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1. Technical Details of the Classical Model 
 
The classical model for evaluating and combining experts considers experts as statistical hypotheses and 
prioritizes statistical accuracy. Informativeness is also important and serves to modulate between experts with 
similar statistical accuracy so that it is impossible to compensate poor statistical accuracy with very high 
information. Performance weights for combining experts are derived which satisfy asymptotic strictly proper 
scoring rule constraints.  
 
This exposition considers five assessed quantiles (i.e., 5%, 25%, 50%, 75% and 95%) for each elicited 
uncertain quantity, or item. The expert could be a human assessor, a computer code, or some combination of 
the two. 
 

1.1. Statistical Accuracy (aka Calibrationi) 

                                                 
i In the science/engineering world, “calibration” denotes removing bias in measurement instruments. The psychology 
community introduced the notion of scoring experts’ statistical accuracy and termed the result “calibration”.  As this causes 
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The assessed quantiles divide the range of possible values into six inter-quantile intervals for which an 
expert’s probabilities are known (e.g., p1 = 0.05 [less than or equal to the 5% quantile]; p2 = 0.20 [greater than 
the 5% quantile and less than or equal to the 25% quantile], etc.). If N quantities are assessed as calibration 
questions, or items, each expert may be regarded as a statistical hypothesis, namely that each realization falls 
in one of the six inter-quantile intervals with the probability vector: 
 

p = (0.05, 0.20, 0.25, 0.25, 0.20, 0.05) 
 
Suppose we have realizations x1, …, xN of these quantities. We may then form the sample distribution of the 
expert's inter-quantile intervals as se = (s1, e, s2, e, ..., s6, e), where: 
 

s1, e = # {i | xi ≤ 5% quantile} / N 
 

s2, e = # {i | 5% quantile < xi ≤ 20% quantile} / N 
... 

s6, e = # {i | 95% quantile < xi} / N 
 
Note that the sample distribution depends on the assessments from the expert, e. If the realizations are indeed 
drawn independently from a distribution with quantiles as stated by the expert, then the quantity: 
 

2𝑁∑ 𝑠𝑖,𝑒 ln �𝑠𝑖,𝑒
𝑝𝑖
�6

𝑖=1                                                                    (1.1) 
 
is asymptotically distributed as a chi-square random variable with five degrees of freedom. This is the 
likelihood ratio statistic. If we extract the leading term of the logarithm, we obtain the familiar chi-square test 
statistic for goodness of fit. If, after a few realizations, the expert saw that all realizations fell outside of their 
90% central confidence interval, (s)he might conclude that their intervals were too narrow and broaden them 
on subsequent assessments. This means that, for this expert, the uncertainty distributions are not independent, 
and (s)he learns from the realizations. Expert learning is not a goal of a study, and their joint distribution is 
not elicited. Rather, the analyst wants experts who do not need to learn from the elicitation. Hence the analyst 
scores the expert, e, as the statistical likelihood of the hypothesis: 
 

He: The inter-quantile interval containing the true value for each item is drawn independently from 
probability vector, p. 

 
A simple test for this hypothesis uses the test statistic (1.1), and the likelihood, or p-value, or statistical 
accuracy score (aka ‘calibration score’) of this hypothesis, is: 
 

Ce = P (χ ≥ r | He)                                                               (1.2) 
 
where χ is a chi-square distributed random variable with five degrees of freedom and r is the value of (1.1) 
based on the observed values x1, …, xN. It is the probability under hypothesis He that a deviation at least as 
great as r should be observed on N realizations if He were true. Calibration scores are absolute and can be 
compared across studies. However, before doing so, it is appropriate to equalize the power of the different 
hypothesis tests by equalizing the effective number of realizations. To compare scores on two data sets with N 
and N’ realizations, we simply use the minimum of N and N' in (1.1), without changing the sample 
distribution, s.  
 
Although the calibration score employs the language of simple hypothesis testing, it must be emphasized that 
we are not rejecting expert-hypotheses; rather we are using this language to measure the degree to which the 
data supports the hypothesis that the expert's probabilities are statistically accurate. Low scores, near zero, 
mean that it is unlikely that the expert’s probabilities are correct. A common thumb rule in testing a simple 
multinomial hypothesis is that there should be at least 5 expected observations in each cell. In practice this is 
often relaxed to one expected observation. With 10 calibration variables, there is ½ expected observation in 
the lowest and highest cells. Simulation studies [Cooke 2014] show that the statistical power afforded by 10 
observations enables only the identification of gross differences in statistical performance. The default choice 

                                                                                                                                                        
insuperable confusion when explaining structured expert judgment to scientists and engineers,  “calibration” is replaced  
“statistical accuracy” despite its currency in the psychological community. 



  

of 10 calibration variables reflects a compromise allowing coarse distinctions without excessively burdening 
the elicitation. This compromise is motivated by the fact that large differences are usually present in expert 
panels [Colson and Cooke 2017], bearing in mind that CM is not testing statistical hypotheses as such. 
 

1.2. Information 
 
Measuring information requires associating a density to each assessment for each item. To do this, we use the 
unique density that complies with the expert's quantiles and is minimally informative with respect to a 
background measure. For a uniform background measure, the density is constant between the assessed 
quantiles, and is such that the total mass between the quantiles agrees with p. The background measure is not 
elicited from experts as it must be the same for all experts; instead, it is chosen by the analyst. The Classical 
Model (CM) uses by default either the uniform or the log-uniform background measure, as these have no 
location parameter other than the support of the background measure. 
 
The uniform and log-uniform background measures require an ‘intrinsic range’ on which these measures are 
concentrated. The CM implements the so-called ‘k% overshoot rule’. For each item, we consider the smallest 
interval, I = [L, U], containing all the assessed quantiles of all experts and the realization, if known. This 
interval is extended to:  
 

I* = [L*, U*]; L* = L – k (U - L) / 100; U* = U + k (U - L) / 100                              (1.3)                                                               
 
The value of k is chosen by the analyst. A large value of k tends to make all experts look quite informative and 
tends to suppress the relative differences in information scores. The information score of the expert, e, on 
assessments for uncertain quantities 1, …, N, is: 
 

Infe = (1 / N) ∑i = 1, …, N  I (fe, i | gi)                                                 (1.4) 
 
where gi is the background density for item i and fe, i is the fitted density for expert, e, for item i. This is 
proportional to the relative information of the expert's joint distribution given the background, under the 
assumption that the items are independent. As with calibration, the assumption of independence reflects a 
desideratum of the analyst and is not an elicited feature of the expert's joint distribution. The information 
score does not depend on the realizations. An expert can acquire a high information score by choosing their 
quantiles very close together.  
 
Evidently, the information score of an expert depends on the intrinsic range and on the assessments of the 
other experts. Hence, information scores cannot be rigorously compared across studies.  
 
Both statistical accuracy and informativeness are dimensionless. The information score is a ‘slow’ function, 
that is, large changes in the assessments produce only modest changes in the information score. Information 
scores in a panel of experts typically vary by a factor less than 3 whereas the statistical accuracy (1.1) varies 
over several orders of magnitude. This ensures that the normalized product of statistical accuracy and 
information is driven by the calibration score. It also means that modest changes in informativeness 
correspond to sizeable changes in the distributions. Increasing informativeness by a factor of two roughly 
corresponds to halving the distance between the 95th and 5th percentiles. 
 

1.3. Scoring Rules for Individual Items 
 
Scoring rules were introduced by de Finetti in 1937 as tools for encouraging honesty in eliciting subjective 
probabilities  and have been further developed by many authors (Shuford and Massengill 1966). An expert 
receives a score as a function of their probability assessment and the realization. The score is strictly proper if 
the expert maximizes the expected score per item by, and only by, stating their true belief. Using a result of 
Murphy (1977), DeGroot and Fienberg (1983) gave an additive decomposition of strictly proper rules into 
‘calibration’ and ‘refinement’ terms, thereby replacing Murphy’s ‘resolution’ (refinement applies only to 
well-calibrated experts). In the case of the logarithmic rule, refinement becomes Kullback-Leibler Divergence 
(aka, directed divergence, cross entropy, or relative information [the term we use]). 
 
Scoring rules for individual variables were not designed for evaluating or combining experts and are not 
generally fit for that purpose. Indeed, rewarding honesty is not the same as rewarding quality. A simple 
example explains this difference: Consider 100-coin tosses. An expert assesses the probability of heads on 
each toss as ½. The score for the outcome heads is the same as their score for tails on each toss. If the score 
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for all 100 assessments is a function of their 100 scores for the individual tosses, then their score for 100 
tosses is independent of the outcome sequence; the outcome of 100 heads receives the same score as 50 heads 
and 50 tails.  
 
Another example concerns the quadratic rule for ‘rain / no rain’. This rule is positively sensed on [-1.1] and 
assigns the score 2r – r2– (1– r)2 if rain occurs and r is the expert’s probability of rain. Interchange r and (1– r) 
in case it doesn’t rain. Consider 1000 next day forecasts of rain by two experts. The experts bin their forecasts 
as shown below: 
 
Table SI-1 

 
 
The experts are equally informative in the sense that they assign the same probabilities to the same number of 
days. Expert 1 is statistically perfectly accurate whereas expert 2 is massively inaccurate. Woe unto anyone 
basing his decisions on expert 2’s forecasts. Nonetheless, expert 2’s quadratic score is higher than that of 
expert 1. For more discussion see (Cooke 1991, 2014,  Colson and Cooke 2017). 
 
The Probability Interval Score (PIS) and its related Continuous Ranked Probability Scores (CRPS) have 
recently been applied to COVID-19 probabilistic predictions (Ray et al 2020), so it is appropriate to include a 
brief discussion of these. Numerical insight into these scores requires a bit more effort, so more detail is 
provided.  
 
For the (1−α) interval [L, U] with upper (lower) bound U (L), the PIS (negatively sensed) for realization y is 
(U - L) + (2 / α)× [(L - y)+ + (y - U)+] where X+ = X if X > 0 and = 0 otherwise. s = 2 / α is the slope of the 
overconfidence penalty for Y ∉ [L, U]. The length (U - L) is called the ‘sharpness’; small values reward 
concentrated probability mass. If Y ~ Unif[0, 1], the central 0.9 interval is [0.05, 0.95] with expected PIS:  
 

0.9 + 2 × ∫0...0.05 s × u du = 0.9 + (2 / 0.1) × 0.052 = 0.95 
 
The integral is doubled to account for Y > U. Suppose an expert prefers to give an 80% interval [0.1, 0.9], s = 
2 / 0.2 = 10. The expected score is 0.8 + 2 × ∫0…0.1 s × u du = 20 × ½ × 0.12 = 0.9 < 0.95. An expert seeking to 
optimize (i.e., minimize) their expected score might take a central 2% prediction interval [0.49, 0.51] with 
expected score 0.02 + 2 × 2 / 0.98 × 0.492 / 2 = 0.51 (or take lim∈→ 0 [,5 - ∈,5 + ∈] with expected score ½). 
All these prediction intervals have zero information relative to the uniform background measure on [0, 1], so 
from that viewpoint there isn’t much to choose.  
 
The way in which the PIS trades overconfidence for sharpness may strike some as counter intuitive. For 
example, an expert claiming the degenerate interval [0.5, 0.5] has 40% probability of catching the realization 
would achieve an expected score of 0.833, better than the score of the central 90% interval. The sharpness of 
an interval of zero length outweighs the overconfidence of claiming 40% mass at the point 0.5. Of course, this 
example is blocked if probability intervals are required to be 90%; assigning 90% mass to the point 0.5 returns 
an interval score of 5. Such scores from several experts could cause bad statistical performance, depending on 
how the experts are combined. 
 
The weighted PIS converges to the continuous ranked probability score (CRPS). Applied to a set of 
probabilistic forecasts and realizations, the expected CRPS is based not on what the expert believes, but on the 
realizations. For illustration we assume that realizations are sampled from variable Y uniformly distributed on 
[0, 1].  
 
Consider an assessment of Y by an expert whose distribution is X ~ Unif[0, H], H ≤ 1. The expert thinks 
values above H are impossible, although these can in fact arise. The CDF of X, F(x) = (x / H) and the survivor 
function of X, S(x) = (1 - CDF; dotted) are pictured below: 



  

 
 
The expected CRPS is: ∫y = 0...1 ∫x = 0...1 (F(x) – 1{x ≥ y})2 dx dy. The calculation is broken into 2 steps: 
 
y ≤ H:                          ∫y = 0...H [∫x=0...y (x / H)2 dx + ∫x = y…H ((H – x) / H)2 dx] dy  
 

= ∫y=0...H [ y3 / (3H2) + ∫z = H – y….0 z2 / H2 (–dz)] dy = 
 

= ∫y = 0...H [y3 / (3H2) + (H – y)3 / (3H2)] dy 
 

= H2 / 12 + (1 / (3H2)) ∫z = H...0 z3
 (–dz) dy = H2/6. 

 
 
y >H:    ∫y=H...1 [ ∫x=0...H

 (x/H)2 + ∫x=H...y dx + ∫x = y...1 0 dx] dy 
 

= ∫y = H...1 [H / 3 + y – H] dy 
 

= H(1 – H) / 3 + ∫0...1 – H z dz 
 

= H(1 – H) / 3 + (1 – H)2 / 2 
 

Therefore: 
 

E(CRPS(F, y)) = H2 / 6 + H(1 – H) / 3 + (1 – H)2 / 2 
 
If X ~ Unif[L, H], 0 ≤ L ≤ H ≤ 1, then the same method of calculation applies mutatis mutandis. If L = 1 – H 
then the contributions from x ≤ y and y ≤ x are equal and we need only double the contribution from x ≤ y. In 
that case, for y ≤ L, the contribution from x ≤ y is zero, since x > L. Therefore, we compute: 
 

∫y = L…H ∫x = L...y F(x)2 dx dy + ∫y = H…1 ∫x=L…y F(x)2 dx dy 
 

= ∫y = L...H ∫x = L...y (x – L)2 / (H – L)2 dx dy + ∫y = H...1 [∫x = L...H (x – L)2 / (H – L)2 dx + ∫x = H...y dx] dy 
 

= ∫y= L...H (y3 / 3) / (H – L)2 dx + ∫y = H...1 [(H – L) / 3 + (y – H)] dy 
 

= (H – L)2 / 12 + (H – L)(1 – H) / 3 + (1 – H)2 / 2 
 
Adding the identical contribution from y ≤ x gives: 
 

E(CRPS(F, y)) = (H – L)2 / 6 + 2(H – L)(1 – H) / 3 + (1 – H)2 
 
Some values are in Table SI-2 
 
Table SI-2 
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Note that the expected CRPS for X ~ Unif[0, H], H ≥ 0.5 is the same as that for X ~ Unif[1 – H, H]. Thus, 
E(CRPS) for X ~ Unif[0, 0.7] = 0.196 = E(CRPS) for X’ ~ Unif[0.3, 0.7]. An expert who believes X finds that 
30% of the realizations Y are impossible has the same expected CRPS as an expert who believes X’ finds 60% 
of the realizations are impossible. This illustrates how the CRPS compensates loss of statistical accuracy with 
a gain in ‘sharpness’. 

 
1.4  Scoring rules for average probabilities 

 
To avoid problems with scores for individual items, (Cooke 1991) introduced scoring rules for average 
probabilities. Let random variables X1, ..., Xn take outcomes in a finite set, O, let MO be the set of probability 
measures on O, and let Mn be the set of probability measures on X1, ..., Xn. For Π ∈ Mn, let π be the vector of 
average probabilities, that is, πi = (1 / n) Σj=1, ..., n Π (Xj = i). Let s be the observed relative frequency of 
outcomes for realization, (X1, ..., Xn) = (x1, ..., xn). A scoring rule for average probabilities assigns a number, 
R, to the pair (π, s). R is strictly proper (positively sensed) if: 

 
for all Π ∈ Mn, argmax ϕ ∈Mo EΠ (R (ϕ, s) = π. 

 
This says, whatever the expert’s belief, Π, about (X1, ..., Xn), (s)he achieves the maximal expected score by 
stating the probability, π, over outcomes which corresponds to their average probabilities. The proofs are a 
bit more complicated because, “for all Π,” goes over a much larger set than the argmax over Mo. 

 
There is a representation theorem in Cooke (1991) for such rules. However, more useful in practice are rules 
which are asymptotically strictly proper as n → ∞.  These rules allow the product form in the CM (see 
below). The proofs invoke the assumption that the expert’s belief Π is a product measure. Recent expositions 
of the definitions and proofs are in the SI of (Colson and Cooke 2017) and the SI of (Cooke 2018) 
 
Familiarity with foundations teaches that the problem of combining experts’ judgments is not a mathematical 
problem. The laws of probability even supplemented with Savage’s axioms and the theory of proper scoring 
rules, will never tell us how to combine experts. The problem is more akin to finding an optimal design in 
engineering. For example, a bicycle obeys Newton’s laws but doesn’t follow from them. Any working 
design will involve features motivated by practicalities in addition to laws.  

 
So let it be with measures of “spread”. Traditional measures like the standard deviation and prediction 
intervals are unsuitable because they inherit the physical dimension of the underlying variables: changing 
from meters to kilometres changes the numbers. To compare spreads across variables with different physical 
dimensions we need a measure which is scale invariant. We also need it to be “tail insensitive” because the 
tails in expert judgment are poorly constrained. Finally, it must be “slow” in order to prioritize statistical 
accuracy. The theory of asymptotic proper scoring rules for average probabilities gives a product form of: 
measure of statistical accuracy × measure of lack of spread. Weights will be formed by normalizing such 
products. We want statistical accuracy, a very fast function, to dominate; therefore the measure of “lack of 
spread” must be slow. Relative information is familiar and fits the bill. It requires specifying “relative to 
what”. This is as it should be because information in a distribution is always relative to another (background) 
distribution.ii   

 
Since the background distribution must integrate to one, it must be “concentrated” somewhere. The uniform 
or log-uniform distributions are chosen as default backgrounds because they have no location parameter 
other than the endpoints of their support. However, we do need to specify the compact support of the 
background for each item. We do this by choosing the smallest interval containing all assessments and the 
realization, if available, plus a k% overshoot. If k is very large then all experts appear very informative 
relative to the background, and this tends to discount the role of information in determining weights. The CM 
dictates that the choice of uniform/log-uniform and k are choices of the analyst, and any such choices must 
be controlled by user parameters in the code. Thus, we can see that k must be very large to make much 
difference. Uniform vs log-uniform can have an influence; the guidance is that, if we reason about orders of 
magnitude, use log-uniform. 

                                                 
ii You can see this in the continuous from of the entropy integral. For a discrete distribution P = p1, ..., pn, the entropy is defined as H(P) = - 
Σpi ln(pi). To pass to the continuous version replace Σ → ∫ and pi → f(x)dx. That gives H(f) = -∫ fx(dx) ln(f(x)dx), which is meaningless. You 
must use relative information I (f | g) = ∫ f(x)dx ln(f(x)dx/g(x)dx) so that the dx’s inside the ln cancel and I(f | g) = ∫f(x)dx ln(f(x)/g(x)). 



  

 

2. Combining Experts 
 

The combination schemes considered here are all examples of a linear pool. That is, a “Decision Maker 
(DM) is formed by forming a convex combination of the experts’ densities.  Each expert e is assigned a non 
negative weight we , the weights sum to unity, and DM’s density for item i , fDM(i) is Σe we fe(i), where fe(i) is 
the density of expert e for item i. 
 
2.1  Weights based on scoring rules for average probabilities 

 
The ‘combined score, Cs, of the expert, e, is the dimensionless quantity:  
 

Cse = Ce * Infe 
(2.1) 

 
A scoring rule is (asymptotically) strictly proper if an expert achieves their (long run) maximal expected 
score by, and only by, giving assessments corresponding to their true beliefs. That is, an expert maximizes 
their long run expected score by, and only by, ensuring that the probabilities, p = (0.05, 0.20, 0.25, 0.25 0.20, 
0.05), correspond to their true beliefs. The theory of proper scoring rules tells us that (2.1) becomes an 
asymptotic  proper scoring rule if it is augmented with a cut-off, α, on the calibration score such that an 
expert is unweighted if Ce < α. The value α is like the significance level in simple hypothesis testing, but its 
purpose is different. The goal is to measure “goodness” with a strictly proper scoring rule. 
 
A combination of expert assessments is called a ‘decision-maker’ (DM). All DMs discussed here are 
examples of linear pooling. The Classical Model is essentially a method for deriving weights in a linear pool. 
A "good probabilistic expert" corresponds to an expert with good calibration (i.e., high statistical likelihood; 
high p-value) and high information. We want weights which reward good experts, and which pass these 
virtues on to the DM.  
 
The reward aspect of weights is very important. We could simply solve the following optimization problem: 
find a set of weights such that the linear pool under these weights maximizes the combined score of the DM. 
When solving this problem with real data, one finds that the weights do not generally reflect the performance 
of the individual experts. As we do not want an expert's influence on the DM to appear haphazard, and we do 
not want to encourage experts to game the system by tilting their assessments to achieve a desired outcome; 
we must impose a strict scoring rule constraint on the weighting scheme.   
 
The scoring rule constraint requires that the combined score is multiplied by the indicator function, 1α (Ce ≥ 
α), which takes the value 1 if Ce ≥ α and 0 otherwise:  

 
wα,e = Ce * Infe * 1α (Ce ≥ α) 

(2.2) 
 

This says that the expert, e, is weighted only if their statistical accuracy is at least α. The resulting DM is a 
function of α: 
 

DMα,i = ∑e=1, ..., E wα,e fe,i  / ∑e=1, ..., E wα,e 
(2.3) 

 
Scoring rule theory does not say what the value of α should be. In practice there are three ways for choosing 
α. The ‘optimized’ DM chooses α such that the resulting combined score of the DM is maximized. The 
optimized DM is DMα* where α* maximizes C(DMα) × Inf(DMα). This typically leads to choosing an α so 
high that only one or two experts are weighted. The ‘statistical threshold’ DM chooses an α to distribute 
weight over experts with “acceptable” calibration (typically, α = 0.05 or 0.01).  The “inclusive” DM chooses 
an α so low that all experts are weighted. This is also termed the “non optimized pw” If this choice is made a 
posteriori, then this is not a strictly proper scoring rule. It is to be noted that unweighted experts still have 
influence over the intrinsic range, and their rationales are recorded.  
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These weights are termed global because the information score is based on all the assessed calibration items. 
A variation on this scheme allows a different set of weights to be used for each item. This is accomplished by 
using information scores for each item rather than the average information score: 
 

wα,e,i = 1α (Ce ≥ α) * Ce * fe,i  ln (fe,i | gi) 
(2.4) 

 
For each α we define the ‘item weight’ DMα for the item, i, as: 
 

IDMα,i = ∑e=1, ..., E wα,e,i fe,i  / ∑e=1, ..., E wα,e,i 
(2.5) 

 
The same variation applies to the threshold DM and the inclusive DM.  
 
Item weights are potentially more attractive as they allow experts to up- or down-weight themselves for 
individual items according to how much they feel they know about that item. "Knowing less" means 
choosing quantiles further apart and thus lowering the information score for that item. Of course, the good 
performance of item weights requires that experts can perform this up/down-weighting successfully. 
Anecdotal evidence suggests that item weights improve over global weights as the experts receive more 
training in probabilistic assessment. For both global and item weights, calibration dominates over 
information; information serves to modulate between equally well calibrated experts. Definitions and proofs 
of these scoring rule properties are found in Cooke (1991, 2018, Colson and Cooke 2017). 
 
Optimizing the weights in (2.3) and (2.6) often causes experts to be unweighted, even those with good 
scores. Such experts are not “rejected”; unweighting simply means that their input is already captured by a 
smaller subset of experts. Their value to the whole study is brought out in studying the robustness of the 
optimal DM under the loss of experts and in determining the intrinsic range. Their rationales are always 
included in the study results. 
 
2.2 Other weighting schemes; predictive performance and inverse variance 
 
The weights discussed above are all ‘performance based’ (i.e., an expert’s weight depends on their 
performance). Another performance-based weight is the ‘point-predictive-performance’ weight, or simply 
‘predictive-performance’ weight. Each item, i, with observed value, Oi, is divided by the prediction, Pe,i, of 
the expert, e, to form the ratio, Re,i  = Oi / Pe,i, assuming Pe,i > 0. For each expert, the exponentiated mean and 
standard deviation of the logged values of Re,i running over the values of i, termed the geometric mean and 
geometric standard deviation, are the performance measures for expert. The predictive-performance DM is 
formed by taking a weighted combination of models’ densities where the weights are proportional to the 
variance over i of Re,i.   
  
It is becoming popular, especially in the climate modelling community, to average the results of models. A 
mathematical justification for this operation is sometimes based on treating model predictions as unbiased 
estimators with an imputed error term (Rougier et al 2013). There are many variations of this approach, but 
the simplest is based on the theory of weighted least squares. Suppose that uncertain quantity, Xi is estimated 
by measurement Zi, with error, ei. Suppose ei is normally distributed with mean zero and standard deviation 
σi. Then after observing Zi = zi, the Renyi conditional distribution of  Xi is normal with mean zi and standard 
deviation σi. For N models with independent unbiased normal errors, the distribution of Xi conditional on 
observing Z1 = z1, ..., ZN = zN is normal with a mean and variance given by:  
 

E (Xi | Z1 = z1, ..., ZN = zN) = Σi=1, ..., N  zi wi 
(2.6) 

 
Var ((Xi | Z1 = z1, ..., ZN = zN) = 1 / (1 / σ2

1 + ..., 1 / σ2
N) 

(2.7) 
 

wi = (1 / σ2
N) / (1 / σ2

1 + ..., 1 / σ2
N) 

(2.8) 
 
The weights are proportional to the inverse-variance of each error term. Because of Renyi conditionalization 
the posterior mean and variance apply to the uncertain quantity, Xi, and not, as in standard statistical 



  

treatments, to the maximum likelihood estimator of Xi (see Cooke and Wielicki, 2018, for a full discussion). 
The rest of  the derivations are entirely standard, and this DM is termed the ‘weighted least squares’ DM.  To 
apply this theory, we must impute a variance to the assessments of the model for each item. We may expect 
good performance from this model if experts with small variance also have high statistical accuracy, which is 
not generally the case in the expert data reviewed here. 
 

3. Validation 
 
Validating experts’ uncertainty quantification and that of combinations of experts’ distributions using 
calibration variables from the experts’ fields receives continuing attention.  This section extends the data 
from 49 cases in (Cooke et al 2021) with 9 new cases involving in total 615 experts and 693 calibration 
variables. Publications describing these applications are found  in (Cooke et al 2021).  
 
3.1 In-Sample Validation 
 
Evaluating performance based combinations of experts’ distributions on the same data used to initialize the 
performance based weighting is termed in-sample validation. If performance based combinations were not 
superior to performance blind combinations in-sample there would be little point in pursuing out-of-sample 
validation.  pw denotes item specific performance weights, ew denotes  equal weights. Of the 58 studies in 
Table SI-3, statistical accuracy (SA) of pw exceeds that of ew on 45 studies, information (inf) of pw exceeds 
that of ew on 56 studies, and the combined score of pw exceeds that of ew on 53 studies.  
 
Table SI-3 In-sample validation, 58 studies 2006-2021.   

nr 
experts 

nr calib 
vbls study ew SA ew inf ew comb pw SA pw 

inf pw comb 

4 10 Arkansas 0.386 0.198 0.076 0.499 0.523 0.261 
9 10 Arsenic D-R 0.061 1.095 0.067 0.036 2.739 0.098 
5 10 ATCEP 0.124 0.247 0.031 0.244 0.376 0.092 
7 11 BFIQ 0.425 0.294 0.125 0.692 0.573 0.397 

12 12 Biol agents 0.413 0.244 0.101 0.678 0.661 0.448 
10 10 Brexit food 0.114 0.274 0.031 0.550 0.838 0.461 
12 10 burkina faso 0.290 0.444 0.129 0.394 1.135 0.448 
20 10 CDC ROI 0.233 1.230 0.286 0.720 2.305 1.660 
48 14 CDC_All 0.250 1.082 0.270 0.968 2.541 2.460 
10 11 CO2em 0.638 0.238 0.152 0.615 0.361 0.222 
5 10 CoveringKids 0.628 0.274 0.172 0.720 0.506 0.365 
7 10 CREATE 0.061 0.207 0.013 0.314 0.298 0.094 

14 10 CWD 0.474 0.930 0.441 0.683 1.325 0.905 
4 7 Daniela 0.533 0.168 0.089 0.554 0.634 0.351 
8 10 dcpn_fistula 0.059 0.622 0.037 0.266 1.343 0.357 

14 15 eBBP 0.358 0.316 0.113 0.833 1.406 1.172 
14 8 Eff_Erupt 0.286 0.796 0.228 0.664 1.240 0.823 
11 15 Erie Carps 0.313 0.294 0.092 0.761 0.856 0.651 
11 10 ethiopia 0.474 0.659 0.312 0.707 1.740 1.230 
5 8 FCEP 0.222 0.099 0.022 0.664 0.574 0.381 
7 10 Florida 0.756 0.455 0.344 0.756 1.145 0.866 
5 10 France 0.078 0.433 0.034 0.652 1.958 1.276 
9 11 GDP2300 0.370 0.266 0.098 0.706 0.673 0.475 
8 18 GeoPol 0.196 0.559 0.109 0.425 1.150 0.488 

12 14 Gerstenberger 0.644 0.482 0.310 0.756 1.202 0.909 
9 13 GL-NIS 0.044 0.307 0.014 0.928 0.259 0.240 
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6 10 Goodheart 0.550 0.277 0.153 0.707 0.959 0.678 
18 8 Hemophilia 0.254 0.202 0.051 0.312 0.463 0.144 
20 16 ICE_2018 0.128 0.545 0.070 0.942 0.928 0.875 
10 11 Ice_2012 0.492 0.517 0.254 0.615 1.038 0.639 
5 10 Illinois 0.620 0.264 0.163 0.386 0.599 0.231 
8 11 IQEarn 0.705 0.575 0.405 0.705 0.623 0.439 
4 10 Italy 0.218 0.197 0.043 0.447 0.466 0.209 

11 14 Leontaris 0.039 0.132 0.005 0.968 0.380 0.368 
11 10 liander 0.228 0.484 0.111 0.683 0.751 0.513 
4 10 Nebraska 0.368 0.695 0.256 0.033 1.447 0.048 
5 10 Nogal 0.114 0.278 0.032 0.290 0.496 0.144 
4 10 obesity 0.070 0.243 0.017 0.780 0.490 0.382 
6 30 Peyras30 0.103 0.118 0.012 0.063 0.597 0.038 

10 13 PHAC_T4 0.265 0.204 0.054 0.096 0.492 0.047 
16 21 PoliticalViolence 0.443 1.047 0.463 0.129 1.818 0.234 
9 13 Puig-GDP 0.063 0.435 0.027 0.928 0.992 0.920 
8 20 Puig-oil 0.881 0.201 0.177 0.128 0.614 0.079 
9 10 rwanda 0.474 0.322 0.152 0.683 0.861 0.588 
8 10 San Diego 0.334 1.066 0.356 0.345 1.186 0.409 

14 15 Sheep 0.661 0.780 0.516 0.643 1.310 0.843 
5 10 Spain 1.22E-05 0.231 2.82E-06 3.59E-05 0.690 2.47E-05 

14 16 SPEED 0.517 0.751 0.389 0.992 0.783 0.777 
12 13 Tadini Clermont 0.329 0.280 0.092 0.755 1.144 0.863 
8 13 Tadini Quito 0.421 0.232 0.098 0.928 0.849 0.788 

18 17 TdC 0.166 0.364 0.060 0.989 1.256 1.242 
7 10 tobacco 0.200 0.451 0.090 0.688 1.062 0.730 

21 16 Topaz 0.629 0.922 0.580 0.411 1.455 0.598 
6 10 UK 0.132 0.331 0.044 0.218 0.661 0.144 
9 11 umd 0.068 0.804 0.054 0.706 1.988 1.404 

32 18 USGS 0.058 0.795 0.046 0.507 1.512 0.766 
5 10 Washington 0.155 0.529 0.082 0.499 0.988 0.493 

12 8 rijn_faalkansen 0.534 0.669 0.357 0.688 2.100 1.444 

 
3.2 Out-of-Sample validation 

 
Out-of-sample validation occurs when performance is evaluated on a set of variables which is disjunct from 
the variables used to initialize the models. Since the variables of interest are seldom observed in the time 
frame of the studies, out-of-sample validation reduces to cross-validation: The calibration variables are split 
into training and testing sets. The combination models are initialized on the training set and performance is 
evaluated on the test set. Difficulties involved in cross validation discussed in (Colson and Cooke 2016) 
include: (i) inability to include optimization in performance based combinations, (ii) selecting suitable 
training/testing splits, (iii) aggregating results over diverse studies and (iv) excessive computing times. The 
hypothesis that pw and ew combinations were statistically indistinguishable was rejected at the 1.8E-7 level 
in the most recent results  (Cooke et al 2021). 
 
3.3 Random Expert Hypothesis 
 
Issues with cross-validation prompted a new approach to validating expert uncertainty quantification (Cooke 
et al 2021). The Random Expert Hypothesis (REH) states that putative differences in performance between 



  

experts are just noise and do not indicate persistent differences among the experts.   One way to test this 
hypothesis is to compare panel wide performance metrics in the original panel with the same metrics as 
generated by a large set of “scrambled panels” in which the assessments are randomly re-allocated to experts, 
thus wiping out any ‘expert effect’. The code used for this exercise is based on the 5%, 50% and 95% 
quantiles. In a preliminary study (Marti et al 2021), including  the 25% and 75% values  had no effect on 
REH.  Note that REH is implicitly assumed in all performance-blind combination schemes. Note also that 
testing REH avoids the intermediary of constructing combinations of experts’ judgments and avoids splitting 
the calibration variables. Note finally that if all experts are “equally good” or “equally bad” in terms of 
statistical accuracy and information, then REH would actually be true. REH fails if the differences in expert 
performance are greater than that which random scrambling can re-produce.  
 
We are interested in the panel averages, standard deviations, maxima and minima over the 58 studies of the 
combined scores and also for the most important component of the combined score, statistical accuracy. The 
distribution of these metrics based on 1000 scrambled panels represents the variation in these metrics which 
would result  if differences in expert performance were due to noise. If REH were true then the metrics in the 
original panel could just as well be drawn randomly from the scrambled distributions.  We thus consider the 
percentiles in the scrambled distributions which are realized by the metrics in the original panel.  If REH 
were true, the realized percentiles should be uniformly distributed on [0,1]. For most metrics, high inter-
expert differences correspond to high percentiles in the scrambled distributions. For minima, we plot  1 – 
percentile so that high plotted values indicate differences in the original panel which scrambling has 
difficulty reproducing and which are favourable to performance weighting. Figure SI-1 plots the results; it is 
evident that the original metrics are not uniformly distributed in the scrambled panels. 
 
The hypothesis the percentiles of a metric of the original panel realized in the scrambled distribution are 
independent across the 58 studies, and the probability for a value above 0.5 is ½, is the subject of the 
binomial test.  This test ignores the size of the departures from 0.5. The levels at which REH is rejected for 
the various metrics are comparable to that reported in the previous section for cross-validation.  
 
The sum of the 58 percentiles for Av SA is 44. Since the sum of 58 independent uniform variables is very 
nearly normal with mean 58/2 and variance 58/√12. The probability of exceeding 44 is 1.5 E-12. This is 
termed the sum test and it is much more powerful than the binomial test for all metrics, as shown in Table SI-
3.  
 
The percentile for Av SA in the study BFIQ is 0.795. If we reject REH for this study, we have probability 1 – 
0.795 that REH actually holds for BFIQ. If we sum the probabilities for false rejection over all studies we 
find the expected number of false rejections in the 58 studies. Table SI-4 shows the percentage of false 
rejections for each of the metrics.  
 

 
An interesting feature of Table SI-4 is that the panel minima for SA and for the combined scores yield the 
lowest P-values and the smallest number of expected false rejections. This means that the random scrambling 
has more difficulty generating scores lower than these minima in the original panels, than for the other 
metrics.  Overall, if we reject REH for each study we may expect that between one fourth and one fifth of the 
studies REH may be true, depending on the chosen panel metric. 
 
Figure SI-1 Percentiles of panel metrics realized by the original panel in the distribution of scrambled panels  
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Table SI-4 Test results for REH for the  binomial and sum tests.  
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