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Abstract

Using expert judgment data from the TU Delft’s expert judgment database, we compare the performance of different weighting

schemes, namely equal weighting, performance-based weighting from the classical model [Cooke RM. Experts in uncertainty. Oxford:

Oxford University Press; 1991.], social network (SN) weighting and likelihood weighting. The picture that emerges with regard to SN

weights is rather mixed. SN theory does not provide an alternative to performance-based combination of expert judgments, since the

statistical accuracy of the SN decision maker is sometimes unacceptably low. On the other hand, it does outperform equal weighting in

the majority of cases. The results here, though not overwhelmingly positive, do nonetheless motivate further research into social

interaction methods for nominating and weighting experts. Indeed, a full expert judgment study with performance measurement requires

an investment in time and effort, with a view to securing external validation. If high confidence in a comparable level of validation can be

obtained by less intensive methods, this would be very welcome, and would facilitate the application of structured expert judgment in

situations where the resources for a full study are not available. Likelihood weights are just as resource intensive as performance-based

weights, and the evidence presented here suggests that they are inferior to performance-based weights with regard to those scoring

variables which are optimized in performance weights (calibration and information). Perhaps surprisingly, they are also inferior with

regard to likelihood. Their use is further discouraged by the fact that they constitute a strongly improper scoring rule.

r 2007 Elsevier Ltd. All rights reserved.

1. Introduction

Using expert judgment data from the TU Delft’s expert
judgment database, we compare the performance of
different weighting schemes, namely equal weighting,
performance-based weighting from the classical model [1],
social network (SN) weighting and likelihood weighting.

The classical model and experience with applications to
date is described in Cooke and Goossens [2]. Over the
range of applications, the classical model outperforms
equal weighting and best experts. However, two issues with
this model emerge from that discussion, namely:

(i) The classical model is more resource intensive than
simple equal weighting; is it possible to capture the
advantages of differential expert weighting in a less
intensive manner?

(ii) The classical model satisfies necessary conditions for
rational consensus, but is not derived from first
principles, and other weighting schemes may perform
as well or better. Can other weighting schemes be
implemented and evaluated using the data generated
with the classical model?

SN theory was proposed as an expert rating scheme that
might address issue (i) above. SN theory has been
implemented using weights that are based on experts’
citations. Implementing these weights requires panels of
experts who publish extensively. Suitable data for compar-
ing SN weights and performance-based weights comes
from a large uncertainty analysis, the European Union and
US Nuclear Regulatory Commission (EU-USNRC) on
accident consequence models for nuclear power plants.
This large study involved 10 panels of internationally
reputed experts, of which seven involved seed or calibra-
tion variables: variables for which the true values are
known post hoc. The seed variables form the basis for
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performance-based combinations of expert judgments and
also afford the possibility of comparing various combina-
tion schemes, or ‘‘decision makers’’ (DMs).

With regard to (ii), several suggestions have been made
in recent literature, which may be tested using the classical
model’s data repository. One of these involves so-called
‘‘likelihood weights’’ [3], in which an expert’s likelihood
weight is proportional to the probability which s/he assigns
to the observed outcomes. While these are not less resource
intensive, they devolve from different lines of reasoning
and are therefore of interest. The classical model data
repository involves expert elicitations involving either five
(five studies) or three quantiles (forty studies). The
likelihood weights are most amenable for cases where the
experts assessed five quantiles, and this motivates restrict-
ing the comparison to the five studies in which experts
assessed five quantiles.

The classical model is reviewed in some mathematic detail
in Cooke and Goossens [2]. For the purposes of this
comparison, a very brief synopsis is presented in Section 1.
The second section reviews the EU-USNRC data used for
this comparison. The third section outlines the application
of SN theory to derive expert weights, and the fourth section
presents the comparative results. Section 5 discusses like-
lihood weights and Section 6 presents results with likelihood
weights. A final conclusion draws conclusions. An appendix
contains more detailed output from each panel showing the
individual expert scores and the SN weights.

The overall conclusion of these comparisons is that SN
and likelihood weights exhibit a performance in terms of
calibration (p-value) and information that is intermediate
between the performance-based weights of the classical
model and equal weighting. The larger conclusion is that
extensive empirical data on expert assessments with
observations of assessed quantities is available to test
expert combination schemes. In Kallen and Cooke [4] this
data was used to test the copula method of combining
experts [5]. This data is available to researchers upon
request from the first author.

2. Structured expert judgment

The goal of applying structured expert judgment, as
understood here, is to enhance rational consensus. Note
that this is not the same as maximizing the expected utility
of a rational individual. Recalling that a group of rational
agents is not itself a rational agent, rational consensus is
not concerned with changing the beliefs of individuals but
rather with finding a representation of uncertainty to be
used in a group decision context.

Necessary conditions for achieving this goal are laid
down as methodological principles (see [1]):

� Scrutability/accountability: All data, including experts’
names and assessments, and all processing tools are
open to peer review and results must be reproducible by
competent reviewers.

� Empirical control: Quantitative expert assessments are
subjected to empirical quality controls.
� Neutrality: The method for combining/evaluating expert

opinion should encourage experts to state their true
opinions, and must not bias results.
� Fairness: Experts are not pre-judged, prior to processing

the results of their assessments.

We claim that these are necessary conditions for rational
consensus, we do not claim that they are sufficient as well.
Hence, a rational subject could accept these and yet reject a
method, which implements them. In such a case, however,
s/he incurs a burden of proof to formulate additional
conditions for rational consensus which the method
putatively violates.

The classical model: The above principles have been
operationalized in the so-called classical model, a perfor-
mance-based linear pooling or weighted averaging model.
The weights are derived from experts’ calibration and
information scores, as measured on calibration or seed
variables. These are variables from the experts’ field whose
values become known to the experts post hoc. Seed
variables serve a threefold purpose:

(i) to quantify experts’ performance as subjective prob-
ability assessors.

(ii) to enable performance-optimized combinations of
expert distributions, and

(iii) to evaluate and hopefully validate the combination of
expert judgments.

The name ‘‘classical model’’ derives from an analogy
between calibration measurement and classical statistical
hypothesis testing. It contrasts with various Bayesian
models. In the classical model calibration and information
are combined to yield an overall or combined score with
the following properties:

1. Calibration dominates over information, information
serves to modulate between more or less equally well
calibrated experts.

2. The score is a long run proper scoring rule, that is, an
expert achieves his/her maximal expected score, in the
long run, by and only by stating his/her true beliefs.
Hence, the weighting scheme, regarded as a reward
structure, does not bias the experts to give assessments
at variance with their real beliefs, in compliance with the
principle of neutrality.

3. Calibration is scored as ‘‘statistical likelihood with a cut-
off’’. An expert is associated with a statistical hypoth-
esis, and the seed variables enable us to measure the
degree to which that hypothesis is supported by
observed data. If this likelihood score is below a certain
cut-off point, the expert is unweighted. The use of a cut-
off is driven by property (2) above. Whereas the theory
of proper scoring rules says that there must be such a
cut-off, it does not say what value the cut-off should be.
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4. The cut-off value for (un)weighting experts is deter-
mined by optimizing the calibration and information
performance of the combination.

A fundamental assumption of the classical model (as well
as Bayesian models) is that the future performance of
experts can be judged on the basis of past performance, as
reflected in the seed variables. Seed variables enable
empirical control of any combination schemes, not just
those that optimize performance on seed variables. There-
fore, choosing good seed variables is of general interest, see
Cooke et al. [6] for background and detail.

3. EU-USNRC expert judgment data

The expert panels in the EU-USNRC study are
summarized in Table 1 below. The panel for deposited
material did not involve seed variables, mainly due to time
and budget constraints. The countermeasure panel was
deemed too location specific to support the generation of
plausible seed variables. The late health panel involved seed
variables that become known with the latest analysis of
Hiroshima and Nagasaki survivor data. This data has
recently become available, but its analysis has been
complicated by an unanticipated change of protocol in
the data format and is still ongoing. Hence, there are seven
panels for which seed variables are presently available.

Experts were nominated for these panels by a semi
formal procedure taking account of:

� scientific publications;
� recommendations of a wide class of experts;
� experience with previous studies.

The expert judgment protocol followed in this application
entails that the names of experts are published together
with their rationales, but the names are not associated with

either rationales or assessments in the open literature. This
association is preserved to enable a competent peer review
if the problem owner so desires. These names were used in
determining the SN weights, but the names are not
associated with assessments or scores in this study.
References are given where the expert names and rationales
can be retrieved.
Table 2 shows the number of variables (questions)

elicited from the experts in each panel, and the number of
seed variables.

4. Social network theory

The central idea of SN theory is that relations between
agents in a network of social interactions are more
indicative of importance/influence/value than attributes of
individual agents [15]. In the scientific domain, interaction,
or connectedness, may be interpreted in many ways, for
example:

1. telephone and/or email traffic with colleagues;
2. visits, seminars, publications;
3. co-authorship;
4. scientific citations.

To implement SN theory as a method for determining
weights for combining expert judgments, we require an
index of interaction, which is meaningful and easily
measured. From this point of view, scientific citations
possess clear advantages.
Citation is nowadays widely recognized as the primary

instrument for estimating the impact of scholarly work and
is therefore chosen as our target relation in the experts’
network. The weights of the experts are determined by
citations between the experts themselves, in the following
manner.

ARTICLE IN PRESS

Table 1

Expert panels of the EC/USNRC joint project, including countermeasuresa

Expert panel Number of expertsb Year Reference

Atmospheric dispersion 8 1993 Harper et al. [7]

Cooke et al. [6]

Deposition (wet and dry) 8 1993 Harper et al. [7]

Cooke et al. [6]

Behaviour of deposited material and its related doses 10 1995 Goossens et al. [8]

Foodchain on animal transfer and behaviour 7 1995 Brown et al. [9]

Foodchain on plant/soil transfer and processes 4 1995 Brown et al. [9]

Internal dosimetry 6 1996 Goossens et al. [10]

Early health effects 7 1996 Haskin et al. [11]

Late health effects 10 1996 Little et al. [12]

Countermeasures 9 2000 Goossens et al. [13]

aThe countermeasures panel was not part of the USNRC/CEC Project, but part of the CEC follow-up project on uncertainty analysis of the COSYMA

software package.
bThe general goal of the panels was to have half of the experts coming from Europe and the other half coming from the USA. This has not been

achieved in all panels for various reasons.

R.M. Cooke et al. / Reliability Engineering and System Safety 93 (2008) 745–756 747
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Citation searches are carried out through Thomson ISI
Web of Knowledge [v3.0].

The rules we follow when performing the searches are:

1. The weight of an expert is determined by the number of
papers by the other experts in the panel, which cite him.
If an expert in one paper cites 2 or more papers from
another expert, we consider it as 1 citation. Thus we do
not need look into every paper from an expert to find his
weights.

2. If two experts co-author a paper and cite a third expert,
this paper is counted twice.

3. Self-citation is excluded. In most cases the number of
self-citations dominates citation from others in the
expert panel.

4. We do not distinguish the order (e.g. first author, second
author, etc.) of the author.

Of course there are some problems working with the
citation index:

1. Names may be misspelled, or initials may be incomplete.
2. The same names may belong to different scientists, esp.

for common names like ‘‘J. Brown’’, ‘‘P. Jacob’’.

One advantage of considering citation only between
experts in the panel is that it largely removes these
otherwise formidable problems.

One objection to citation-based weights is that it
naturally favours older scientists, as they have more
published work than scientists at the beginning of their
careers. It would be possible to address this by counting
only citations from the last N years. Of course, the choice
of any particular N may drive the outcome and may be
difficult to defend. We might consider a discounting
procedure, but this would merely shift the discussion from
the choice of N to the choice of a discount rate.

Simply counting the number of times an expert is cited
measures his connectedness to the panel as a whole, it does
not measure interactions between two given experts.
Individual interactions between experts might also contain

interesting information. A challenge for the future might be
to find a way to integrate such information in the
derivation of expert weights. The present implementation
must be viewed as a first attempt to apply SN theory to the
problem of expert combination.

5. Results

The results of scoring the combined experts (decision
makers, DMs) in the seven panels with seed variables are
shown in Table 3 below. It will be noted that in the soil/
plant panel, there was not good performance on any of the
DMs. This situation is unique in the annals of expert
judgment, and is included here to demonstrate that good
performance is not a foregone conclusion. In this case, the
conclusion was that the number of experts was too small to
achieve a satisfactory performance for the DM. The
number beneath the panel name is the number of citations
on which the analysis is based.
The performance-based DM (either global or item

weights depending on the study) outperforms the others
in both statistical accuracy (p-value) and relative informa-
tion with respect to the background measure (Rel. inf). The
SN DM outperforms the equal weight DM on four of the
seven panels. In only the early health panel is the SN DM
significantly less accurate statistically than the equal weight
DM. Figs. 1 and 2 show the same information graphically.
Fig. 3 compares the ranks of the SN weights and the

combined performance scores. The soil panel has been
excluded owing to the poor performance and small number
of experts. We see that in two cases (dispersion, animal) the
ranks are in good agreement. In early health they are anti-
correlated, and the remaining cases are indeterminate.
For four panels, we investigated the situation when the

experts who weighted 0 according to citations are removed
from the expert pool. This concerns selection of experts
before any elicitation. The result given in Table 4 does not
encourage us to conduct elicitation only among those
experts with nonzero SN weights. From the case early
health effects we see it might be very dangerous to do so.

ARTICLE IN PRESS

Table 2

Numbers of questions and seed variables questions of the expert panels of the EC/USNRC joint project, including countermeasures

Expert panel Number of questions Number of seeds Remarks

Atmospheric dispersion 77 23

Deposition (wet and dry) 87 19 14 for dry depos. 5 for wet depos.

Behaviour of deposited material and its related doses 505 0 No seed questions

Foodchain on animal transfer and behavioura 80 8

Foodchain on plant/soil transfer and processes 244 31

Internal dosimetry 332 55

Early health effects 489 15

Late health effects 111 8 Post hoc values

Countermeasures 111 0 Country specific

aSince the practices of farming with respect to animals is different in Europe and in the USA the questionnaires were adapted for European and

American experts (see Table 7).

R.M. Cooke et al. / Reliability Engineering and System Safety 93 (2008) 745–756748
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6. Likelihood weights

A natural suggestion for weighting experts on the basis
of observed outcomes is simply to assign a weight
proportional to the assessed probability of the observed

outcomes. These are termed ‘‘likelihood weights’’. A
recent suggestion of likelihood weights for Bayesian

belief nets is put forward in Stiber et al. [3]. Unlike
SN weights, likelihood weights require seed variables,
and in this sense they are no less resource intensive than
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Fig. 2. p-values and information for social network weights, performance-based weights, and equal weights.

Table 3

Results for social network weights, performance-based weights, and equal weights

p-value Rel. inf # seeds Combined score

Early health SocNet 0.002176 0.2181 15 0.000475

130 Perf 0.3889 0.4345 15 0.169

Equal 0.09153 0.167 15 0.01528

Internal dose SocNet 0.07101 0.5997 55 0.04259

180 Perf 0.8318 0.7745 55 0.6442

Equal 0.1125 0.5164 55 0.05812

Soil/plant SocNet 3.08E�07 0.2489 31 7.68E�08

78 Perf 4.22E�06 0.3317 31 1.40E�06

Equal 3.08E�07 0.2117 31 6.53E�08

Animal SocNet 0.557 0.5123 8 0.2854

202 Perf 0.7565 1.11 8 0.8396

Equal 0.557 0.3573 8 0.199

Wet deposition SocNet 0.1245 0.7048 19 0.08913

37 Perf 0.2556 0.4024 19 0.1029

Equal 0.003239 0.6491 19 0.002103

Dry deposition SocNet 0.3992 0.1516 14 0.06051

37 Perf 0.659 0.1789 14 0.1179

Equal 0.00169 0.1629 14 0.000275

Dispersion SocNet 0.355 0.3483 23 0.1236

62 Perf 0.8592 0.444 23 0.3815

Equal 0.2593 0.2467 23 0.06397

R.M. Cooke et al. / Reliability Engineering and System Safety 93 (2008) 745–756 749
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the classical model’s performance-based weights. If like-
lihood weights delivered good performance with fewer

seed variables, this would be a significant advantage.
Such a claim has not been advanced, though it could be
studied empirically with the methods used in the following
section.

Likelihood weights constitute an improper scoring rule,
sometimes called the ‘‘direct rule’’ [1]. Indeed, let X be an
uncertain quantity with continuous range, and suppose an
expert believes density function g(x), and is asked to state
an assessed density f(x). If value x is observed, the expert
receives score K � f(x) for some constant K. The expert’s
expected score is thus

Expected score ¼ K

Z
f ðxÞgðxÞdx.

If the expert chooses f to maxmize his expected score he
will evidently choose

f ðxÞ ¼ dðx� � xÞ,

where x*
¼ argmax g(x) and d(x) is the Dirac function

assigning unit mass to the point x. Hence, if experts are
rewarded in a manner proportional to the likelihood of an
observed outcome, an expert who wishes to maximize his/her
expected reward is encouraged to give extremely over-
confident assessments. In the same vein, one can question
whether likelihood scores are reasonable measures of
performance. An expert who is poorly calibrated and
uninformative may nonetheless have a higher likelihood
score than a well-calibrated informative expert. The AOT-
AEX case discussed in the next section provides an example.
When several outcomes are observed, we interpret the

likelihood of the joint observation as the product of the
likelihoods of the individual observations. We thus assume
that each expert regards the variables as independent. In
cases where no information on dependence is assessed,
there is no practical alternative but to proceed with the
independence assumption.
In spite of these features, the likelihood weights continue

to have an appeal, perhaps owing to the salient role of
likelihood in Bayesian and classical statistics. Without
contesting the proper role of theoretical disquitions, the
present study focuses on performance with real expert data.

7. Results with likelihood weights

The expert data from the TU Delft database consists of
quantile assessments from experts. We may implement
likelihood weights in two ways, according to how we define
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Table 4

Effects of removing experts with zero SN weight on calibration scores

Number of

experts removed

SN PERF Equal

Early health

effects

0 0.002176 0.3889 0.09153

1 0.02116 0.03462

Dispersion

0 0.355 0.8592 0.2593

3 0.8592 0.1588

Dry deposition 0 0.3565 0.659 0.00169

3 0.659 0.00169

Wet deposition 0 0.1245 0.2556 0.003239

3 0.1701 0.05047
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the likelihood of the observed values. For each expert, we
may either (A) define the likelihood of the observation as the
probability of the interquantile interval into which the
observation falls, or (B) using the minimal information
density fit to the expert’s quantiles, define the likelihood as
the density at the observed value. To illustrate the difference
between these two alternatives, suppose the value 15 is
observed. Suppose expert 1 assess his 5% quantile at 10 and
his 25% quantile at 20, while expert 2 assesses his 5%
quantile at 10 and his 25% quantile at 50. No intermediate
quantiles are assessed. On alternative (A) both experts assign
the same likelihood to the observation, namely 0.2. Using a
uniform background measure with alternative (B), the first
expert assigns a likelihood of 0.2/10 ¼ 0.02; while the
second expert assigns likelihood 0.2/40 ¼ 0.005.

Alternative (B) is more in keeping with the spirit of
likelihood weights, though it requires the uniform back-
ground measure. In the TU Delft data, this measure is
supplied by the analyst and not assessed by experts.
Alternative (A) has been analyzed in Van Rooij [14]; which
echoes the results found below. We proceed here with
alternative (B). In either case, it is preferable if the experts
assess a large number of quantiles. In most TU Delft
studies, the experts assessed the 5%, 50% and 95%
quantiles; however, in five studies the 25% and 75%
quantiles were also assessed. These are (references to
number in Table 2 of this volume):

1. Amsterdam Option Traders AEX (AOT-AEX), next
day opening price for the AEX index [16].

2. Amsterdam Option Traders, risk analysts (AOT-Risk)
[16].

3. DSM ground water transport [17].
4. Dike ring risk [18,19].
5. Health effects of fine particulate matter PM2.5 [20].

In all cases the uniform background measure was used.
Table 5 below compares the DMs based on likelihood
weights, with the global (classical model) and equal
weighting. In each case the calibration, average relative
information and combined score (product of calibration
and information scores) are shown. The full data including
the expert weights are given in the Appendix. To enable the
comparison with likelihood weights, the calculations are
sometimes done differently than in Table 2 of Cooke and
Goossens [2].1

In two of the five studies (AEX, DSM) the calibration of
the likelihood weights is marginally acceptable. A similar
remark holds for the equal weights (for DSM, Dike ring).
Fig. 4 below shows the calibration or p-values and

information scores in graphical format. The p-values are
shown on the left vertical axis, the average relative informa-
tion with respect to the background measure on the right axis.
Although there is no theorem that global weights outper-

form equal weights in calibration and information, global
DM does optimize for the product of calibration and
information, and in practice almost always performs better.
The same remark leads us to suspect better performance than
likelihood weights, and this is indeed borne out in Fig. 5. It is
interesting to compare these three DMs with regard to their
likelihood scores. For each DM, we compute the likelihood
of the realizations and, for graphical representation, normal-
ize so that the three likelihood scores sum to one. Fig. 5
compares these likelihood scores for the three DMs, and also
shows the combined score from the classical model (calibra-
tion � information).
It is notable that the DM formed using likelihood

weights does not generally have a higher likelihood score
than the other DMs. This is the case in only AOT-AEX
and DSM ground water, the two studies in which the
likelihood weight DM’s calibration is borderline.
The overall picture is as follows. In terms of calibration

and information, likelihood weights’ performance is inter-
mediate between that of the global and the equal weight
DM. In terms of likelihood scores, the performance of
likelihood weights is somewhat erratic.

8. Conclusions

The picture that emerges with regard to SN weights is
rather mixed. Clearly, SN theory does not provide an
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Table 5

Comparison of likelihood, performance based and equal weighting

Study Expert Calibr’n

(p-value)

Ave. rel.

inf.

#

seeds

Combined

score

AOT L’hood 0.04488 0.3933 34 0.1842

AEX Global 0.9652 0.5224 34 0.5042

equal 0.9769 0.2075 34 0.2027

AOT L’hood 0.8597 1.047 11 0.9005

Risk Global 0.8272 1.212 11 1.003

equal 0.324 0.7449 11 0.2413

DSM L’hood 0.08694 3.419 10 0.2972

grndwater Global 0.7562 2.787 10 2.107

equal 0.05891 2.895 10 0.1706

Dikering L’hood 0.1322 0.6067 47 0.0802

Global 0.3955 0.6462 47 0.2555

equal 0.06979 0.7537 47 0.0526

PM2.5 L’hood 0.645 0.2132 12 0.1375

Global 0.578 0.8065 12 0.4661

equal 0.645 0.5421 12 0.3497

1The calibration scores in Table 5 are computed with all the seed items

and without reducing the effective number of seeds [2]. The reason for this

is that there is no straightforward way to perform this reduction with

likelihood weights. AOT-AEX involved 38 seed variables, and 9 experts,

but 4 of the experts assessed less than 34 of the seed variables. These 4

experts are excluded in this comparison. Dike ring involved 47 seed

variables. In cases with a large number of seeds, the calibration scores of

the experts may be very low and in such cases the effective number of seeds

is often reduced to 10 to enable comparisons with other studies. These

considerations explain differences between the values in Table 5 and those

in Table 2 of (Cooke and Goossens 2006).
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alternative to performance-based combination of expert
judgments. Indeed, the statistical accuracy of the SN DM is
sometimes unacceptably low. On the other hand, it does
outperform equal weighting in the majority of cases. In
some cases the SN weights lead to a ranking of experts
which is similar to their performance ranks, but this
pattern is not consistent.

It might be speculated that SN theory would provide an
acceptable means for nominating experts. So far as we can
judge from this data, such a conclusion would not be
supported.

Of course, there are many caveats to these conclusions.
This represents a first attempt to derive SN weights. There
are doubtless other ways of constructing such weights,
based on scientific citations. Some of these were mentioned
above and include:

� restricting references to the recent past;
� alternative counts for references in multi-author papers;
� using pair-wise expert interactions.

The results here, though not overwhelmingly positive, do
nonetheless motivate further research into social interac-
tion methods for nominating and weighting experts.
Indeed, a full expert judgment study with performance
measurement requires an investment in time and effort,
with a view to securing external validation. If high
confidence in a comparable level of validation can be
obtained by less intensive methods, this would be very
welcome, and would facilitate the application of structured
expert judgment in situations where the resources for a full
study are not available.
With regard to likelihood weights, the evidence presented

here suggests that they do not outperform global weights
either with regard to calibration and information, which are
optimized in the global weights, nor indeed with regard to
likelihood. If, in spite of the theoretical drawbacks noted in
Section 4, one adhered to the idea that likelihood is a good
measure of performance, then this study suggest that such a
person could better default to equal weighting and spare
himself trouble of developing seed variables.
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Appendix

The following table gives the individual expert and DM
scores for the EU-USNRC studies. The combined score is
the product of the calibration score and the mean relative
information with respect to the background for seed

variables. SN denotes the social network, the SN weights
are the weights assigned to the individual experts by the
social network theory discussed in Section 4. SN DM in
column 1 denotes the decision maker resulting from
combining the experts with the SN weights (Tables A1
and A2).
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Table A1

Study Calibr’n (p-value) Mean rel. inf. (seeds) # seeds Combined score SN weights

Dispersion

Exp. 1 5.23E�05 0.6418 23 3.36E�05 0

Exp. 2 7.57E�08 0.7848 23 5.94E�08 0

Exp. 3 0.001498 0.6519 23 0.000976 0

Exp. 4 0.1358 0.5574 23 0.0757 0.645

Exp. 5 0.034 0.961 23 0.03268 0.0323

Exp. 6 0.009073 0.8812 23 0.007995 0.0161

Exp. 7 0.01447 0.8404 23 0.01216 0.0161

Exp. 8 0.02151 0.6411 23 0.01379 0.2905

SN DM 0.355 0.3483 23 0.1236

Item DM 0.8592 0.444 23 0.3815

Global DM 0.5187 0.5254 23 0.2725

Equal DM 0.2593 0.2467 23 0.06397

Dry deposition

Exp. 1 3.06E�05 0.7044 14 2.16E�05 0.081

Exp. 2 0.5274 0.1661 14 0.08759 0.405

Exp. 3 0.00169 0.41 14 0.000693 0

Exp. 4 0.00169 0.7231 14 0.001222 0

Exp. 5 2.06E�08 0.7201 14 1.48E�08 0.189

Exp. 6 0.002202 1.341 14 0.002953 0.243

Exp. 7 0.00169 0.7826 14 0.001323 0.081

Exp. 8 0.000877 0.5431 14 0.000476 0.001

SN DM 0.3992 0.1516 14 0.06051

Item DM 0.659 0.1789 14 0.1179

Global DM 0.5274 0.1812 14 0.09557

Equal DM 0.00169 0.1629 14 0.000275

Wet deposition

Exp. 1 3.85E�10 2.254 19 8.69E�10 0.16

Exp. 2 0.01293 0.5595 19 0.007233 0

Exp. 3 0.003239 1.096 19 0.00355 0

Exp. 4 1.29E�06 1.672 19 2.15E�06 0.37

Exp. 5 0.00387 0.9804 19 0.003794 0.32

Exp. 6 0.000251 1.683 19 0.000423 0.15

Exp. 7 0.00025 1.737 19 0.000435 0

SN DM 0.1245 0.7161 19 0.08913

Item DM 0.2556 0.4024 19 0.1029

Global DM 0.2556 0.393 19 0.1005

Equal DM 0.003239 0.6491 19 0.002103

Foodchain Animal

Exp. 1 0.002442 1.118 8 0.002732 0.025

Exp. 2 0.001995 1.15 8 0.002293 0.196

Exp. 3 0.09031 0.1564 8 0.01412 0.082

Exp. 4 0.7565 1.11 8 0.8396 0.228

Exp. 5 0.01391 1.314 6 0.01829 0.177

Exp. 6 0.6497 1.302 8 0.8461 0.247

Exp. 7 0.02528 1.272 7 0.03215 0.045

SN DM 0.557 0.5123 8 0.2854

Item DM 0.7565 1.11 8 0.8396

Global DM 0.7565 1.11 8 0.8396

Equal DM 0.557 0.3573 8 0.199

Foodchain Soil/plant

Exp. 1 0 1.591 31 0 0.321

Exp. 2 4.96E�16 0.5205 31 2.58E�16 0.143
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Table A1 (continued )

Study Calibr’n (p-value) Mean rel. inf. (seeds) # seeds Combined score SN weights

Exp. 3 1.06E�07 0.5318 31 5.63E�08 0.321

Exp. 4 1.34E�08 0.7998 31 1.07E�08 0.215

SN DM 3.08E�07 0.2489 31 7.68E�08

Item DM 9.53E�07 0.3972 31 3.79E�07

Global DM 4.22E�06 0.3317 31 1.40E�06

Equal DM 3.08E�07 0.2117 31 6.53E�08

Internal dosimetry

Exp. 1 0.003235 1.66 39 0.00537 0.1875

Exp. 2 0.7346 0.8151 55 0.5988 0.25

Exp. 3 1.70E�10 1.947 50 3.31E�10 0.025

Exp. 4 8.39E�17 2.363 39 1.98E�16 0.275

Exp. 5 4.55E�06 1.182 39 5.38E�06 0.0375

Exp. 6 0.009419 0.8617 28 0.008116 0.225

SN DM 0.07101 0.5997 55 0.04259

Item DM 0.7346 0.8151 55 0.5988

Global DM 0.8318 0.7745 55 0.6442

Equal DM 0.1125 0.5164 55 0.05812

Early health

Exp. 1 0.000185 0.8381 15 0.000155 0.234

Exp. 2 0.000284 1.381 15 0.000393 0

Exp. 3 2.44E�06 1.016 15 2.48E�06 0.298

Exp. 4 0.000356 0.9652 15 0.000343 0.053

Exp. 5 1.69E�12 1.123 15 1.89E�12 0.021

Exp. 6 4.46E�05 0.5796 15 2.58E�05 0.053

Exp. 7 0.000319 0.4182 15 0.000133 0.341

SN DM 0.002176 0.2181 15 0.000475

Item DM 0.3889 0.4345 15 0.169

Global DM 0.3889 0.3872 15 0.1506

Equal DM 0.09153 0.167 15 0.01528

Table A2

Expert Calibr’n (p-value) Ave. rel. inf. # seeds Combined score Likelihood weights Global weights

AOT-AEX

Exp. 1 0.8686 0.39 34 0.3388 2.283E�06 0

Exp. 2 0.8377 0.2166 34 0.1815 8.349E�04 0

Exp. 3 0.5538 0.4177 34 0.2313 1.261E�08 0

Exp. 4 0.9652 0.5224 34 0.5042 6.427E�01 1

Exp. 5 0.9403 0.5776 34 0.5431 3.565E�01 0

L’hood 0.04488 0.3933 34 0.1842

Global 0.9652 0.5224 34 0.5042

Equal 0.9769 0.2075 34 0.2027

AOT-Risk

Exp. 1 0.281 1.273 11 0.3577 6.74E�01 0

Exp. 2 0.8272 1.212 11 1.003 2.45E�01 1

Exp. 3 0.1609 1.446 11 0.2327 6.41E�05 0

Exp. 4 0.08609 1.063 11 0.09155 2.08E�03 0

Exp. 5 0.4949 1.451 11 0.718 7.88E�02 0

L’hood 0.8597 1.047 11 0.9005

Global 0.8272 1.212 11 1.003

Equal 0.324 0.7449 11 0.2413

DSM gr

Exp. 1 0.000139 4.445 10 0.0006161 3.253E�14 0

Exp. 2 0.000697 3.905 10 0.002721 1.191E�02 0

Exp. 3 0.44 3.802 10 1.673 9.020E�02 0.74

Exp. 4 1.27E�11 6.217 10 7.87E�11 7.165E�28 0

Exp. 5 0.1466 1.704 10 0.2498 1.952E�04 0.11
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