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Copulae and Tail Dependence
Copula: C(uy, up) =P(Uz <ug, Uz <up); Ui~ Unif(0,1).

82C(U1, U2) = lims_o [ P(U1 <up, U <up + 8) - P(Ul <up, U < Uz) ] 13
=PU1<ug, Uz =uy) =P(Uy <up | Uz =uyp) (since Uy uniform).
Lower Tail dependence: A= lim 4_ 0+ C(u, u)/u.

NB for C(uy, u) = 1 (independent),
lim g0+ C(u, U)/u = q%/q — 0. Upper TD defined similarly for u* = 1-u.

L'Hopital:
lim ¢ 0+ C(u, u)/u=1lim g0+ dC(u, u)/du =P(U; <uy | U = up) + P(Uz < Uz | Up = uy).

C symmetric = A1 = 2limg_0+ P(U1<q|U;=0).

Normal Copula, Tail Independence

2limgsor P(U1qlUz2=0)=21limyxs o P(X1<X| X2 =x), Xi~ N(O, 1).
Y := (X2 | X1 = X) ~ N(px, 1-p?).

P(Y <) = O((x-pxX)N(1-p?)) = DON(L-p)N(L+p)) = 0; |p] < 1.
[NB D(xi)/D(X) ~ d(Xx)/dp(X) — o0 as X — -o0. ]
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Figure 1: Normal (left) , Clayton (middle) and Gumbel (right) copula, correlation 0.8.

The following graph shows the probability that Y exceeds its u-th quantile given that X exceeds
its u-th quantile, u = 0.5 ... 0.99, for correlation values r = 0.5 and r = 0.9.
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Figure 2: Conditional exceedance for the normal copula, correlation = 0.5 ... 0.9.

We see that for rank correlation r = 0.5 (blue), the probability that Y exceeds its median given
that X exceeds its median is about 0.6667. The probability that Y exceeds its 0.99 quantile given
that X exceeds its 0.99 quantile is 0.13. For rank correlation r = 0.9, the same exceedance
probabilities are 0.856 and 0.543. At some point the conditional exceedance probability dives
down in a supra linear fashion. The behavior for upper and lower exceedance probabilities is the
same, owing to the symmetry of the normal copula. Note that these exceedance probabilities do
NOT depend on the distributions for X and Y, since the exceedances are couched in terms of

percentiles.

A tail dependent copula will show very different behavior. The Gumbel copula is the most
popular simple copula for capturing upper tail dependence. The conditional exceedance

N



The Gumbel copulae with correlation 0.8 is shown in Figure 1. P(Y > u-th quantile | X > u-th
quantile) converges to a constant, which parameterizes the Gumbel family®.

The conditional exceedance probabilities for the Gumbel copula are shown in Figure 3, which
should be compared with Figure 2. At the median (u = 0.5) the conditional probabilities are
comparable to those in Figure 2. However, at the 99™ percentiles, for r=0.5 and r=0.9 these are
respectively 0.436 and 0.797 respectively.

Gumbel copula exceedence probabilities
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Figure 3 Conditional exceedance for the Gumbel copula, correlation = 0.5 ... 0.9.

Frank's copula exceedance probabilities Reverse Clayton copula exceedance
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Figure 4 Conditional exceedance for Frank and Reverse Clayton, correlation = 0.5 ... 0.9.

1 P(Y< u-quantile N X < v-quantile) = exp{-((-In(u))* + (-In(v))*)1/*}, where o >1 . An elementary computation shows that lim u_,1 P(Y >
u-quantile | X > u-quantile) = 2 - 21/%,
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Aggregation Amplifies Dependence

Micro-correlations are correlations between variables at or beneath the limit of detection.
The difficulty with micro-correlations is that they could so easily go undetected. One might not
readily assume that fires in Australia and floods in California are correlated, for example, but El
Nifo events induce exactly this coupling. These tiny correlations are amplified by aggregation,
undermining common diversification strategies.

The amplification under aggregation is illustrated by a very simple formula that should be
on the first page of every insurance text book, but isn’t. Let X;, Xy and Y1, ...Yy be two sets of
random variables with the same average variance o* and average covariance C (within and
between sets). The correlation of the sums of the X’s and the sum of the Y’s is easily found to be:

pEXi, LY =

This evidently goes to 1 as N grows, if C is non-zero and o is finite. If all variables are
independent, then C = 0, and the above correlation is zero. The variance of XX; is always non-

N2C
No2+ N(N-1)C ’



negative; if the o®and C are constant for sufficiently large N, it is easy to see that C > 0.
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Figure 5.1, Histogram of 500 correlations of randomly paired US exposure-adjusted flood Figure 5.2, Similar to Fig. 5.1, but showing 500 correlations of random sums of 100
loss per county, 1980-2006. The average correlation is 0.04 _m“l 500

Amplifying Tail Dependence?

An important question is When is tail dependence amplified by aggregation? Simple simulations
show that the answer depends on the copula and the margins. In the graphs below, variables are
are conditionally independent given a latent variable, to which they are all weakly coupled. For

the rest, the little that is known is given below.

normal, normal copula 0.3 to Latent, sums of 20 sums of 40

EY

normal, Gumbel copula 0.3 to Latent, sums of 20 sums of 40

N

Pareto(1), normal copula 0.3 to Latent sums of 20 sums of 40



sums of 40

How does tail dependence arise?

1) Aggregating events
2) Aggregating events + damages
3) Scale mixtures

Aggregating events

Latent Variable Model For Sums Under what conditions does

of Events >
UTD(S,(N), S,(N)) = 17
A%
Harry Joe's UTD condition:
P{U=u|V=1}=0 V0 <u<I.
Ul I"IIII‘Ui II'.I'IIIUZN
FRANK: No
Yi=1yisn3 Standard UTD copulae: YES

SIN=Y, o+ Yy 3 8§5(N)= Yy o +. Yoy NORMAL: YES ()



Table 5.1. Conditional probabilities Pr(Ss > N(|S1 > N() =
Av(r, ¢, N) with r = 0.9, ¢ = 0.7, Spearman pg = rank correla-
tion = 0.5; leading to parameters 6 = 1.54 for the Gumbel,
p = 0.518 for the bivariate normal (BVN), # = 7.90 for
the Frank copulae respectively. Limit behavior depends on the
comparison sign of p,(1) — .

Av(r,(,N)

N Gumbel BVN Frank
10 0.604 0.264 0.144
20 0.687 0.411 0.067
30 0.733 0.528 0.034
40 0.763 0.620 0.019
50 0.785 0.695 0.010
60 0.801 0.755 0.006
70 0.815 0.804 0.003
80 0.826 0.845 0.002
90 0.835 0.877 0.001

100 0.843 0.903 0.001

256 vbls, correlation to Latent = 0.2
Sums of 125 disjunct FRANK

Rnk sumif >.9 Rnk sumif >.99




Aggregating events and damages

| Scatter plot, ranks of aggregations of 5 | Scatter plot, ranks of aggregations of 30 |
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Figure 5.5. Percentile scatterplots of random aggregation of Florida county monthly
flood losses. Left: two random aggregations of five counties; right: two random aggregations
of 30 distinct counties.

Rank scatter plot, Exponential Rank scatter plot, Exponential
loss, Gumbel copula, sums of 5 loss, Gumbel copula, sums of 30
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Figure 5.8. A model for Florida monthly flood damages, exponential damages linked to

a latent variable with the Gumbel copula.




Scale mixtures

Mixtures of exponentials: Consider exponentials conditionally independent given rate, with
gamma mixing of rates. Marginal distributions are Pareto with parameter depending on shape of
gamma. Sums are positive tail dependent:

Figure 5.11. Percentile scatterplots for sums of Li variables, with shape of Gamma
mixing distribution = 3. Left: 2 L variables, rank correlation = 0.21; center: sums of 10
such variables, rank correlation = 0.77; right: sums of 50 such variables, rank correlation =

0.94.



VINES

Markov trees:
4
1 & 2 3
i
P
.y '-;f
Sampling: X’s ~ U[0,1], é )/,/

independent, U’s ~ U[0,1]

X1=U
alﬁ(uz)
|2x2(U3)

X4= 43x3(u4)

X5= asx3(U5)

RegularVine:
System of Bivariate Constraints

Regularvine + (conditional) copula => sampling algorithm

Constraints on edges: & ~

A= doubleton

*Every pair occurs once as 4,

*Copulae can be chosen
arbitrarily, tvpically indexed
by (rank) correlation

«Setting ij | K = Independent
== max. Inf realization given rest

10



Non Regular Vine




Theorem 3.2 Let D be the determinant of the n-dimensional correlation matriz (D > 0). For
any partial correlation vine

D= [] 1~ o) (4)
ecE(V)

Why: where R 15 multiple correlation:
D= (1-R% 5 o))(A-R% 5 p)-- (1R g y)-

Where p 1= parhal comrelation:
(1-R*Y 0 o) =(1-p* 123 2)(1- pP13.4 ) (1-pP1n)

The search for an optimal vine requires a method for enumerating and
searching all vines. The number of regular vines grows very quickly. A
closed formula for the number of regular vines on n elements was found in

Morales Napoles et al.! :
Theorem 3.1.

(1) For any regular vine on n — 1 elements, the number of reqular n-

dimensional vines which extend this vine is 2" 3.

(2) There are () x (n—2)! x 20=2M=3/2 jabeled reqular vines in total.

Note that the number of extensions of a regular vine does not depend on

the vine itself.

12



N NI #reg Vines
2 2 1

3 6 3

4 24 24

5 120 480

6 720 23040

7 5040 2580480
8 40320 660602880
9 362880 | 3.80507E+11
10 3628800 | 4.87049E+14
11 4E+07 1.37153E+18
12 4.8E+08 | 8.42669E+21
13 6.2E+09 | 1.12176E+26
14 8.7E+10 | 3.21631E+30
15 1.3E+12 | 1.9761E+35
16 2.1E+13 | 2.59012E+40
17 3.6E+14 | 7.2142E+45
18 6.4E+15 | 4.25511E+51
19 1.2E+17 | 5.2983SE+57
20 2.4E+18 | 1.38894E+64

Regular Vine + Conditional Copulae

Theorem [1] Let V be a regular vine on n elements, for
each edge e €E(")), let the conditional copula and
copula density be C,; ¢, | pes Cete2 | pes 1€ 1-D margins
with cdf F; and densities f; be given. Then the vine-
dependent distribution is uniquely determined and

has density:

Jo.n=f1 S0 Il ce1) Ceren | De (Fes | per Fea | De)-

Any joint density can be represented in this way, for any
regular vine....conditional copula NOT constant

Compare Hammersley Clifford

13




Tail dependent copula often arise in fitting
financial time series.

In the example below, N dentoes the normal copula, F is the Frank copula, t is the T copula and
G is the Gumbel copula.

SSBWG MSCI

N,-0.145 G90,-0.1 F,-0.04

Figure 12: The D-vine fitted to the Norwegian stock market data.
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Ice Sheet Elicitation (16 experts)
Accumulation, Discharge, Runoff in
Greenland, West Antarctica, East Antarctica
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Ca b 2 e 3 d _}'—44" e ) ar
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s el e
T (2
Ilean Stdew Pa S0%4 Q504
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W slr indep 25TEHIL 1EIEHYD | A55EH1 | 2 30EH)Y | 5 EEE-HIR
W slr normal 2A9FEH ) ZIIEHND [ -1 5OEHI0 | JO04EHDY | dE1EHID
PW slr taildep 254FHYY | AIAFHYS | FEO0EHI0 | 202EHY | 69EEHI2
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Appendix: some copula
detalils

Tail Dependence
Clayton 0.8 Gumble 0.8

MinInf Copula (p=0.8)

. Frank’ la: (p=0.
C“(u,v):max([u'“+v'“—l]—uﬁ,O) C“(“:")=EXP[‘[(‘IHH)““’(‘]H")“T J ranik’s copula: (p=08)

o{u,v;0) =0(1 - & O)e o) /[l—e‘e - (1—61'9“)(1—9‘9")]2 ‘

—6u _ 4] -6V _
C(u,v;6) —élog(hﬁe—(flexe—l)—l)]
a0 _

Normal copula: (p=0.8)

1
4 2880003,

The T copula
The Student-t copula is an elliptical copula define] &5 T
) 0 el :  P-2pryay Al
.#:;.I:Jl ] -..;'_-‘:'+ = ¢
- = ONfl=2 L, :

Elliptical Copula
Diagonal Band Copula

density of diagonal band copula with correlation
p=p>-2p2+1 p=0.8

0

MI(f) = -In(2"71|B]) 1

T o (uv)eB
generalized diagonal band (Bajorski; 01) fp(uY V)= “\/2(1* pe)—u°-v°+2uv
0 (u,v)¢B
s )
_ 2 | v-pu 1
B= v { /1_p2} 2 MI(f) = 1+In(2) + In(zV(1-p2))

16



Which copula?

max imize
n
> pyInpy
ii—1
subject to
E P =+, 2 Py =+
i1 -1
z X, X;py; =t
ij=1

1n 2i-1-n
n : n

0, %)) = (&

(M. Fischer, VCH chap 2)
Fully Nested Archemidian Copulae

L] L] [e] [u] [

Figure 2.1. FNA copula for n = 5.
Simple result on Tail dependence for scale mixures

Let X and Y be positive RVs with survivor function S, and conditionally independent given U ~
unif(0, 1), such that S(x|u) = S(x)". Then:

POXX | Y>X) = (1/2) (S(X)? - 1) 1 (S(X) — 1).

PF vk>0:

[ du SO = SE)M/(KINGS(X)) ) [o* = S)* =1/ (k In(S(X)) ).

P(X>x | Y>X) = [du S(x)®/ [ du S(x)"; substitute above expression.

17



Remark, for any such X,Y, UTD(X,Y) =%.

Recall definition: X is subexponential if for {X;} iid copies of X;

P(Zi=1...n Xi> X) / P(V{Xl...Xn} > X) — lasx — oo.

Trick: P(v{X1...Xp} > X) = 1-F(X)" = (1-F(x)) Yk-0...n1 F(x)k ~ NnS(X) as X — oo.

Proposition. Let {X;, Yi} be subexponential with survivor function S, and conditionally
independent given U ~ unif(0, 1); S(x|u) =S(x)"; letY and 3’ be sums of n X’s and n Y’s resp.
Then UTD(}., >°) = Y.

PF Asabove we get P(Y, > x| Y’ > x) =% (Sy(X)* — 1) / (Sy(X) — 1) ~ (X — o)
Yo (N?S(x)? — 1) / (nS(X) — 1) — %.
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