
Experts and Consensus in Social Science - Critical Perspectives from Economics, Sociology, 

Politics, and Philosophy. Editors: Carlo Martini and Marcel Boumans, Series title: Ethical 

Economy - Studies in Economic Ethics and Philosophy, Springer 

 

 

1 

 

 

Validating Expert Judgment with the Classical Model 

Roger M. Cooke 

Resources for the Future,  

Dept. Mathematics, TU Delft 

April 30, 2013 

 

Abstract: The classical model derives performance based weights for combining expert 

judgments  based on calibration or seed variables from the experts’ field. Since publication of the 

TU Delft expert judgment database in 2008, various authors have attempted to use this data base 

for cross validation, splitting the seed variables into training sets and test sets.  These  attempts 

are reviewed.  Many pitfalls and biases in cross validation efforts are identified and explained. A 

proposal for performing cross validation, based largely on the work of Eggstaff, Mazzuchi and 

Sarkani (2013) is formulated and illustrated with data from recent expert judgment studies. 

 

1. Introduction 

 

In 2008, Cooke and Goossens (2008) published the TU Delft data base (compiled up to 2006) 

comprised of 45 studies in which experts assessed calibration, or “seed” variables; variables for 

which true values are known post hoc. The Classical Model
1
 (Cooke 1991) was used to derive 

Performance Weight (PW) and Equal Weight (EW) combinations (Decision Makers, DM). For 

an explanation of performance weighting and performance measures see (Cooke 1991,  2008, 

Flandoli 2010 or Eggstaff et al 2013). Suffice to say that calibration or statistical accuracy is 

measured as the p-value of the “null hypothesis” that an expert’s probability statements are 

statistically accurate (we want not to reject the null hypothesis) and informativeness is measured 

as Shannon relative information with respect to a uniform or loguniform background measure. 

An expert’s combined score is the product of his/her p-value and informativeness, and satisfies 

an asymptotic scoring rule constraint.  This entails that an expert is weighted only if his/her p-

value is above a threshold, which is chosen so as to optimize the combined score of the DM. In 

global weighting the informativeness score is averaged over all calibration variables, and the 

same weights are applied to all variables; with item specific weighting the informativeness for 

each item is used and the weights differ from item to item.  All results reported here, except 

those in Cooke (2008a) use only global weights. 

 

The TU Database is unique in providing expert assessments of variables in their fields whose 

true values are known post hoc. Researchers have used this data base to explore new models and 

to study whether performance on the calibration variables predicts performance on the variables 

of interest. In a few studies, variables of interest were later observed, enabling out-of-sample 

validation.  In most cases the variables of interest are not observable on timescales relevant for 

the decision problem. Therefore, various forms of cross validation have been suggested. Clemen 

(2008) proposed a Remove-One-At-a-Time (ROAT) method according to which the calibration 

variables were removed one at a time and predicted by the model initialized on the remaining 

                                                 
1
 So called because of an analogy with classical hypothesis testing.   
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calibration variables. The predictions, though originating from different decision makers, were 

pooled and compared with the equal weight decision maker. On the 14 studies selected for this 

exercise, Clemen found that PW outperformed EW on 9, which was not statistically significant. 

Cooke (2008a, 2012) noted that this procedure is biased against PW since each calibration 

variable is predicted by a decision maker in which experts who assessed that particular item 

badly are up-weighted. It is commonly observed that removing one calibration variable can 

influence an individual expert's statistical likelihood by a factor 3 or more, a feature explained by 

the fact that statistical accuracy is a very fast function.  

 

Variations on the ROAT approach have been performed by other researchers. Lin and Cheng 

(2008) examined 28 of the 45 studies and found PW significantly out performing EW, although 

PW's out-of-sample performance was degraded. Lin and Cheng (2009) used ROAT on 40 studies 

finding no significant difference between PW and EW
2
. Lin and Huang (2012) used ROAT with 

the Brier score in a regression based study of the effects of aggregation method, dependence, 

number of experts and seed variables and overconfidence on the Brier score (defined as 1 minus 

the quadratic scoring rule).  

 

Other researchers have undertaken cross validation without ROAT. Cooke (2008a) looked at 

half-half splits in 13 studies with at least 16 calibration variables. Flandoli et al (2010) examined 

five datasets, choosing 30% of the number of calibration variables as the size of the test set, 

provided this number was at least 8, otherwise the test set was 8. They recoded the classical 

model in R, but did not implement item weights or the log uniform background measure. They 

randomly drew 500 partitions into training and test sets of the fixed sizes. The most extensive 

study of this kind is Eggstaff et al (2014), which initializes the global weights model on all non 

empty subsets of seed variables and in each case predicts the complementary subset, again using 

only global weights. Studies with large numbers of seed variables were split into separate studies 

to prevent combinatoric explosion. In total 62 expert judgment studies were analysed.  

 

Studies differ in expert subject matter, in numbers and training of experts,  in the methods of 

recruitment and methods of elicitation. For this reason, a numerical representation of out-of-

sample validity at the study level would be desirable. For each study, Eggstaff et al (2014) 

average the combined scores of PW and EW for each number K of variables in the training set, 

for K = 1 to N – 1, where N is the number of seed variables. The same experts, the same 

calibration variables, and the same information background measures apply for all training set 

choices within one study. However the statistical power of the test set goes down as the training 

set size increases, there are many more comparisons for values of K near N/2, and these 

comparisons have overlapping training sets. With this in mind the PW and EW combined scores 

are averaged for each size K, for K = 1..N–1. To aggregate these up the study level we may 

either average the score differences (PW – EW) or take the geometric mean (geomean) of the 

ratios PW/EW.   

 

                                                 
2
 There large differences between the in-sample values in these two papers, and those found in the original studies.  
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Whereas the difference of scores inherits the scores’ dimension (meters minus meters is meters), 

the ratio of scores is dimensionless (meters divided by meters is an absolute number). In 

aggregating ratios of positive numbers we must take the geometric mean, or geomean
3
. The ratio 

of PW and EW can be compared across training set sizes and across studies. The geomean of the 

ratios of combined scores of all comparisons per study are plotted in Figure 1. In 45 of the 62 

studies (73%) the geomean of combined score ratios PW / EW was greater than unity.  When 

PW’s combined score exceeded that of EW, it tended to exceed by a greater amount than when 

EW’s combined score exceeded that of PW.  The best eyeball assessment is to compare the mass 

of lines above and below the baseline of 1. The geomean of the geomeans for each study was 

2.46.  Summarizing,  PW outperforms EW in out of sample cross validation on more than two 

thirds of the studies, and the combined score of PW  is more than twice that of EW.   

 
Figure 1: 62 studies, per study: geomeans of comparisonsf PW/EW combined score ratios.  

 

The accuracy of a DM in terms of proximity of the median to the true value is not directly related 

to the scoring variables of statistical accuracy and informativeness. Eggstaff et al (2014) report 

an accuracy advantage of PW over EW comparable to the differences in combined scores; 

however that feature is not pursued in this paper. 

 

This paper addresses cross validation. First, the issue of scoring rules for individual variables is 

dealt with, followed by a demonstration of the bias in Remove-One-at-a-Time (ROAT) cross 

validation.  Realistic expectations for cross validation are developed in section 3. Comparisons 

based on 5 or fewer seed variables would require a large number of independent and statistically 

                                                 
3
 To see this suppose on two comparisons the scores were (PW=4, EW=1) and (PW=1, EW=4) The performance is 

identical, but the average of ratios is 1/2(4+1/4) =2.125. The Geomean is (41/4)
1/2

=1. Eggstaff et al report only the 

average scores for each size of the training sets, so we consider the ratios of averages. Since the average is always 

greater or equal to the geomean, the numerator and denominator in these comparisons would both be smaller if we 

took the geomeans of combined scores of each separate K-tuple of training variables. It's impossible to say if there is 

an overall effect of this choice.  
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identical studies to detect significant differences; 10 seed variables provide a more powerful 

basis for comparison. Section 4 analyses 4 studies reported since 2012  which involved at least 

10 seed variables. Based on a suggestion of Eggstaff et al. (2013), initializing the model on all 

subsets of one or two seed variables, and evaluating on all seed variables attests to the superiority 

of Performance Weighting (PW) over Equal Weighting (EW), or when that is not attested, 

enables understanding in terms of the number of experts and their individual performance.   

 

The cross validation exercises reported here were performed with the software system 

EXCALIBUR, which has been extensively tested in over 20 years of use. It is freely available at 

http://www.lighttwist.net/wp/. For cross validation of the Asian Carp data, the MATLAB code 

used in Eggstaff et al (2014) was graciously provided by the authors.   

 

2. Scoring rules for individual variables 

 

Scoring rules were originally introduced as a tool for elicitation. An expert gives a mass or 

density function for an uncertain quantity which is later observed, and a scoring rule assigns a 

number to the assessment-plus-realization.  Strictly proper scoring rules are such that an expert 

achieves his maximal expected score by and only by giving the assessment which correspond to 

his/her true belief. The classical model uses asymptotically strictly proper scoring rules based on 

sets of assessments and sets of realizations. Many authors have suggested using strictly proper 

scoring rules for individual variables, and summing the scores over a set of variables, an idea 

strongly discouraged in Cooke (1991). A simple example tees up the issue. Suppose an expert 

assess the probability of Heads with a coin of unknown composition as 1/2. On each toss with 

the coin, the score is the same for Heads and Tails. If these individual scores are added, then the 

sum score after 100 tosses is also independent of the actual sequence of outcomes; 50 Heads and 

50 Tails gets the same score as 100 Heads. Table 1 compares the quadratic score (positively 

sensed, on   [-1,1]) averaged over 1000 predictions of rain of two experts.  Both experts are 

equally informative in the sense that they both attribute 5 % probability to one 

 

Table 1: Two experts assessing next day probability of rain on 1000 days 

Probability of Rain next day: 55% 15% 25% 35% 45% 55% 65% 75% 85% 95% Totals 

expert 1 
  

assessed 100 100 100 100 100 100 100 100 100 100 1000 

realized  5 15 25 35 45 55 65 75 85 95 500 

expert 2 
  

assessed 100 100 100 100 100 100 100 100 100 100 1000 

realized  0 0 0 0 0 100 100 100 100 100 500 

Quadratic score expert 1 =  0.665;  Quadratic score expert 2 = 0.835 

 

hundred next days, etc. Expert 1 is statistically perfectly accurate, expert 2 is massively 

inaccurate, yet expert 2 scores higher than expert 1. The reason is that such rules decompose as 

the sum of a "calibration" and "resolution" terms (De Groot and Fienberg 1986). Resolution 

measures the expert's ability to separate the variables into statistically distinct subsets, regardless 
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whether the distributions assigned to the subsets correspond to the expert's assessments. High 

resolution overwhelms bad statistical accuracy in the above example.  

 

2. ROAT Bias 

 

To understand the ROAT bias, suppose two experts state the probability of heads. Let P1(Heads) 

= 0.8 and P2(Heads) = 0.2  be the probability of heads for experts 1 and 2.  Suppose that the 

decision maker’s probability is a weighted combination of the experts’ probabilities, Pdm = wP1  

+ (1-w)P2, where the weight of each expert, given observed data,  is proportional to the 

likelihood of each expert’s distribution, given the data
4
.  After observing n  Heads and m Tails, 

the experts’ likelihood ratio is  

 

           0.8
n
  0.2

m 
         

       

  =  0.8
n-m

  0.2
m-n

                                                  (1) 

          0.2
n
  0.8

m 

 

If m = n, then the weight ratio is 1, and w = 1/2. If m = n  1 then the weight ratio is 4 and w = 

4/5  Thus if we remove one Tail, re-initialize our model and predict the Tail which was removed, 

we find that the predicted probability of Heads is Pdm(Heads) = (4/5)  0.8  + (1/5) 0.2. = 0.68. 

Removing one Tail, strongly tilts the model toward expert 1, and our prediction probability for 

heads is  0.68. At the same time we evaluate this model on the Tail which we removed, hence the 

likelihood for this model on this observation is 0.32. The same holds, mutatis mutandis, when we 

remove a Head. Suppose we observe n = m; then the PW model would use w = ½.  If we truly 

validated out of sample with n = m fresh observations, the PW likelihood would be  0.5
2n

 ,  but 

the ROAT value would be 0.32
2n

. ROAT punishes PW relative to EW by a factor (0.32/0.5)
2n

. 

The classical model is more complex than this simple probabilistic model, but the same behavior 

can be observed in simple artificial examples
5
.  

 

ROAT sampling is NOT out-of sample validation. Each seed variable is removed one at a time, 

the model is re-initialized on the remaining seed variables and used to predict the removed 

variable. Each prediction is made by a DIFFERENT model. To appreciate how much these 

models may differ, Table 2 gives the 23 different performance weights for the eight experts that 

arise as the 23 seed variables in the Eudisp case are removed one at a time. Evidently, the 

differences between ROAT and true out-of-sample validation can be substantial. The weight for 

expert 4 varies from 1 to 0.4; that of expert 5 from 0 to 0.59. This is a consequence of the well 

know volatility of the calibration score, which is observed on every robustness analysis of every 

study.  The recalculation of weights when item j is removed tends to give more weight to experts 

who assessed item j badly, and hence this volatility is put to work AGAINST the PW model.  

                                                 
4
 Such likelihood weights are not proper scoring rules, and do not account for informativeness, nonetheless there is a 

strong analogy with the classical model, as the driving term in that model is the likelihood of the hypothesis that an 

expert is well-calibrated. 
5
 Take expert 1 (2) with 5, 50 and 95 percentiles equal to 0, 4, 8,  (2, 6, 10). Take 3 realizations = 0.5, 3 realizations 

= 9.5, 2 realizations = 4 and 2 realizations=6. PW and EW coincide and hence should be identical on out of sample 

validation; however, the score of PW under ROAT is a factor 105 lower than that of EW.  
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Table 2: Weights for ROAT in Eudisp 

Removed 
variable 

Expert 

1 2 3 4 5 6 7 8 

None 0 0 0 0.7683 0.2317 0 0 0 

1 0 0 0 0.8086 0.1914 0 0 0 

2 0 0 0 0.7928 0.2072 0 0 0 

3 0 0 0 0.8071 0.1929 0 0 0 

4 0 0 0 0.7303 0 0.2697    

5 0 0 0 0.4094 0.5906 0 0 0 

6 0 0 0 0.7022 0.2978 0 0 0 

7 0 0 0 0.6777 0.3223 0 0 0 

8 0 0 0 0 .7928 0.2072 0 0 0 

9 0 0 0 0.806 0.194 0 0 0 

10 0 0 0 0.8645 0.1355 0 0 0 

11 0 0 0 0.7003 0.1638 0 0 0.1359 

12 0 0 0 0.7042 0.1632 0 0 0.1325 

13 0 0 0 0.7659 0.2341 0 0 0 

14 0 0 0 0.6996 0.1654 0 0 0.135 

15 0 0 0 0.6287 0.1637 0 0.07593 0.1317 

16 0 0 0 0.704 0.296 0 0 0 

17 0 0 0 0.6996 0.1655 0 0 0.1349 

18 0 0 0 0.6286 0.1638 0 0.07588 0.1317 

19 0 0 0 0.704 0.296 0 0 0 

20 0 0 0 0.6499 0.1537 0 0.07101 0.1254 

21 0 0 0 0.5016 0.1307 0 0 0.3677 

22 0 0 0 1 0 0 0 0 

23 0 0 0 0.4094 0.5906 0 0 0 

 

 

 

3. Cross validation without ROAT: what to expect 

 

Absent observation of variables of interest, one option for some form of cross validation splits 

the calibration variables into a training set used to initialize the model and a test set used to 

assess performance. Cooke (2008) applied this method to 13 studies having at least 16 seed 

variables.  In 20 of the 26 cases the PW outperformed Equal Weights (EW). The probability of 

seeing 20 or more “successes” on 26 trials (77%), if the probability of success were 0.5, is 

0.001247.  In this exercise both global and item weights were used, according to which 

performed best on the training set. Cross validation with item weights is possible with 

EXCALIBUR, but it is extremely time consuming. A large exercise enabling the choice between 

global and item weights would require recoding the model.  

 

Intuitively, if we select experts who are 'statistically more accurate than average' in-sample, it is 

implausible that they should consistently be statistically less accurate out of sample. At worst 

they might be no better than randomly chosen experts out of sample (reversion to the mean). 
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Further it is plausible that averaging a large set of experts will be less informative than averaging 

a small subset. How many similar studies we need to detect these effects depends on the size of 

the effects, the number of seed variables in each study and the number of studies. This section 

performs some indicative calculations.   

 

We consider p = (0.05, 0.45, 0.45, 0.05) as the interquantile interval probabilities, and let s(N) = 

(s1(N),s2(N),s3(N),s4(N)) be the sample distribution based on N independent samples from p. The 

likelihood ratio test statistic 

 

2N I(s(N) | p)  = 2N i=1..4 si(N) ln(si(N)/pi)                                             (2) 

 

is asymptotically chi square distributed with 3 degrees of freedom if s consists of independent 

samples from p. If F3 is the cdf of the chi square distribution with 3 df, then 1-F3(2N I(s(N) | p)) 

is the p-value of s(N), and it is asymptotically uniformly distributed on the interval [0, 1]. For 

small N the distribution is not uniform. Figure 2 shows the p-value distributions for s(5), s(10), 

and s(20) based on independent samples from p. Note that s(5) is concentrated in the middle of 

the [0, 1] interval, its 17
th

 percentile is  0.394  and not 0.17  (the value for a uniform variable).  

 

 
Figure 2: P-values for s(5) (red), s(10) (green) and s(20) (blue) sampled independently from p. 

 

If the distribution s is not sampled from p then the mass functions of the three cases in Figure 2 

shift toward zero, however the shift is much slower for smaller N. Suppose the samples were 

actually sampled from the distribution p** = (0.2, 0.3, 0.3, 0.2). This would be the sampling 

distribution of an expert who has only a 60% chance of catching the realizations in his 90% 

central confidence band, corresponding to severe overconfidence. Figure 3 shows the mass 

function of p-values for p**(5), p**(10) and p**(20). 
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Figure 3: P-values for p**(5) (red), p**(10) (green) and p**(20) (blue) sampled independently from p**. 

    

The p-value of p**(5) has a 36% chance of falling below the standard rejection threshold 0.05; 

for p**(10) that chance is 54%. If two experts generate sample distributions from p and p**, then 

on 5 seed variables there is a 24% chance that the p-value of p** will be greater than that of p; 

on 10 seed variables that chance drops to 14%.    

 

Suppose we have three types of assessors, the first type's interquantile hits are sampled 

independently from p. The second type's hits are sampled independently from p**; the third are 

sampled independently from p* = (0.1, 0.4. 0.4, 0.1). Type p* shows overconfidence, though not 

as severe as p**.  The first type is perfectly calibrated, and his p-value is asymptotically uniform 

as the number of seed variables goes to infinity. The second type (p**) has p-values distributed 

as in Figure 3, for 5, 10 and 20 seed variables.  When an assessor of each type states a 5 

percentile, for example, the probability that the realization falls beneath that 5 percentile is 20% 

for p** and 10% for p*. The mean and standard deviations of the p-values on 5 seed variables of 

these three types are shown in Table 3, as computed by simulation. 

 
Table 3: Mean and standard deviation of p-values on 5 seed variables for three types of DM 

5 seed vbls mean  

P 0.50 0.23 

p*  0.41 0.25 

p** 0.23 0.23 

 

Figure 4 plots the mean of p-values for p, p* and p** as a function of the number of seed 

variables.  
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Figure 4: Mean p-values of p, p* and p** as function of number of seed variables.  

 

Note that the mean for p starts above the asymptotic value of 0.5, then dips down to 0.42 after 15 

seed variables before climbing back to 0.5.  The expected value of the severely overconfident 

assessor doesn't drop below 0.05 until 17 seed variables. On 5 seed variables the distribution 

with severe overconfidence and a location bias,  p*** = (0.5,0.3,0.1, 0.1), will have and expected 

p-value of 0.06.  

 

We may think of p and p* as representing high scoring assessors, while p** and p*** are 

representative of low scoring assessors. The following thumb rules apply: assuming that the 

information scores are equal, we cannot statistically distinguish between high scoring experts (p 

and p*) on 50 seed variables (the highest number on any study was 55). High scoring assessors 

can be statistically distinguished from severe overconfidence (p**) on 20 seed variables
6
, while 

severe overconfidence plus location bias can be statistically distinguished from high scoring 

assessors on 10 variables.  

 

We now consider T independent studies with 5 seed variables, where on ALL studies the DM is 

p, p* or p**.  How many studies would we need to decide which type of DM we have?  An 

approximate answer is derived by noting that the mean of averaging p-values over T independent 

studies is the mean value in Table 3, and the standard deviation is approximated by /T. Figure 

5 shows the 5 percentile of p's  sample average (dotted), the mean, 5 and 95 percentiles of p*'s 

sample average (dashed) and the mean and 95 percentile of p**'s sample average (solid); each is 

a function of the number of studies T.  The 5 and 95 percentiles of p and p** cross at T = 8.  That 

means that if we average p-values over 8 studies, each based on 5 seed variables, we can be 95% 

certain that the average of p**'s p-values will be in the critical region for p; and conversely if we 

average p's p-values, we can be 95% certain of being in the critical region for p**.  Put a bit 

loosely, if two DM's had interquantile probabilities corresponding to calibration scores 0.5 and 

                                                 
6
 This is a thumb rule, the 5% lower confidence bound for p is 0.05, for p* this  bound depends on the number of 

seed variables, since the expected p-value of p* goes to zero as the number of seed variables goes to infinity. For 5, 

10 and 20 seed variables the 5% lower bounds are 0.02, 0.01 and 0.005 respectively.  
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0.23 on 5 seed variables, we could distinguish them statistically on 8 identical and independent 

studies.  

 

 
Figure 5: Number of studies with 5 seed variables for distinguishing DMs 

 

Note that slopes of the percentiles go to zero, making the point of intersection unstable to small 

perturbations. Table 4 gives the number of studies need to distinguish these DMs 

 
Table 4: Number of studies to distinguish DMs with 5 seed variables 

Number of studies to distinguish pairs of DMs 

p vs p* perfect vs overconf (p vs p*) 75 

p vs p** perf. vs severe overconf (p vs p**) 8 

p* vs p** overconf vs severe overconf (p* vs p**) 19 

 

Whereas perfect calibration can be distinguished from severe overconfidence based on 8 studies 

with 5 seeds, distinguishing perfect calibration  (p) from mere overconfidence (p*) on 5 seeds 

requires 75 studies.  

 

Table 5 combines the information of Tables 3 and 4, but for studies involving 10 seed variables. 

Overconfidence and severe overconfidence can now be distinguished on 11 studies, instead of 

19. Curiously, the mean of the p-values for p has dropped (one can see this in Figure 4) with 10 

seeds the distribution is still far from uniform.  As a result, distinguishing  perfect calibration (p) 

and overconfidence (p*) actually requires more studies (90 instead of 75).  

 
Table 5: p-values of DMs based on 10 seeds, and number of studies to distinguish DMs 

10 seed vbls mean Std Number of studies to distinguish pairs of DMs 

p 0.44 0.21 p vs p* perfect vs overconf 90 

p*  0.36 0.25 p vs p** perfect vs severe overconf 5 

p** 0.13 0.20 p* vs p** overconf vs severe overconf 11 

 

These results circumscribe what we can realistically expect from cross validation with 

appropriate caveats: 



Experts and Consensus in Social Science - Critical Perspectives from Economics, Sociology, 

Politics, and Philosophy. Editors: Carlo Martini and Marcel Boumans, Series title: Ethical 

Economy - Studies in Economic Ethics and Philosophy, Springer 

 

 

11 

 

 The DM's of individual studies are not all the same,  

 Calibration dominates the weighing, but information is also important 

 The number and value of the experts in a study is also important. If there are several high 

scoring experts in a study, then fluctuating scores of experts will tend to cancel, keeping 

PW's performance high, but with one or no high scorers, extra instability can be expected, 

causing PW to perform poorly. 

 

Most studies use 10 seed variables; if we split the seed variables into training at test sets of 5, 

then we may need in the order of 20 studies to distinguish the type of differences between p* and 

p**, but we need many more to distinguish p and p*, which is the range within which PW and 

EW calibration scores typically lie. 

 

In contemplating cross validation, the first question is, what questions do we want to answer? On 

could formulate the following: 

 Do the DM's calibration and information scores in-sample predict those out-of-sample? 

 Is PW better than EW out of sample? 

 

When a cross validation study initializes the performance based DM on K of the N calibration 

variables, the following issues arise: (1) If K is close to N, then the number of out-of-sample 

predictions, N-K, is small, statistically unpowerful, and predictions are subject to the ROAT bias. 

(2) If K is small, then the power of the calibration score is lowered, thereby reducing the ability 

to distinguish high and low statistical accuracy of experts. (3) A straddling bias may arise when 

training and testing sets are complementary halves of the seed variables. The intuition behind 

this is as follows: two independent random numbers X and Y become negatively correlated if we 

conditionalize on their sum. When the sum is fixed, one variable can get larger only at the 

expense of the smaller. 

 

Straddling bias 

The straddling effect can be observed theoretically as follows: repeatedly draw independently 10 

realizations from the distribution p*, divide them into disjoint sets of five, and denote by V1, V2 

the distribution of p-values in the first and second sets. Since V1, V2 are independent, their 

correlation 12 is zero. The partial correlation given  the p-value of the whole set S is defined as  

 

                               12  ‒  1s2s                             ‒ 1s
2 

          12 | S  =   =    . 

                        ( (1‒ 1s
2
) (1‒ 2s

2
))

1/2
         1‒ 1s

2
 

 

since  1s = 2s; 12 = 0. If S represents the “reduced power p-value” of all 10 variables
7
, and if 

this negative partial correlation is strong, then the p values of the first and second sets of 5 will 

                                                 
7
 This would hold after the power  p-values on samples of size 10 has been reduced to the power of sample size 5. 

We find that for assessor p (perfect calibration) V1 and V2  straddle the  reduce power 10 sample p-value with 

probability 0.24. For assessors p* and p** straddling occurs with probability 0.32 and 0.54 respectively. Note that 
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tend to straddle the p-value of the whole set. This combined with the fact that the performance 

weight scores have higher variance than equal weight scores will tend to cause performance 

weights to outperform on only one of the two subsets, giving an overall 50% chance that PW 

exceeds EW, assuming the informativeness scores are roughly equal. Note that if the size of 

disjoint sets decreases, then 1s decreases as well; if the size is greater than one half, then 12  will 

be positive. In either case the partial correlation will move towards zero. The effect of a 

straddling bias in real datasets has not yet been studied, but it is a potential problem.  

 
Table 6: Partial correlations 

 
 

 

 

Table 6 shows the partial correlations for p, p* and p** for seed variable sets of size 3, 5, 10, 20 

and 50. Notice that the partial correlations are rather weak for the perfectly calibrated assessor 

whose interquantile probabilities are p. However, for p* and p** the effect is sizeable, even for 

disjoint subsets of size 3 in a set of 10 seed variables.  

 

Using the data of Eggstaff et al (2014), Table 7 breaks the out-of-sample  geomean of mean-

score ratios PW/EW and arithmean of mean-score differences PW-EW into the number of 

variables in the training set and in the test set. For each training set size K (dot-shaded), we 

collect all comparisons with K in the training set, and consider the geomean of their out-of-

sample score ratios and the arithmean of their out-of-sample score differences. This procedure 

aggregates over test sets of different sizes since the 62 studies differ in total number of seed 

variables. Similarly we aggregate over all test sets of size K (plane-shaded), thus aggregating 

over different sizes of training sets. There are 62 studies in total, and 62 with training sets of size 

one, and also 62 with test sets of size 1. The 35 studies with at least 11 seed variables have a 

training set of size 10, and these same 35 studies also have a test set of size 10. Displaying the 

                                                                                                                                                             
for p all p-values have approximately the same expectation (namely ½). For p* and p* the expected p-value is 

decreasing in sample size, which is why we have to equalize power to see the straddle effect. 
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data in this way, we see that the geomean "likes" small training sets and large test sets. The 

arithmean "likes" larger training sets up to size 9.  Large test sets have greater statistical power, 

which tends to drive down both the PW and EW scores, and also drives down their difference. 

This explains arithmean’s decreasing behaviour in test size.   

 
Table 7: Geomean and Arithmean as function of training size and test size, using data of Eggstaff et al (2014). The 

number of studies with training set size 16 and greater are too small to draw conclusions.  

 
 

 

Figure 6 compares the results of aggregating up to the study level by taking the geomean of the 

mean-score ratios (left panel) and the arithmetic mean of the mean-score differences (right 

panel), where “mean-scores” refers to combined scores averaged over training sets of the same 

size, per study. The left panel of Figure 6 was already presented in Figure 1. Since the studies are 

indexed from small to large numbers of seed variables, we readily note that a larger number of 

seed variables lowers the PW and EW scores and also the score differences. A similar effect was 

noted in Table 7. Figure 6 highlights the differences between geometric versus arithmetic 

aggregation, but the superiority of PW over EW is evident from either perspective.  
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Figure 6:  Geomean (left) of PW and EW score ratios and arithmetic mean (right) of PW and EW score differences, 

for each of 62 studies analysed in Eggstaff et al (2014). If a study had N seed variables, the PW and EW scores were 

averaged over training sets of size K, K = 1 … N-1 and aggregated with either geo- or arithmetic means to 

determine an out-of-sample performance indicator per study .  

 

The  "small training set" cross validation has the advantages of avoiding the ROAT and the 

straddle bias. Eggstaff et al (2014) noted that with small training set the actual scores did not 

predict the scores on the larger set of calibration variables, but the superiority of performance 

weighting against equal weighting was attested.  If this finding is corroborated, then a smaller 

number of calibration variables would be defensible, if a smaller number achieved adequate 

coverage of the problem domain. Based on the results of section 3, the current recommendation 

is that the test set should comprise at least 8, preferably 9 variables.   

 

4. Cross Validation of Recent Data 
 

The four studies discussed here are recent and have not yet been published. Figures 7 through 10 

show the results of initializing the PW model on all subsets of size K=1 and K=2, and using 

these to predict all calibration variables. Using all seeds instead of the out of sample seeds is 

done to enable uniform comparison with all-sample results. The difference between all-sample 

and out of sample is modest for small K values. The curve is the contour of calibration  

information that corresponds to the all-sample EW. The all-sample EW and PW are indicated by 

solid and outlined stars respectively. Geomeans are given in the caption to each figure for the 

ratio of the PW combined score based on one and two seed variable initializations and all-sample 

EW.  The geomean of all geomeans in the cases analysed here is 2.57 
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Figure 7 Ice sheet, 11 seed variables: geomean PW/EW one seed = 1.48, two seeds = 0.59. PW > EW on 9 of 11 

one seed initializations, and on 34 of 55 two seed initializations, overall on 43/66 = 65% of these initializations.  

 

 
Figure 8: Obesity, 10 seed variables: geomean PW/EW one seed = 3.46, two seeds = 6.19. PW > EW on 9 of 10 one 

seed initializations, and on 39 of 45 two seed initializations, overall on 48/55 = 87% of these initializations.  
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Figure 9: Asian carp, 15 seed variables: : geomean PW/EW one seed = 2.64, two seeds = 3.22. PW > EW on 15  of 

15 one seed initializations, and on 101  of 105 two seed initializations, overall on 116 / 126 = 92% of these 

initializations. 

 

 

 
Figure 10: Fistula, 10 seed variables; geomean PW/EW for one seed = 34.8, for two seeds 0.34. PW > EW on 2 of 

10  one seed initializations, and on 19 of 45 two seed initializations, overall on 21 / 55 = 38% of these initializations. 

  
In the Fistula case there is no discernible pattern for PW to outperform EW out of sample, for the others there is. In 

addition to numbers of experts and seed variables, out of sample performance depends on the experts themselves. In 

the Fistula case, there were 8 experts, all of whom scored poorly.  However, on one or two seed variables, one 

expert may have achieved a high score and gathered dominant weight, only to degrade on the entire set of seed 

variables. 
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The Asian carp study with 15 seed variables allows us to illustrate aggregation while keeping at least 9 variables in 

the test set. Table 8 shows results for each size of the training set from 1 to 6. “Arithmean” means that the experts’ 

combined score results were averaged over all tests with the same size of training set; similarly “geomean” indicates 

that the geometric mean was taken. Column 9 considers the ratio of arithmeans, column 10 takes the ratio of 

geomeans, and column 11 considers the difference of arithmeans.  

 

Table 8: Asian Carp cross validation 

1.    Nr  
in 

Training 
set 

2.    Nr 
of 

training 
sets 

3.   PW 
median 

4.   PW 
Arithmean 

5.   PW 
geomean 

6.   EW 
median 

7.   EW 
Arithmean 

8.   EW 
geomean 

9.   
Arith(PW) 

/ 
Arith(EW) 

10.   
Geo(PW) 

/ 
Geo(EW) 

11.   
Arith(PW) 

- 
Arith(EW) 

1 15 0.1134 0.1260 0.1173 0.0688 0.0582 0.0554 2.1648 2.1158 0.0678 

2 105 0.1470 0.1953 0.1491 0.0561 0.0670 0.0613 2.9170 2.4311 0.1284 

3 455 0.1679 0.2019 0.1636 0.0755 0.0764 0.0678 2.6438 2.4136 0.1255 

4 1365 0.2001 0.2406 0.1695 0.0957 0.0864 0.0747 2.7852 2.2676 0.1542 

5 3003 0.2285 0.2626 0.1962 0.0864 0.0971 0.0822 2.7059 2.3858 0.1656 

6 5005 0.2382 0.2808 0.1970 0.1114 0.1084 0.0902 2.5918 2.1834 0.1725 

 

Note that all of the PW and EW scores increase in the training set size, reflecting the diminishing power of the test 

set. Note that the difference between the PW arithmean and geomean is greater than this difference with EW. The 

geomean is always less than or equal to the arithmean, and the difference becomes greater as the (positive) numbers 

are more variable. Indeed, if one of the aggregated non-negative numbers is zero the geomean is zero,  no matter 

how large the other numbers are. This tendency of the geomean to be driven by the smallest of highly variable non-

negative numbers cautions against uncritical use of the geomean. The geomean of a normal variable with mean 1 

and standard deviation 0.8, truncated at 0.001 is 0.42, while its mean is 1.04. With this in mind, the ratio of 

geomeans (column 10) would punish PW for its greater variability. The difference of arithmeans (column 11) is 

affected by the decrease in statistical power. The ratio of arithmeans (column 9) avoids both these issues and is the 

current favorite. The geomean of column 9 is 2.62, which is the geomean of column 4 divided by the geomean of 

column 7.  Figure 11 compares the PW and EW scores ratios and differences, for each of the 9949 training sets of 

size 1..6.  

 

  
Figure 11 Ratios and differences of PW, EW scores for Asian Carps, based on 1 to six training variables out of 15 

calibration variables. 

 

 

Conclusion 

 

Cross validation is more complex that appears at first sight. It is easy to see that single variable scores like the Brier 

or quadratic score are inappropriate, although they are still misused for this purpose. Less evident but still readily 
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demonstrable is the bias in the ROAT method. Cross validation without ROAT is more challenging. Considering the 

straddle bias and the power loss relative to the expected size of the PW - EW differences, and the number of studies, 

the training set should be less than half of the total number of seed variables, and should leave at least 8, preferably 

9, seed variables in the test set.  

 

To derive a single out-of-sample validation number for each study, the following procedure reflects the best current 

insight: 

I. Average the PW and EW combined scores (calibration  information) scores over training sets of size K 

which leave at least 9 variables in the test set.  Call these averages PW(K), EW(K). 

II. For each K, compute the ratio PW(K) / EW(K) and the difference PW(K) – EW(K).  

III. Take the geomean over K of these ratios: ∏ K=1..K* [PW(K)/EW(K)]1/K*   (preferred) and the arithmean of 

the differences: (1/K*) ∑K=1…K* PW(K) – EW(K) (for comparison); where N – K* = 9, and N is the number 

of seed variables. If N = 10, use K* = 2.    

 

The geomean is preferred in (III) as the ratio PW(K)/EW(K) is dimensionless, and PW(K) – EW(K)  is affected by 

the statistical power of the test set.  Throughout all these comparisons, the experts, and seed variables are the same, 

and the information scores can be meaningfully compared. Taking the geomean over all comparisons with the same 

training set size is not recommend, as (a) the number of comparisons can be very large,  (b) the geomean is strongly 

influenced by the minimum value, and (c) the PW has greater variability than EW.  

 

Future work could be profitably directed to performing cross validation with item weights and performing cross 

validation on all studies in the TU Delft base including recent studies. Of course, the studies are designed to pick up 

the large differences in expert performance, and are fit for that purpose. However we parse the Eggstaff data, PW 

seems to outperform EW convincingly. Since these are out of sample results, it is not surprising that the difference 

in performance is less than in sample. Further, these studies were not designed to optimally enable cross validation. 

As we better understand how cross validation should be done, we may modify the study designs.  
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