quantile
assessments for a large number of variables and subse-
quently learns that his judgments will be scored and
combined according the classical model. If (s)he were then
given the opportunity to change the quantile values (e.g.
the numbers 5%, 50%, or 95%) in order to maximize the
expected weight, the expert would choose values corre-
sponding to his/her true beliefs. Note that this type of
scoring rule scores a set of assessments on the basis of a set
of realizations. Scoring rules for individual variables were
found unsuitable for purposes of weighting, for which
discussion we refer to [8,9].
The scoring rule constraint requires the term 1a(calibra-

tion score), but does not say what value of a we should
choose. Therefore, we choose a so as to maximize the
combined score of the resulting decision maker. Let DMa(i)
be the result of linear pooling for item i with weights
proportional to (2):

DMaðiÞ ¼
X

e¼1;...;E

waðeÞf e;i

, X
e¼1;...;E

waðeÞ. (3)

The global weight DM is DMa� where a* maximizes

calibration scoreðDMaÞ � information scoreðDMaÞ. (4)

This weight is termed global because the information score
is based on all the assessed seed items.
A variation on this scheme allows a different set of

weights to be used for each time. This is accomplished by
using information scores for each item rather than the
average information score:

waðe; iÞ ¼ 1aðcalibration scoreÞ

� calibration scoreðeÞ � Iðf e;ijgiÞ. ð5Þ

For each a we define the item weight DMa for item i as

IDMaðiÞ ¼
X

e¼1;...;E

waðe; iÞf e;i

, X
e¼1;...;E

waðe; iÞ. (6)
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The item weight DM is IDMa� , where a* maximizes

calibration scoreðIDMaÞ � information scoreðIDMaÞ. (7)

Item weights are potentially more attractive as they allow
an expert to up- or down-weight him/herself for individual
items according to how much (s)he feels (s)he knows about
that item. ‘‘Knowing less’’ means choosing quantiles
further apart and lowering the information score for that
item. Of course, good performance of item weights requires
that experts can perform this up–down weighting success-
fully. Anecdotal evidence suggests that item weights
improve over global weights as the experts receive more
training in probabilistic assessment. Both item and global
weights can be pithily described as optimal weights under a
strictly proper scoring rule constraint. In both global and
item weights calibration dominates over information,
information serves to modulate between more or less
equally well-calibrated experts.

Since any combination of expert distributions yields
assessments for the seed variables, any combination can be
evaluated on the seed variables. In particular, we can
compute the calibration and the information of any
proposed decision maker. We should hope that the decision
maker would perform better than the result of simple
averaging, called the equal weight DM, and we should also
hope that the proposed DM is not worse than the best
expert in the panel.

In the classical model calibration and information are
combined to yield an overall or combined score with the
following properties:

1. Individual expert assessments, realizations, and scores
are published. This enables any reviewer to check the
application of the method, in compliance with the
principle of accountability/scrutability.

2. Performance is measured and hopefully validated, in
compliance with the principle of empirical control. An
expert’s weight is determined by performance.

3. The score is a long run proper scoring rule for average
probabilities, in compliance with the principle of
neutrality.

4. Experts are treated equally, prior to the performance
measurement, in compliance with the principle of
fairness.

Expert names and qualifications are part of the published
documentation of every expert judgment study in the
data base; however, they are not associated with assess-
ments in the open literature. The experts reasoning is
always recorded and sometimes published as expert
rationales.

There is no mathematical theorem that either item
weights or global weights outperform equal weighting or
outperform the best expert. It is not difficult to construct
artificial examples where this is not the case. Performance
of these weighting schemes is a matter of experience. In
practice, global weights are used unless item weights

perform markedly better. Of course there may be other
ways of defining weights that perform better, and indeed
there might be better performance measures. Good
performance on one individual data set is not convincing.
What is convincing is good performance on a large diverse
data set, such as the TU Delft expert judgment data base.
In practice a method should be easy to apply, easy to
explain, should do better than equal weighting and should
never do something ridiculous.

3. Applications of the classical model

Forty-five expert panels involving seed variables have
been performed to date.1 Because most of these studies
were performed by or in collaboration with the TU Delft, it
is possible to retrieve relevant details of these studies, and
to compare performance of performance-based and equal
weight combination schemes. For studies by Ter Haar [15],
the data have not been retrieved.
These are all studies performed under contract for a

problem owner and reviewed and accepted by the
contracting party. In most cases these have been published.
Table 2 lists these studies, references publications, and
gives summary information. The number of variables and
number of seed variables are shown, as is the number of
effective seed variables. In general the effective number of
seeds is equal to the least number of seeds assessed by some
expert. In this way each expert is scored with a test of the
same power. In the gas panel, the panel and the seed
variables were split post hoc into corrosion and environ-
mental panels.
The combined scores of equal weight DM, performance-

based DM, and best expert are compared pair wise in
Fig. 1. Fig. 2 compares the calibration (p-values) and
information scores of the equal weight DM, the perfor-
mance-based DM, and the best expert.
In 15 of 45 cases the performance-based DM was the

best expert, that is, one expert received weight one. In 27
cases the combined score of the performance-based DM
was strictly better than both the equal weight DM and the
best expert. In one case (13) the equal weight DM
performed best, and in two cases (10, 22) the best expert
outperformed both equal weights and performance-based
weights.
The equal weight DM is better calibrated than the best

expert in 25 of the 45 cases, but in only 2 cases more
informative. In 18 cases the combined score of the equal
weight DM is better than that of the best expert. In 12 of
the 45 cases the calibration of the best expert is less than or
equal to 0.05; for the equal weight DM this happened in 7
cases (15%).

ARTICLE IN PRESS

1These results are obtained with the EXCALIBUR software, available

from http://delta.am.ewi.tudelft.nl/risk/. The windows version upgraded

chi-square and information computational routines, and this may cause

differences with the older DOS version, particularly with regard to very

low calibration scores.

R.M. Cooke, L.L.H.J. Goossens / Reliability Engineering and System Safety 93 (2008) 657–674662



Author's personal copy
A
R
TIC

LE
IN

PR
ES

S

Table 2

Expert judgment studies

Case Name/Reference No. of experts No. of variables/No.

of seeds

No. of effective

seeds

Perf. measure Perform

weights

Equal

weights

Best

expert

1 Dsm-1 10 14/8 8 Calibr’n 0.66 0.53 0.54

Flange leak [10,14] Inform’n 1.371 0.8064 1.549

Combi’n 0.905 0.4274 0.836

2 Dsm-2 8 39/12 11 Calibr’n 0.84 0.5 0.005

Crane risk [16] Inform’n 1.367 0.69 2.458

Combi’n 1.148 0.345 0.012

3 Estec-1 4 48/13 13 Calibr’n 0.43 0.43 0.14

Propulsion [10,14] Inform’n 1.72 1.421 2.952

Combi’n 0.7398 0.611 0.413

4 Estec-2 7 58/26 18 Calibr’n 0.78 0.9 0.0001

Space debris [17,48] Inform’n 0.32 0.15 2.29

Combi’n 0.25 0.14 0.0002

5 Estec-3 6 22/12 12 Calibr’n 0.27 0.12 0.005

Composite materials [4] Inform’n 1.442 0.929 2.549

Combi’n 0.39 0.111 0.013

6 AOT(daily) 9 38/38 6 Calibr’n 0.95 0.95 0.95

Option trading [18,51] Inform’n 0.5043 0.2156 0.5043

Combi’n 0.4791 0.2048 0.4791

7 AOT(risk) 5 11/11 11.00 Calibr’n 0.8287 0.324 0.8287

Risk management [18,51] Inform’n 1.212 0.7449 1.212

Combi’n 1.003 0.2413 1.003

8 Grond5 7 38/10 10 Calibr’n 0.7 0.05 0.4

Groundwater transport [19,42] Inform’n 3.008 3.16 3.966

Combi’n 2.106 0.158 1.586

9 Tuddispr 11 58/36 36 Calibr’n 0.68 0.71 0.36

Dispersion panel TUD [8,9] Inform’n 0.827 0.715 1.532

Combi’n 0.562 0.508 0.552

10 Tnodispr 7 58/36 36 Calibr’n 0.69 0.32 0.53

Dispersion panel TNO [9] Inform’n 0.875 0.751 1.698

Combi’n 0.604 0.24 0.9002

11 Tuddepos 4 56/24 22 Calibr’n 0.45 0.34 0.45

Dry deposition [8,9] Inform’n 1.647 1.222 1.647

Combi’n 0.741 0.415 0.741
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Table 2 (continued )

Case Name/Reference No. of experts No. of variables/No.

of seeds

No. of effective

seeds

Perf. measure Perform

weights

Equal

weights

Best

expert

12 Acnexpts 7 43/10 10 Calibr’n 0.24 0.28 0.24

Acrylo-nitrile [2,11,20,46] Inform’n 3.186 1.511 3.186

Combi’n 0.764 0.423 0.764

13 Nh3expts 6 31/10 10 Calibr’n 0.11 0.28 0.06

Ammonia panel [2,11,20,46] Inform’n 1.672 1.075 2.627

Combi’n 0.184 0.301 0.158

14 So3expts 4 28/7 7 Calibr’n 0.14 0.14 0.02

Sulphur tri oxide [2,11,20,46] Inform’n 3.904 2.098 4.345

Combi’n 0.547 0.294 0.087

15 Waterpol 11 21/11 10 Calibr’n 0.35 0.35 0.16

Water pollution [21] Inform’n 1.875 1.385 2.06

Combi’n 0.6563 0.4847 0.3296

16 Eunrcdis 8 77/23 23 Calibr’n 0.9 0.15 0.13

Dispersion panel [22–24] Inform’n 1.087 0.862 1.242

Combi’n 0.9785 0.129 0.161

17 Eunrcdd 8 87/14 14 Calibr’n 0.52 0.001 0.52

Dry deposition [22–24] Inform’n 1.339 1.184 1.339

Combi’n 0.697 0.001 0.697

18 Eunrca_s 7 80/8 6 Calibr’n 0.75 0.55 0.75

Rad. transp. in animals [22,23,25] Inform’n 2.697 1.778 2.697

Combi’n 2.023 0.978 2.023

19 Euncrwd 7 50/19 19 Calibr’n 0.25 0.001 0.01

Wet deposition [22–24] Inform’n 0.451 0.726 0.593

Combi’n 0.113 0.00073 0.0059

20 Eunrcint 8 332/55 28 Calibr’n 0.85 0.11 0.73

Rad. internal dose [22,23,26] Inform’n 0.796 0.5598 0.822

Combi’n 0.677 0.062 0.6001

21 Eunrcear 9 489/15 15 Calibr’n 0.23 0.07 0.0001

Rad. early health effects [22,23,27,47] Inform’n 0.2156 0.1647 1.375

Combi’n 0.0496 0.01153 0.00014

22 Euncrsoi 4 244/31 31 Calibr’n 0.0001 0.0001 0.0001

Rad. trans. soil [22,23,25] Inform’n 1.024 0.973 2.376

Combi’n 0.0001 9.7E�05 0.0002

23 Gas95 15 106/28 17 Calibr’n 0.93 0.11 0.06

Environm. panel [28] Inform’n 1.628 1.274 2.411

Combi’n 1.514 0.14 0.145

24 Gas95 12 58/11 11 Calibr’n 0.16 0.06 0.16

Corrosion panel [28] Inform’n 2.762 1.304 2.762

Combi’n 0.4419 0.078 0.4419
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25 Mvblbarr 52/14 14 Calibr’n 0.43 0.22 0.04

Moveable barriers floodrisk [29] Inform’n 1.243 0.57 1.711

Combi’n 0.535 0.125 0.068

26 Realestr 5 45/31 31 Calibr’n 0.82 0.005 0.82

Real estate risk [30] Inform’n 0.7648 0.1735 0.7678

Combi’n 0.6296 0.0009 0.6296

27 Rivrchnl 6 14/8 8 Calibr’n 0.53 0.64 0.53

River channel [31,52] Inform’n 0.843 0.289 0.843

Combi’n 0.447 0.185 0.447

28 Mont1 11 13/8 8 Calibr’n 0.66 0.53 0.66

Montserrat volcano [32,33] Inform’n 1.906 0.8217 1.906

Combi’n 1.258 0.4355 1.258

29 Thrmbld 6 48/48 10 Calibr’n 0.3628 0.02485 0.3628

Thermal phys. blds [3,44] Inform’n 0.5527 0.1424 0.5527

Combi’n 0.2005 0.00354 0.2005

30 Dikring 17 87/47 47 Calibr’n 0.4 0.05 0.3

Dike ring failure [13,34,43,45] Inform’n 0.614 0.7537 0.6462

Combi’n 0.2456 0.03768 0.1938

31 Carma 12 98/10 10 Calibr’n 0.828 0.4735 0.828

Campylobacter NL [15] Inform’n 1.48 0.2038 1.48

Combi’n 1.226 0.09648 1.226

32 CARME-Greece 6 98/10 10 Calibr’n 0.4925 0.5503 0.4925

Campy Greece [35,49] Inform’n 0.8611 0.3428 0.8611

Combi’n 0.4241 0.1886 0.4241

33 Opriskbank 10 36/16 16 b 0.4301 0.338 0.1473

Oper. risk [36] Inform’n 0.7827 0.3219 0.903

Combi’n 0.3263 0.1088 0.133

34 infosec 13 32/10 10 Calibr’n 0.7071 0.7971 0.3135

Infosec [37] Inform’n 1.721 1.012 2.232

Combi’n 1.217 0.7159 0.6999

35 PM25 6 24/12 12 Calibr’n 0.578 0.6451 0.1195

PM25 Inform’n 0.807 0.542 1.486

Combi’n 0.466 0.3497 0.1776

36 Ladders 7 22/10 10 Calibr’n 0.2441 0.3005 0.00131

Falls ladders Inform’n 0.975 0.4638 1.801

Combi’n 0.238 0.1394 0.00236

37 Dams 11 74/11 11 Calibr’n 0.615 0.492 0.01088

Dams [38] Inform’n 1.248 0.6446 2.359

Combi’n 0.7677 0.3171 0.02566

38 MVOseeds 77 5/5 5 Calibr’n 0.6084 0.3946 0.6084

MVO seeds Montserrat follup [33,39,50] Inform’n 3.116 1.147 3.116

Combi’n 1.896 0.4525 1.896
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Table 2 (continued )

Case Name/Reference No. of experts No. of variables/No.

of seeds

No. of effective

seeds

Perf. measure Perform

weights

Equal

weights

Best

expert

39 Pilots 31 63/10 10 Calibr’n 0.4735 0.5503 0.1917

Pilots [32] Inform’n 0.6903 0.5946 1.403

Combi’n 0.3269 0.2777 0.2689

40 Sete cidades 19 27/10 10 Calibr’n 0.7901 0.1065 0.4281

Sete Cidades Inform’n 2.709 0.8409 2.474

Combi’n 2.141 0.1713 1.059

41 17 23/10 10 Calibr’n 0.7069 0.1135 0.04706

TeideMay_05 TeideMay_05 Inform’n 2.178 1.681 3.322

Combi’n 1.54 0.1907 0.1563

42 VesuvioPisa21Mar05 14 79/10 10 Calibr’n 0.6827 0.4735 0.4706

Vesuvio Inform’n 2.43 1.485 3.622

Combi’n 1.659 0.7029 0.1705

43 Volcrisk 45 30/10 10 Calibr’n 0.8283 0.1135 0.8283

Volcrisk Inform’n 0.7738 0.5571 0.7738

Combi’n 0.641 0.06322 0.641

44 Sars 9 20/10 10 Calibr’n 0.6827 0.4735 0.06083

Sars Inform’n 1.34 0.6017 2.31

Combi’n 0.9149 0.2849 0.1405

45 Guadeloupe 9 57/10 10 Calibr’n 0.4925 0.4735 0.0008

Guadeloupe Inform’n 2.158 1.176 3.649

Combi’n 1.063 0.5567 0.00029
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The study on radiological transport in soil (22) was
unusual in that all the experts and all decision makers
performed badly. Both the seed variables and the experts
were identified by the National Radiological Protection
Board, and re-analysis of the seed variables and expert data
did not yield any satisfactory explanation for the poor
performance. We concluded that this was simply due to the
small number of experts and bad luck.

The motivation for performance-based weighting above
equal weighting speaks for itself from there data. Some-
times the difference is marginal but sometimes it is quite
significant. Most often the equal weight DM is slightly less
well-calibrated and significantly less informative, but
sometimes the calibration of the equal weight DM is quite
poor (17, 26). Finally we remark that the experts over-

whelmingly have supported the idea of performance
measurement. This sometimes comes as a surprise for
people from the social sciences, but not for natural
scientists. The essential point is that the performance
measures are objective and fully transparent. It is
impossible to tweak these measures for extra-scientific
expediency.

4. Seed variables, variables of interest, and robustness

A recurring question is the degree to which performance
on seed variables predicts performance on the variables of
interest. Forecasting techniques always do better on data
used to initialize the models than on fresh data. Might that
not be the case here as well? Obviously, we have recourse to
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expert judgment because we cannot observe the variables of
interest, so this question is likely to be with us for some
time. Experts’ information scores can be computed for the
variables of interest and compared with the seed variables
(see below). More difficult is the question whether
calibration differences in experts and DMs ‘‘persist’’
outside the set of seed variables. Questions related to
this are:

1. Are the differences in experts’ calibration scores due to
chance fluctuations?

2. Is an expert’s ability to give informative and well-
calibrated assessments persistent in time, dependent on
training, seniority, or related to other psycho-social
variables, etc.?

There has been much published and speculated on these
questions, and the issue cannot be reviewed, let alone
resolved here, see however [40]. If differences in experts’
performance did not persist beyond the seed variables, then
that would certainly cast a long shadow over performance-
based combination. If, on the other hand, there are real
and reasonably persistent differences in expert perfor-
mance, then it is not implausible that a performance-based

combination could systematically do ‘‘better than aver-
age’’. It is hoped that the TU Delft data base can
contribute to a further analysis of these issues.
Closely related is the question of robustness: to what

extent would the results change if different experts or
different seed variables had been used. This last question
can be addressed, if not laid to rest, by removing seed
variables and experts one at a time and re-computing the
decision maker. We discuss a few studies to illustrate good
and poor choices of seed variables and, where possible, to
compare with variables of interest.

4.1. Real estate risk

In this study the seed variables were prime office rent
indices for large Dutch cities, published quarterly (vari-
ables 1 through 16). The variables of interest were rents of
the actual properties managed by the investment firm.
After one year, the realized rents were retrieved and
compared with the predictions. The results for the equal
and performance DM are shown in Fig. 3.
The robustness analyses in this case are also revealing.

First we examine the five experts’ (3 portfolio managers
and 2 risk analysts) and DM’s scores, and the relative
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Table 3

Real estate risk, relative information of the five experts to the equal weight combination for all variables and for variables with realizations

Id Calibr. Mean rel. inf total Mean rel. inf seed vbls Numb real Unnormalized weight Rel. inf to eq. wgt DM

All vbls Seed vbls

Portfol1 0.3303 0.7932 0.8572 16 0.2832 0.5004 0.6241

Portfol2 0.1473 1.02 0.9554 16 0 0.7764 0.6545

Portfol3 0.02012 0.2492 0.1556 16 0 0.3633 0.2931

Riskan1 6.06E�05 1.334 1.536 16 0 0.9575 1.21

Riskan2 0.004167 0.5848 0.6126 16 0 0.4579 0.4402

Perf DM 0.3303 0.7932 0.8572 16 0.2832

Equal DM 0.05608 0.1853 0.179 16 0.01004
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information of each of the experts to the equal weight
combination of their distributions (Table 3). This gives a
benchmark for how well the experts agree among
themselves. The experts’ densities are constructed relative
to a background measure, so these comparisons also
depend on the background measure. The relatively weak
calibration performance of the equal weight DM is due to
the fact that only 4 of the 16 seed variables were above the
median assessment.2 At the same time, the equal DM’s
medians are actually a bit closer to the realizations.
Distance between median and realization is an example
of a scoring variable which is not taken into account by the
performance-based DM.3 Note also that the pattern of
informativeness on seed variables is comparable to that on
all variables; portfolio manager 3 is least informative and
risk analyst 1 is most informative. Note also that low

informativeness does not translate automatically into
better calibration.
Next we remove the 16 seed variables one at a time and

re-compute the performance-based DM (Table 4).
The scores do not change much, but the relative

information of the ‘‘perturbed DM’’ with respect to the
original DM is rather large for 8 of the variables,
comparable to the differences between the experts them-
selves. The explanation can be found by examining the
robustness on experts (Table 5).
If we remove portfolio manager 1, the effect on the

DM is large, comparable to the largest relative information
between a single expert and the equal weight combination.
This is not surprising as portfolio manager 1 coincides
with the performance-based DM. Interestingly, we get
a significant change by removing portfolio manager 2.
This is because the combination of portfolio managers 1
and 3 would give a higher score than portfolio manager 1
alone, or 1 and 2 alone. We should have to give portfolio
manager 2 weight zero and portfolio manager 3 positive
weight, even though the latter’s calibration score is
worse than that of the former. The proper scoring
rule constraint prevents this from happening. This

ARTICLE IN PRESS

Table 4

Real estate risk; robustness analysis on seed variables

Excluded item Rel. info/b total Rel. info/b seeds Calibr. Rel. info/orig DM total Rel. info/orig DM seeds

Q1Rent Amster. 0.5875 0.6234 0.3578 0.3539 0.37

Q2Rent Amster. 0.5974 0.6341 0.3578 0.4402 0.4421

Q3Rent Amster. 0.7921 0.8583 0.5435 0 0

Q4Rent Amster. 0.7859 0.8401 0.5435 0 0

Q1Rent Rotter. 0.5871 0.6047 0.3578 0.4438 0.4565

Q2Rent Rotter. 0.5857 0.6004 0.3578 0.4491 0.4708

Q3Rent Rotter. 0.8009 0.8841 0.387 0 0

Q4Rent Rotter. 0.5872 0.6222 0.3578 0.3505 0.3575

Q1Rent Denhaag 0.7886 0.8478 0.387 0 0

Q2Rent Denhaag 0.7861 0.8406 0.387 0 0

Q3Rent Denhaag 0.784 0.8345 0.387 0 0

Q4Rent DenHaag 0.7845 0.8358 0.387 0 0

Q1Rent Utrecht 0.6034 0.6396 0.288 0.4589 0.4353

Q2Rent Utrecht 0.6069 0.6517 0.288 0.4663 0.4644

Q3Rent Utrecht 0.6013 0.6356 0.288 0.4656 0.464

Q4Rent Utrecht 0.794 0.8638 0.387 0 0

Original Perf DM 0.7932 0.8572 0.3303

Table 5

Real estate risk; robustness analysis on experts

Excluded expert Rel. info/b total Rel. info/b seeds Calibr. Rel. info/orig DM total Rel. info/orig DM seeds

Portfol1 1.006 0.9484 0.1473 1.144 1.058

Portfol2 0.637 0.6899 0.7377 0.2916 0.3328

Portfol3 0.5297 0.4825 0.3303 0 0

Riskan1 0.7921 0.8572 0.3303 0 0

Riskan2 0.7079 0.8195 0.3303 0 0

Original Perf DM 0.7932 0.8572 0.3303 0 0

2The values cited in Table 3 are based on 31 seed variables, using also

the variables of interest which became available a year later.
3The reason is that distance is scale dependent. In this case the scales of

all variables are the same, so such a scoring variable could be used. Of

course such a rule may not be proper.
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underscores the difference noted in Section 2 between
optimization under the proper scoring rule constraint, and
unconstrained optimization. In the latter case a better
calibrated expert can have less weight than a poorly
calibrated expert. The non-robustness in Table 4 is caused
by the fact that the removal of some seed variables cause
the calibration of portfolio manager 2 to dip below that of
portfolio manager 3.

4.2. AEX

In this case, the seed variables were the variables
of interest, namely the opening price of the Amsterdam
Stock Exchange, as estimated at closing the previous day.
Note that some of the experts anticipated a large drop on
the day corresponding to variable 20. This was not reflected
in the performance-based DM, nor in the realization.
Other than that, the pattern across seed variables does not
look erratic. In spite of the excellent performance of the
experts in this case, they were not able to predict the
opening price better than the ‘‘historical average predic-
tor’’. In other words, any information the experts might
have had at closing time was already reflected in the closing
price (Fig. 4).

4.3. Dry deposition

The seed variables were measured deposition velocities,
though not configured according to the requirements of the
study (per species, windspeed, particle diameter, and
surface) (Fig. 5).
Here again, the poor statistical performance of the equal

weight DM is due to the fact that all but one of the 14 seed
variables fall above the median.

4.4. Dike ring

The seed variables were ratio of predicted versus
measured water levels at different, at water levels around
2m above the baseline. Variables of interest were the same,
but at water levels above 3.5m above the baseline. In this
case we had several realizations of this ratio from each of
several measuring stations. That explains the step pattern
of the quantiles; these are actually the same assessment
with several realizations (Fig. 6).
Although all 47 seed variables were used in the analysis,

for purposes of comparing expert performance with that
in other studies, the effective number of seeds was reduced
to 10. This accounts for dependence in the experts’
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assessments and corresponds to the number most often
used for such comparisons.

4.5. Space debris

The seed variables were numbers of tracked space debris
particles injected into orbit between the years 1961 and
1986. Variables of interest characterized the debris flux for
10 years into the future. It turned out that the experts did
not possess year-by-year knowledge of the debris particles,
and gave generic assessments assuming that the number
was growing, where in fact the number appears to be quite
random. This is a case in which the choice of seed variables
was unsuccessful; the experts did not really have relevant
knowledge to apply to the task (Fig. 7).4

5. Lessons learned from elicitations

A detailed description of the design of an expert
judgment study is given in [34]. Suffice to say here that a
typical study involves a dry run with one expert to finalize
the elicitation questions. This is followed by a plenary
meeting of all experts in which the issues are discussed, the
study design is explained, and a short elicitation exercise is
done. This involves a small number of seed variables,
typically 5. Experts are shown how the scoring and
combining works. Afterwards, the experts are elicited
individually. An elicitation session should not exceed half
day. Fatigue sets in after 2 h.
When experts are dispersed it may be difficult and

expensive to bring them together. In such cases the training
is given to each expert in abbreviated form. The EU-
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4In this early study, the effective number of seed variables was chosen to

optimize the DM’s performance, a procedure which is no longer followed.

The DOS version of the software used a table of the chi-square

distribution and had problems with very low calibration scores. These

(footnote continued)

problems came to the fore when the number of seed variables is high, as in

this case.
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USNRC studies made the most intensive investment in
training. In general, it is not advisable to configure the
exercise such that the presence of all experts at one time
and place is essential to the study, as this makes the study
vulnerable to last minute disruptions.

The following are some practical guidelines for respond-
ing to typical comments:

From an expert: I don’t know that
Response: No one knows, if someone knew we would not

need to do an expert judgment exercise. We are tying to
capture your uncertainty about this variable. If you are
very uncertain then you should choose very wide con-
fidence bounds.

From an expert: I can’t assess that unless you give me
more information.

Response: The information given corresponds with
the assumptions of the study. We are trying to get
your uncertainty conditional on the assumptions of the
study. If you prefer to think of uncertainty conditional on
other factors, then you must try to unconditionalize and
fold the uncertainty over these other factors into your
assessment.

From an expert: I am not the best expert for that.
Response: We don’t know who are the best experts.

Sometimes the people with the most detailed knowledge are
not the best at quantifying their uncertainty.

From an expert: Does that answer look OK?
Response: You are the expert, not me.
From the problem owner: So you are going to score these

experts like school children?
Response: If this is not a serious matter for you, then

forget it. If it is serious, then we must take the
quantification of uncertainty seriously. Without scoring
we can never validate our experts or the combination of
their assessments.

From the problem owner: The experts will never stand for
it.

Response: We’ve done it many times, the experts actually
like it.

From the problem owner: Expert number 4 gave crazy
assessments, who was that guy?

Response: You are paying for the study, you own the
data, and if you really want to know I will tell you. But you
don’t need to know, and knowing will not make things
easier for you. Reflect first whether you really want to
know this.

From the problem owner: How can I give an expert
weight zero?

Response: Zero weight does not mean zero value. It
simply means that this expert’s knowledge was already
contributed by other experts and adding this expert would
only add a bit of noise. The value of unweighted experts is
seen in the robustness of our answers against loss of
experts. Everyone understands this when it is properly
explained.

From the problem owner: How can I give weight one to a
single expert?

Response: By giving all the others weight zero, see
previous response.

From the problem owner: I prefer to use the equal weight
combination.

Response: So long as the calibration of the equal weight
combination is acceptable, there is no scientific objection to
doing this. Our job as analyst is to indicate the best
combination, according to the performance criteria, and to
say what other combinations are scientifically acceptable.

6. Conclusion

Given the body of experience with structured expert
judgment, the scientific approach to uncertainty quantifi-
cation is well established. This does not mean the
discussion on expert judgment method is closed.
First of all, we may note that a full expert judgment

study is not cheap. Most of the studies mentioned above
involved 1–3 man months. This cost could be reduced
somewhat if we did not need to develop seed variables.
However, simply using equal weights does not seem to be a
convincing alternative. Other methods of measuring and
verifying performance would be welcome, especially if they
are less resource-intensive.
The classical model is based on the two performance

measures, calibration and information in conjunction
with the theory of proper scoring rules. It satisfies
necessary conditions for rational consensus, but is not
derived from those conditions. Other weighting schemes
could surely be developed with do as well or better in this
regard, and other performance measures could be proposed
and explored.
Once we acknowledge that our models must by

quantified with uncertainty distributions, rather than
‘nominal values’ of undetermined pedigree, many new
challenges confront modelers, analysts, and decision
makers.
Experts can quantify their uncertainty about potentially

observable phenomena with which they have some
familiarity. The requirements of the study at hand may
go beyond that. For example, in quantifying the uncer-
tainty of models for transport of radiation through soils,
plants, and animals, it emerged that the institutes which
built and maintained these models could not supply any
experts who were able to quantify uncertainty on the
transfer coefficients in these models. Experts could quantify
uncertainty with regard to quantities which can be
expressed as functions of the transport models themselves.
Processing data of this sort required development of
sophisticated techniques of probabilistic inversion [19,41].
Perhaps the greatest outstanding problems concern the

elicitation, representation, and computation with depen-
dence. Everyone knows that the ubiquitous assumption of
independence in uncertainty analysis is usually wrong, and
sometimes seriously wrong. This is a subject that must
receive more attention in the future [37].
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