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1. Structured Expert Judgment in the Joint Study 

Accident consequence codes model the adverse consequences of potential accidents in nuclear 

power plants. Separate codes have been developed with support from the European Commission 

(COSYMA) and by the US Nuclear Regulatory Commission (MACCS).  

The scope of these models is depicted in Figure 1.  

 

The objectives of the Joint Study were formulated as 

1. to formulate a generic, state-of-the-art methodology for uncertainty estimation which is 

capable of finding broad acceptance; 

2. to apply the methodology to estimate uncertainties associated with the predictions of 

probabilistic accident consequence codes designed for assessing the risk associated with 

nuclear power plants; and 

3. to quantify better and obtain more valid estimates of the uncertainties associated with 

probabilistic accident consequence codes, thus enabling more informed judgments to be 

made in the areas of risk comparison and acceptability and therefore to help set priorities 

for future research. 
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Figure 1.  Scope of Accident Consequence Codes 

Uncertainty analyses had been preformed with predecessors of both codes, whereby the 

probability distributions were assigned primarily by the code developers, based largely on 

literature reviews, rather than by independent expert panels.  Since many input variables, as well 

as the models themselves, were uncertain, a rigorous and transparent procedure was required to 

arrive at defensible uncertainty distributions. Both Commissions decided to pool their efforts to 

quantify uncertainty on physical variables, and to perform uncertainty analyses on each code 

separately.  These reports may be downloaded from http://cordis.europa.eu/fp5-

euratom/src/lib_docs.htm  or 

http://dutiosc.twi.tudelft.nl/~risk/index.php?option=com_docman&task=cat_view&gid=89&Ite

mid=13&limitstart=15.   

 

The uncertainty quantification was broken into nine separate panels; the number of experts in 

each panel is shown in Table 1. 

 

http://cordis.europa.eu/fp5-euratom/src/lib_docs.htm
http://cordis.europa.eu/fp5-euratom/src/lib_docs.htm
http://dutiosc.twi.tudelft.nl/~risk/index.php?option=com_docman&task=cat_view&gid=89&Itemid=13&limitstart=15
http://dutiosc.twi.tudelft.nl/~risk/index.php?option=com_docman&task=cat_view&gid=89&Itemid=13&limitstart=15
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Expert panel Number 

of 

experts
1
 

Year Reference 

Atmospheric dispersion 8 1993 Harper et al 1995 

Cooke et al 1995 

Deposition (wet and dry) 8 1993 Harper et al 1995 

Cooke et al 1995 

Behaviour of deposited material and its related 

doses 

10 1995 Goossens et al 1997 

Foodchain on animal transfer and behaviour 7 1995 Brown et al 1997 

Foodchain on plant/soil transfer and processes 4 1995 Brown et al 1997 

Internal dosimetry 6 1996 Goossens et al 1998 

Early health effects 7 1996 Haskin et al 1997 

Late health effects 10 1996 Little et al 1997 

Countermeasures 9 2000 Goossens et al 2001 

Table 1: Expert Panels for Joint Study. Not all experts in each panel assessed all variables, see 

Table 4. 

The expert judgment methodology is extensively described in the referenced reports. Suffice 

here to indicate a few principal features. 

1. Experts are nominated and selected via a traceable and defensible procedure. 

2. Experts undergo a training / familiarization session. 

3. Experts prepare their responses prior to the elicitations. 

4. Elicitations are conducted individually by a “domain expert” familiar with the subject 

matter and a “normative expert” experienced in probabilistic assessment. 

5. Experts are queried only about the possible results of physical measurements or 

experiments, and about possible correlations. 

6. With a few exceptions, experts also quantify uncertainty with respect to “seed” or 

“calibration” variables from their field whose true values are or become known within 

the time frame of the study.  

7. Experts write up their assessment rationales and these are published as appendices to the 

reports. 

8. Expert names and assessments are preserved for peer review, names and assessments are 

published, although names are not associated with assessments in the open literature. 

Point (8) is characteristic of most structured expert judgment studies and is designed to 

discourage  “expert shopping”, whereby stakeholders or interveners might cherry pick  

experts to buttress a pre-defined viewpoint.  

                                                 
1
 The general goal of the panels was to have half of the experts coming from Europe and the other half coming from 

the USA. This has not been achieved in all panels for various reasons 
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Point (5) requires that experts assess uncertainty only with regard to observable variables. 

This entails that experts do not assess uncertainty on abstract modeling parameters. Indeed, 

all models are simplifications, and large codes necessarily employ simplified models. The 

dispersion models in the codes, for example, employ simple Gaussian models with simple 

schemes for classifying atmospheric stability. More sophisticated models are available, but 

impose a computational burden that does not comport with the computational demands of 

probabilistic consequence model. Experts are not required to “buy into” the models used in 

the codes, and indeed, their assessments could be used to quantify other models than those 

used in the consequence codes.  The restriction to observable query variables entails that 

experts’ distributions must be “pulled back” onto the parameter space of the models, via a 

process known as probabilistic inversion. The development of practical techniques for 

probabilistic inversion was one of the major achievements of this research project.  Since the 

joint study, inversion techniques have developed substantially, see section 2 of this SOM. 

 

Point (6) is designed to enable performance assessment and to enable validation of the 

resulting combined distributions. Since expert assessments are by their nature subjective, the 

attempt is made to validate these assessments against true values of variables from their 

field. Significant effort went into the selection of calibration variables. Examples of 

calibration variables are given in Table 2. 

 
Dispersion Values of near field horizontal and vertical concentration standard deviations as measured 

in tracer experiments under various conditions, ratio of centerline concentration to off 

center concentration 

Deposition (wet 

and dry) 

Deposition velocities of selected species under specified meteorological conditions, 

washout coefficients 

Internal dose Retention rates of plutonium and cesium in various target organs, at various times, for 

children and adults 

Soil transport Penetrations of cesium to various depths at various times, for different soil types 

Animal 

transport 

After 4 mo ingestion period, transfer of cesium to meat of dairy cows and sheep, transfer to 

milk, biological half life in sheep  

Early health 

effects 

Dose to red bone marrow after 100Gy/hr dose rate for various cases 

Table 2: Calibration variables for 7 panels 

 

Performance is measured in two dimensions, namely, statistical accuracy and informativeness. 

Statistical accuracy is measured as the p-value of the hypothesis that the expert’s probabilistic 

statements are accurate in a statistical sense. It is the probability at which we would falsely reject 

the hypothesis that the expert’s probability statements are accurate.  High values close to 1 are 

good, values near zero are bad. The traditional rejection threshold is 0.05. However, we are not 

testing and rejecting expert‒hypotheses , but using the language of goodness‒of‒fit to score 

statistical accuracy. Informativeness (Shannon relative information) measures the degree to 

which an expert’s distributions are concentrated on a narrow range of possible values. High 

values are good. Complete mathematical definitions are found in (Cooke and Goossens 2008), 

for derivations and further explanation, see (Cooke 1991). Table 3 shows the number of 

elicitation questions and number of calibration questions (“seeds”) for each panel.  
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Expert panel Number 

of 

questions 

Number 

of seeds 

Remarks  

Atmospheric dispersion 77 23  

Deposition (wet and dry) 87 19 14 for dry depos. 

 5 for wet depos. 

Behaviour of deposited material and external  

dose 

505 0 No seed 

questions  

Foodchain on animal transfer and behaviour
2
 80 8  

Foodchain on plant/soil transfer and processes 244 31  

Internal Dosimetry 332 55  

Early health effects 489 15  

Late health effects 111 8 Post hoc values 

Countermeasures
3 

111 0 Country specific 

Table 2: Number of elicitation variables and calibration variables for each panel 

2
 The Countermeasures panel was not part of the joint USNRC/CEC Project, but part of the EU follow-up project on 

Uncertainty Analysis of the COSYMA software package. 

3 Since the practices of farming with respect to animals is different in Europe and in the USA, the questionnaires 

were adapted for European and American experts  

 

The experts’ assessments were combined according to two weighting schemes. The “equal 

weight scheme” assigned each expert equal weight, while the “performance based weighting 

scheme” assigned experts a weight based on their performance on calibration variables.  Each 

scheme can be regarded as a “virtual expert” whose statistical accuracy and informativeness can 

be assessed in the same way as that of the experts. Figure 2 shows two calibration variables, with 

expert assessments and the two combinations. Note the non‒ovelapping confidence bands and 

the diversity of expert assessments.  Table 4 shows the performance of the experts and of these 

two weighting schemes. Of the 40 “expert‒hypotheses” tested with calibration variables, only 6 

would not be rejected at the 5% significance level. Note however, that the power of the statistical 

tests, as reflected in the number of calibration variables, varies from panel to panel. Nonetheless 

the pattern found here is consistent with a larger pool of expert judgment studies. Performance 

assessment for expert probability assessors is the subject of a special issue of Reliability 

Engineering and System Safety (2008), in which the results of 45 contracted expert judgment 

studies are analyzed. Further information and analyses may be found in (Woo, 1999), Kallen and 

Cooke (2002), Cooke et al (2008), O’Hagan et al (2006),  Lin and Bier (2008), Lin and Chen 

(2008, 2009), Aspinall (2010), Flandoli et al (2011), Hora, (2011), Lin and Huang (2012)). The 

so called “Classical Model” for combining expert judgments was described in (Cooke 1991) and 
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software is freely downloadable from http://risk2.ewi.tudelft.nl/oursoftware/6-excalibur. Various 

wild versions are also in circulation for which user discretion is strongly advised. 

 

 
Figure 2 Expert assessments, equal and performance based weighted combinations, and realization for assessments of lateral 

dispersion (sigma y)  in stability conditions B at 600m downwind, and vertical dispersion (sigma z) in stability conditions d at 

60m downwind. “*” denotes the median assessment and “[….]” denotes the 90% central confidence band. 

 

As a general conclusion, combining experts enhances statistical accuracy. The performance 

based combination exceeds the equal weight combination with regard to statistical accuracy and 

informativeness. In most cases the equal weight decision maker exhibits acceptable statistical 

accuracy. In one panel (Food chain on soil/plant transfer and processes) the statistical accuracy 

of both decision makers was problematic. This was attributed to the small number of experts 

(four) in this panel.  For programmatic reasons, primarily to insure methodological consistency 

with the earlier NUREG-1150 study that addressed uncertainties in Level 1 and Level 2 

Probabilistic Safety Assessment, the equal weight decision maker was used for the uncertainty 

analyses, though both decision makers are made available, leaving the choice to the discretion of 

the user. 

 

http://risk2.ewi.tudelft.nl/oursoftware/6-excalibur
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Table 4: Performance scores for experts, equal weight and performance based combinations, 

per panel.  P‒value is the value at which the hypothesis that the expert’s probability assessments 

were accurate would be falsely rejected. Mean Inf denotes the average Shannon relative 

information with respect to a uniform or log uniform background measure, for all variables (not 

just the calibration variables). # Realzns is the number of calibration variables used in testing 

the expert hypotheses. When some experts assessed a subset of the calibration variables, the 

lowest number of assessed items was used in computing P‒values for the entire panel. All 

computations are with the 2003 version of the program EXCALIBUR. The countermeasure 

deposited material panels did not employ seed variables. The late health panel queried experts 

regarding forthcoming results of the Hiroshima and Nagasaki cohort studies. However, due to a 

change in reporting protocol, true values for the queried variables could not be recovered and 

the p‒values could not be ascertained.  

To compare the results of the Joint Study with previous in house uncertainty assessments Table 5 

shows the ratios of the 95
th

 to the 5
th

 percentiles of in-house-expert-modelers at  

KernForschungszentrum Karlsruhe (KFK) and the same ratios as derived from structured expert 

elicitation in the Joint Study with equal weights  (Harper et al 1995).  

 

Ratio: 95 %-tile / 5%-tiles of uncertainty distributions 

 KfK EU-USNRC 
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Peak centerline concentration per unit released, 10km downwind, 

neutral stability 

3 174 

Crosswind dispersion coefficient, 10 km downwind, neutral stability 1.46 11.7 

Dry deposition velocity 1 m aerosol, wind speed 2 m/s 30.25 300 

Table 5: Ratio of 95- and 5 percentiles of uncertainty distributions computed by the 

Kernforschungszentrum Karlsruhe (KfK), and by the Joint Study 

 

 

2. Probabilistic inversion 

Probabilistic inversion as a tool in uncertainty analysis was pioneered in the Joint Study, (Jones 

et al 2001) although the problem had been encountered earlier in dose response modeling.  The 

power law for dispersion is perhaps the simplest case
3
.  Suppose experts give their uncertainty on 

the standard deviation (x) of the crosswind concentration following a release, at downwind 

distances  x = 500m, x  = 1000, and x = 5000m.  Our ability to predict the downwind spreading 

of a plume is not great, and the uncertainties in (xi) i = 1,2,3 are considerable. However, 

these uncertainties are not independent, a plume can never get narrower as it travels downwind.  

This dependence is captured in the power law (x) = Ax
B
 , and the uncertainties in  at each 

downwind distance x should be captured in a single distribution over the coefficients (A,B). 

Suppose we have a distribution over (A,B) and we draw a large number of samples (ai,bi), i = 

1…N from this distribution. We want the values  {ai500
bi

 | i = 1…N} to mimic the distribution 

which the experts assigned to (500), and similarly for x = 1000, and x = 5000. The operation of 

finding such a distribution over (A,B) is called probabilistic inversion. The simple power law is 

believed by no one, as explained in the text. In giving their assessments, the experts may use 

whatever parametric laws or data resources they like. The analyst is charged to find a distribution 

over (A,B) which approximately captures the experts’ uncertainty. If no such distribution can be 

found ‒ as sometimes happens ‒ then the modeler is advised that (s)he must revise the model to 

capture the experts’ uncertainty on the model parameters
4
.        

 
Such inverse problems are usually hopeless analytically, but suitable numerical 
approximations can often be found based on variations of the iterative proportional fitting 
algorithm.  The simple problem of the Social Discount Rate  +Gi, with G1 = 1.5, G2 = 2.5, 

G3 = 3.5 is described in the text. We choose a diffuse starting distribution for  and . The 

prescribed distributions for +Gi, are (2.5, 1.5), (3,2) and (5, 2.5),  where (,) denotes 

the gamma distribution with mean  and standard deviation . The gamma distributions are not 

reproduced exactly, rather, we stipulate the 5‒ 25‒ 50‒ 75‒ and 95‒percentiles of the respective 

                                                 
3
 Here follows a more formal definition of probabilistic inversion. Let X  R

M
, and let functions Hi: X → R, i = 1…n 

be given. Suppose distributions Fi are assigned to Hi, i = 1…n.   We seek a distribution over X such that the 
functions Hi  take the distributions Fi  under this distribution. Such a distribution is a probabilistic inverse of  
H1…Hn  at F1…Fn. If a probabilistic inverse exists, it is generally not unique and we seek a preferred inverse. If 
no inverse exists, the problem is infeasible, and we seek a distribution which minimizes some appropriate 
error function.  For more detail, see the literature referenced at the end of this paragraph. 
4
 The inversion could be applied to each expert’s individual distributions, and then combined across experts. 

However, the inversion is somewhat labor intensive, and to cut costs it was applied to the combined experts’ 

distributions. This is the distribution used in the uncertainty analysis. Moreover, it may happen that an adequate  

probabilistic inverse may not exist for some experts, while it does exist for the combination. 



Appearing in Climatic Change  DOI: 10.1007/s10584-012-0634-y 

gamma distributions.  The algorithm starts by drawing a large sample from the diffuse 

(independent) distributions for  and  shown in the left panel of Figure 3.  

 
Figure 3: Marginal distributions of  and  before (left) and after (right) probabilistic 

inversion. 

 

If K samples are drawn, each sample has probability 1/K in the starting distribution.  The 

iterative proportional fitting algorithm successively reweights these samples so as to comply with 

each of the 5 stipulated percentiles of each of the three gamma distributions.  That is, if we 

resample the original K samples with probability weights emerging from the algorithm, each of 

the three functions has percentiles corresponding to the targeted gamma distributions.  One cycle 

of re‒weighting thus involves successively fitting 15 constraints. After 100 cycles the 

cumulative distribution functions in Figure 4 result; gj are the original gamma distributions, gjpi 

are the results of probabilistic inversion. One can clearly discern the convergence being forced at 

the constrained percentiles.  Additional constraints and larger starting samples yield better fits.   

and  are not independent in the resulting distribution; their percentile scatter plot (Figure 4) 

shows complex dependence. With 15 constraints this problem was feasible.  
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Figure 4: Cumulative distribution functions of g1,g2,g3, and the approximationsg1‒PI,g2‒PI, 

g3‒PI attained with probabilistic inversion 
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\ 

 
Figure 5: Percentile scatter plot of  and  after probabistic inversion. 

 

The iterative proportional algorithm was introduced by Kruithof (1937) and re‒discovered by 

Deming and Stephan (1940) and many others. In case of feasibility, Csiszar (1975) showed that 

the solution is the minimally informative distribution with respect to the starting distribution 

which satisfies the constraints. In case of infeasibility, little is known about the behavior of 

iterative proportional fitting. However, variations of this algorithm will always converge to a 

distribution which minimizes an appropriate error functional (Matus, 2007). For more 

information on probabilistic inversion see Kraan and Bedford (2005), Du et al (2006) and 

Kurowicka and Cooke (2006). It may happen that no distribution over model parameters 

adequately captures the distributions over the target variables and this is an important element in 

model criticism. Code for performing probabilistic inversion may be freely downloaded at 

http://risk2.ewi.tudelft.nl/oursoftware/35-universe. 

 

3. Dependence modeling with copulae 

 

This paragraph intends to sensitize the reader to issues that arise in modeling dependence in high 

dimensional distributions. We assume that a set of marginal distributions is given. If dependence 

arises through probabilistic inversion, then specialized techniques may be required. We consider 

the case where dependence information is acquired through expert elicitation.   

 

Although real problems may involve tens or hundreds of variables, we step through a simple 

example with three exponential variables with unit mean  X,Y,Z.  Dependence between the 

variables is anticipated. We must capture this dependence with information elicited from experts, 

and represent it in a joint distribution for (X,Y,Z). The best known measure of bivariate 

dependence is the Pearson or product moment correlation. Although this works well for joint 

http://risk2.ewi.tudelft.nl/oursoftware/35-universe
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normal variables, it can be problematic for general univariate distributions. The set of feasible 

product moment correlation matrices for three exponentials is a complex set, and it is unlikely 

that experts could always give feasible values. For example, the smallest product moment 

correlation between two exponentials with the same mean is not ‒1, but about ‒0.7. A better 

choice for a bivariate dependence measure is the Spearman or rank correlation. The rank 

correlation between X and Y is simply the product moment correlation between the percentiles or 

quantiles or ranks  of X and Y. All rank correlation values in the interval [‒1, 1] are feasible, and 

they are invariant under monotone increasing transformations of the variables. However, 

building a high dimensional rank correlation matrix is still challenging
5
.  The basic modeling 

tool is the bivariate copula; that is, a distribution on the unit square with uniform margins. 

Whatever the joint distribution of (X,Y), if we transform X and Y to quantiles, the resulting  

bivariate distribution is a copula. Using graphical techniques illustrated but not explained here, 

sets of bivariate copulae can be knitted together to enable flexible dependence models of high 

dimensional distributions (Bedford and Cooke 2002).   

 

Bivariate rank correlations can be elicited from experts in a variety of ways, one of which was 

indicated in the text. Suppose that in our simple example of three exponentials, each pair (X,Y), 

(Y,Z) (X,Z) is assessed to have rank correlation 0.7. A graphical structure realizing this 

information is shown in Figure 6.  (X,Y) and (Y,Z) are assigned rank correlation 0.7. (X,Z) are 

assigned a conditional rank correlation given Y of 0.4; This causes (X,Z) also to have rank 

correlation 0.7.  The (conditional) rank correlations may be chosen arbitrarily in the interval 

[‒1,1].  Such a network of bivariate and conditional bivariate constraints is called a regular vine. 

 

X                    Y                  Z 

└─0.7000─┘└─0.7000─┘ 

└─0.4000─┘ 

Figure 6: Regular vine for 3 variables. 

 

Just as the product moment correlation matrix does not determine the joint distribution, a rank 

correlation does not determine the copula. Figure 7 shows three copula which each realize rank 

correlation 0.7.   

 

                                                 
5
 Every symmetric positive definite matrix with one’s on the diagonal is a correlation matrix of some set of random 

variables. If the set of variables have stipulated univariate distributions, then the set of feasible correlation matrices 

is strongly constrained. Further, not every correlation matrix is a rank correlation matrix, and not every rank 

correlation matrix is the rank correlation matrix of a joint normal distribution.  The joint normal family realizes 

every correlation matrix, but its rank correlation matrices are sparse in the set of all rank correlation matrices. With 

several hundred variables, we always have to deal with partially specified rank correlation matrices, and the issues 

become more complex. The “completion problem” is the problem of extending a partially specified matrix to a 

positive definite matrix. Although its exact complexity is not known (Laurent 2001), it is a hard problem.  Partially 

specified structures like that in Figure 5 can be trivially completed by assigning (conditionally) independent copulae 

to unspecified edges, and this is also the completion with maximum entropy.  Such structures can also be easily 

converted into a sampling algorithm. These facts explain their popularity in uncertainty analysis, for details see 

(Kurowicka and Cooke 2006).  
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Figure 7: Three copulae with (rank) correlation 0.7, the normal (left), the minimum information 

(center) and the Gumbel (right). 

 

The normal copula is the rank distribution of a bivariate normal distribution. It has the property 

of tail independence, that is, given a high (low) value of one variable, the conditional probability 

that the other is high (low) is approximately equal to the independent probability of being high 

(low). The center copula is minimally informative with respect to the independent distribution, 

conditional on realizing the rank correlation 0.7. Intuitively, it is the smoothest copula realizing 

the stipulated correlation.  It also has tail independence. Evidently, the normal copula is not 

minimally informative. The Gumbel copula (right) has upper tail dependence.  Each of these 

copulae, if applied to the structure in Figure 6, realizes the required rank correlation structure. 

However, if we consider the product XYZ, the differences as shown in Table 6 are significant.  

 

X  Y  Z  
X,Y,Z exponential(1); pair wise rank correlation 0.7 

Copula Mean Variance 5% Perc 50% Perc 95% Perc 

Independent 1.01E+00 7.15E+00 3.15E-03 2.25E-01 4.39E+00 

Normal 3.95E+000 2.33E+002 2.83E-004 2.95E-01 1.79E+01 

Mininf 2.90E+00 4.40E+01 4.31E-04 2.97E-01 1.43E+01 

Gumbel 4.84E+00 4.51E+02 3.69E-04 2.61E-01 2.13E+01 

Table 6: Mean, variance and three percentiles for the product of three exponential variables 

with unit mean.  Except in the independent case, the variables have pair wise rank correlation 

0.7 with the normal, the minimal information and the Gumbel copulae. 

As general guidance, if nothing is known about the joint distribution other than the rank 

correlation, then the minimal information copula is indicated. This was applied extensively in the 

Joint Study. If tail dependence is suspected, then a tail dependent copula is indicated. Protocols 

for eliciting tail dependence have not been developed. This is an emerging issue in climate 

modeling as damage distributions, both in insurance and in finance, exhibit tail dependence.   

A variety of tools are currently applied in financial mathematics, where the tail independence of 

the normal copula has fallen in disrepute (Kurowicka and Joe 2011).  

 

4. Inner and outer measures for climate damages 
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The distinction of inner and outer measure is imported from measure theory in mathematics. A 

strategy for measuring a complex set is to build inner measures and outer measures. Inner 

measures build simple subsets of the target set and add them up to approximate the target 

measure from within. Outer measure performs the complementary operation by intersecting 

simple supersets of the target set. As these simple sets become more refined the inner and outer 

measures should converge. In mathematics, a set is called “measurable” if the inner and outer 

measures converge. In the same vein, if measures of climate damages obtained through ‘bottom 

up’ and ‘top down’ methods produce the same results, we may feel more confident in the results. 

If the subsets used to construct an inner measure are over estimated, the result may of course 

over estimate the target set. The same applies mutatis mutandis for outer measures. 

 

In measuring the damages from climate change, IAMs have been compiling lists impacted areas; 

health, crop yield, productivity of labor, storm damage, loss of coastland and migration, etc. For 

an assessment of the extensive damaging modeling in the IAM FUND see (Smith et al 2009). 

Every impacted area that we do not think of gets counted as zero. For example, the ocean’s 

phytoplankton accounts for about half of the Earth’s oxygen produced by plant life. We have lost 

about 40% of the ocean’s phytoplankton since 1950, and climate change is a prime suspect 

(Boyce et al 2010). Schlenker and Roberts predict that “Holding current growing regions fixed, 

area-weighted average yields are predicted to decrease by 30–46% before the end of the century 

under the slowest (B1) warming scenario and decrease by 63–82% under the most rapid warming 

scenario (A1FI) under the Hadley III model. “ (Schlenker and Roberts, 2009, p 15594). Neither 

the consequences of loss of phytoplankton biomass nor the recent crop loss predictions are in the 

IAM’s damage models The social institutions essential to economic growth may be impacted by 

mass migration (other than that due to sea level rise), war, loss of productivity, etc. The difficulty 

of modeling these features leads easily to their exclusion. Such damage models are inner 

measures of climate damages.  

 

We can also contemplate an outer measure based on the correlation of economic productivity 

with temperature. This approach goes back to the following graph of per capita GDP against 

latitude from Bloom and Sachs (1998). 

 



Appearing in Climatic Change  DOI: 10.1007/s10584-012-0634-y 

 
Figure 8: GDP per capita and latitude (Bloom and Sachs 1998) 

 

We could build a simple model of the effect of temperature on GDP from this graph. A better 

starting point is the G-Econ database (Nordhaus 2006, Nordhaus et al 2006) which maps 

economic output and geographical variables on a 1  1 grid. At 45 latitude a grid cell is 45mi
2
 

or 68km
2
; the size varies substantially from equator to pole.  We consider the non-mineral Gross 

Cell Product (GCPnm) for 1990 in 1995 USD, converted at market exchange rates. It varies from 

0.000103 to 1,155,800 [$10
6
]  USD(1995). GCP per person (GCPpp) varies from $3.54 to 

$905,000.  There are 27,445 grid cells. Removing grid cells with empty data or zero population 

and duplications leaves 13,934. A simple regression model can be read from Figure 9. A 1 C 

rise in average temperature is predicted to result in a 0.0586 decrement on ln(GCPnmpp). In 

other words, if we increase the average temperature in a grid cell by , we multiply the 

GCPnmpp by   e
0.0586

. For  = 5C this is 0.75; for  = 10C it is 0.56. In contrast, using the 

DICE damage function, 5 resp 10C warming multiplies output by a factor 0.93  resp.  0.78.  
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Figure 9: Regression of  ln(GCPnmpp) on average temperature 

 

Nordhaus et al (2006) propose a model of the form of a production density: 

 

ln(yi j) = 0 j Countj + k=1..n  kg
k
(Geoi j k) + i j. 

 

yij is output per km
2
 in 1995 international U.S. prices, i is the grid cell, j is a country or region 

index, and k indexes is the geographical variables. Countj is country effect, and ij is the 

equation residual. Geographic variables, Geoijk, are mean annual temperature, mean annual 

precipitation, mean elevation, ‘‘roughness’’ measured as standard deviation of elevation in grid 

cell, soil categories, and distance from coastline. The g
k
 are polynomial functions of geographic 

variables. The Greek variables 0 j are coefficients on regions, whereas the k are regression 

coefficients on geographic variables.  

 

The claim is not that this simple regression is a plausible model; it is a different tack that 

approaches damages ‘from without’ rather than from ‘from within’. We might discern three 

different groups in Figure 8. The very high producers with ln(GCnmpp) above ‒4 seem to 
prosper through the spectrum of average  temperatures. A large middle group is negatively 
correlated with average temperature. A bottom group seems indifferent to temperature. 
 

The G‒Econ data base is a very valuable resource that allows us to approach climate damages in 

new ways.  

 

5. Social Discount Factor (SDF) and Social Discount Rate (SDR) 

 

Without going all the way back to first principles,  c(t) is per capita consumption at time t,  

whose utility is U(c(t)) and suppose the value of this consumption at time t is valued at t = 0 as 

 

e
  t

 U(c(t)). 
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To express this as a factor multiplying c(t), we choose U(c) = c
1

 / (1‒), then c U(c) = U'(c) = 

c


 and U(c) = U'(c)  c / (1).  Assuming U'(c) > 0,  writing c•(t) = dc(t)/dt, and using 

U''(c)/U'(c) = ‒/c, we have 

 

U'(c) = exp(ln(U'(c)) =  exp(  (d/dt) ln(U'(c)) dt = exp(  [U''(c) c•(t)/U'(c)] dt 

 

= exp(  [c•(t)/c(t)] dt )  = exp(tG(t)) 

 

where G(t) = (1/t) u=0…t [c•(u)/c(u)]du is the time average growth rate of per capita consumption. 

 

Hence, up to a constant,    

 

e
  t

 U(c(t)) = e
 t( + G(t))

 c(t). 

 

We denote 

 

SDF = e
 t( + G(t))

;   SDR =  + G(t). 

 

 

6. The Bernoulli equation 

Let A(t)K(t)

N(t)

 (1)
 denote output at time t, and put (d/dt)K(t) = K•(t). The model  

 

K(t+1) = (1–)K(t) + (t)A(t)K(t)

N(t)

 (1)
 

 

reduces to a differential equation solved by Jakob Bernoulli in 1695. Write 

 

K•(t) + K(t) = B(t)K(t)

;  K(t) > 0;  B(t) = (t)A(t)N(t)

 (1)
. 

 

Set  w = K
(1)

.  Then w• = (1)K


 K•.  Dividing by K(t)

, this equation becomes: 

 

w• (t)/(1–) + w(t) = B(t). 

 

Multiply both sides by (1 )e
(1)t

  to get 

 

9e
(1)t

 w• + (1)e
(1)t

  w =  (d/dt) (e
(1)t

 w(t)) = (1  )e
(1)t

  B(t), 

 

The solution is 

 

e
(1)t

 w(t) = (1  ) u=o..t  B(u) e
(1)u

 du + w(0). 

 

Write this as 

 

w(t) = (1  ) x=o..t  B(u) e
(1)(t – u)

 du  + e
(1)t

w(0); 
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K(t) = [(1  ) x=o..t  B(u) e
(1)(t – u)

 du   + e
(1)t

 K(0)
 (1)

]
1/(1)

. 

 

If B is constant, this becomes 

 

K(t) = [(1  )  B x=o..t  e
(1)(t – u)

 du   + e
(1)t

 K(0)
 (1)

]
1/(1)

. 

 

Letting t  , we find that the steady state value of capital is given by (B/)
1/(1-) 

.  
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