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Vine Regression with Bayes Nets: A Critical Comparison
with Traditional Approaches Based on a Case Study on the
Effects of Breastfeeding on IQ

Roger M. Cooke,1,2,∗ Harry Joe,3 and Bo Chang3

Regular vines (R-vines) copulas build high dimensional joint densities from arbitrary one-
dimensional margins and (conditional) bivariate copula densities. Vine densities enable the
computation of all conditional distributions, though the calculations can be numerically inten-
sive. Saturated continuous nonparametric Bayes nets (CNPBN) are regular vines. Computing
regression functions from the vine copula density is termed vine regression. The epicycles of
regression–including/excluding covariates, interactions, higher order terms, multicollinearity,
model fit, transformations, heteroscedasticity, bias–are dispelled. One simply computes the
regressions from the vine copula density. Only the question of finding an adequate vine cop-
ula remains. Vine regression is applied to a data set from the National Longitudinal Study of
Youth relating breastfeeding to IQ. The expected effects of breastfeeding on IQ depend on
IQ, on the baseline level of breastfeeding, on the duration of additional breastfeeding and on
the values of other covariates. A child given two weeks breastfeeding can expect to increase
his/her IQ by 1.5–2 IQ points by adding 10 weeks of breastfeeding, depending on values of
other covariates. A child given two years breastfeeding can expect to gain from 0.48–0.65 IQ
points from 10 additional weeks. Adding 10 weeks breastfeeding to each of the 3,179 children
in this data set has a net present value $50,700,000 according to the Bayes net, compared to
$29,000,000 according to the linear regression.

KEY WORDS: Bayes net; breastfeeding; copula; Gaussian copula; heteroscedasticity; IQ; multivariate
regression; National Longitudinal Study of Youth; regression heuristics; Regular vine; vine copula

1. INTRODUCTION

A Regular vine (R-vine) copula (Bedford &
Cooke, 2002; Cooke 1997) is a tool for constructing
high dimensional distributions with dependence.
One-dimensional margins can be fitted from data,
the dependence structure is represented by sets
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of bivariate and conditional bivariate copulas. A
Wikipedia page provides an informal introduction
(https://en.wikipedia.org/wiki/Vine_copula). For
definitions and properties of vines, see Joe (2014),
Kurowicka and Cooke (2006), Kurowicka and Joe
(2010), for their historical origins see Cooke, Joe,
and Aas (2010) and Joe (1994). Vines are most
actively employed in financial mathematics (Aas &
Berg, 2009; Aas, Czado, Frigessi, & Bakken, 2009;
Chollete, Heinen, & Valdesogo, 2009; Czado, Brech-
mann, & Gruber, 2013; Fischer, Köck, Schlüter, &
Weigert, 2009; Jaworski, Durante, & Härdle, 2013;
Low, Alcock, Faff, & Brailsford, 2013). Software
has been developed at the TU Munich (Brech-
mann & Schepsmeier, 2013; Nagler, Schepsmeier,
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Stoeber, Brechmann, & Graeler, 2019), TU Delft
(Hanea, Kurowicka, Cooke, & Ababei, 2010), and
the University of British Columbia (Joe, 2014).
For the special case of (Gaussian) Bayes nets, soft-
ware is available, and it is capable of handling very
large problems (https://www.tudelft.nl/ewi/over/de/
faculteit/afdelingen/applied/mathematics/applied/
probability/risk/software/uninet/).

The number of labeled R-vines on n variables
is quite large (Cooke, Kurowicka, & Wilson, 2015;
Morales, 2009):

(n
2

)
(n − 2)!2( n−2

2 ), (1)

and any absolutely continuous distribution on n vari-
ables may be represented on any Regular vine with
density f1,2…n written as a product of one-dimensional
marginal densities f1…fn and copula densities (Bed-
ford & Cooke, 2001):

f1,2,....,n (x1, . . . , xn) = f1 (x1) . . . fn (xn) �
e∈υ

ce1,e2;D(e).(2)

Here, edge e = {e1,e2,D(e)} in edge set ν has con-
ditioning set D(e) and conditioned variables e1, e2.
The copula density function ce1,e2 ; D(e) may depend
on the conditioning set D(e), that is, a different cop-
ula function may be used for different values of D(e).
The “simplifying assumption” that the copula density
functions do not depend on the values of the condi-
tioning variables is often invoked, resulting in “sim-
plified R-vines” (Acar, Genest, & Neshlehova, 2012;
Hobaek Haff, Aas, & Frigessi, 2010; Stoeber, Joe, &
Czado, 2013). For simplified vines the bivariate cop-
ulas in trees 2 and higher depend on the values of the
conditioning variables only through the conditional
cumulative distribution functions of (e1,e2). It is not
the case that any absolutely continuous distribution
can be represented in the above form on any simpli-
fied R-vine; some simplified R-vines will fit a mul-
tivariate data set better than others. A Gaussian R-
vine, where the copulas on the edges of the vine are
Gaussian satisfies the simplifying assumption and can
represent any absolutely continuous distribution with
a multivariate Gaussian copula.

A simplified R-vine requires estimation of n(n-
1)/2 bivariate copulas and allows empirical univariate
margins. Compared to other parametric families of
multivariate distribution functions, those represented
on R-vines confer enormous modeling flexibility with
a manageable number of estimated parameters. The
conditional distribution of any set of variables given
any disjoint set of variables can be computed, hence
also the conditional expectations. In other words,

ALL regression functions can be computed. Vine
copula density estimation thus affords a viable alter-
native to stipulating an algebraic form for regression
functions and estimating their coefficients from
data. Choosing an algebraic form raises questions
like:

• Can or should some potential predictors or co-
variates be excluded from predicting a response
variable of interest?

• Should some covariates be transformed?
• Is multicollinearity a concern?
• Should higher order terms be included?
• Should interactions be included?
• Is the error variance constant (homoscedastic)?
• If homoscedasticity fails, how should we esti-

mate the error variance?
• Without known functional form for the error

variance how should we estimate regression co-
efficients?

• How should we evaluate model fit?

Such concerns are denoted here the epicycles of
regression (see also, Sala-I-Martin, 1997). More de-
tail on vine regression is found in Chang and Joe
(2019), Kraus and Czado (2017), and Parsa and Klug-
man (2011).

This article explores two uses of vine regression
when one of the observed variables is to be predicted.
First (1) using vine models to fit or to smooth data
and (2) using the vine copula density to compute re-
gression functions. For (1), the distinction between
fitting and smoothing is not sharp; fitting usually min-
imizes some measure of lack of fit, whereas smooth-
ing tries to reveal underlying structure by blurring
out detail. The vine copula density may be used
to compute regression functions. For (2) because of
Equation (2), we can draw arbitrarily many samples
from a wide variety of multivariate distributions for
which the exact regression functions are known. This
confers the possibility of ground truthing the heuris-
tics used to address the above epicycles. That is, we
compare different regression heuristics with the true
regression functions.

This article illustrates both possibilities and
focuses on Gaussian vines represented as Bayes
nets. These are not intended to fit the data, and
they may miss features like tail dependence and
asymmetry (Joe, Li, & Nikoloulopoulos, 2010). On
the other hand, they often do a reasonable job of
representing rank correlations and enabling an in-
tuitive graphical representation with fast analytical
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Fig 1. Histogram of number of weeks breastfeeding in NLSY data.

conditionalization. The accuracy of a Bayes net
can be checked by comparing outcomes with those
from good fitting R-vine. Additional detail on vine
regression applied to the effect of breastfeeding on
IQ is found in Cooke, Joe and Chang (2015, 2020).

Section 2 introduces a data set from the National
Longitudinal Study of Youth (NLSY) for study-
ing the relation between breastfeeding and IQ, in
the presence of other covariates. Section 3 presents
a Gaussian smoothed emulation of the data, Sec-
tion 4 compares various regression heuristics with the
“ground truth” obtained by conditionalization. Sec-
tion 5 discusses the question of a good fitting R-vine
for this data set, and Section 6 concludes.

2. NLSY DATA

There is a great deal of policy interest on the ef-
fects of breastfeeding both in the developed and the
developing world and much controversy surrounds
attempts to isolate this effect (for a review see Horta
& Victora, 2013). The NLSY is perhaps the most of-
ten cited data set in this discussion.

To study the effect of breastfeeding duration, we
down select to children who were ever breast fed
and focus on (roughly) continuous covariates with
mild and independent censoring. Retaining only data
without censoring, a data set of 3,179 samples is ob-

tained for a child’s IQ, measured by the Peabody
pictorial visual test, a nonverbal test for IQ, usually
taken at age 8–10. The explanatory variables (co-
variates) are weeks breastfeeding (BFW), Mother’s
IQ measured by the armed forces qualification test
(MAFQT, not scaled as an IQ test, but closely cor-
related with IQ, usually taken at age 18), family in-
come at child’s birth (INC), Mother’s highest com-
pleted grade of schooling (MGRADE), Mothers age
at child’s birth (MAGE), and child’s year of birth
(CBIRTH). The goal is to quantify the effect of BFW
on IQ in the presence of these covariates.

The reported number of weeks of breastfeeding
(Fig. 1) range from 1 to 156. 2678 of the 3,179 re-
ported weeks breastfeeding are even, presumably a
spurious mnemonic artifact. Among the odd num-
bers, only 59% are above one week. Many of the
one-week entries may indicate a failed attempt at
breastfeeding, thereby conflating the effect of breast-
feeding duration with the effect of ever versus never
breastfed. On the other hand, the effect of additional
breastfeeding is strongest for children with the small-
est duration of breastfeeding (see Fig. 4). Hence, re-
stricting to children with at least two weeks breast-
feeding probably leads to an under estimate of the
effect of duration of breastfeeding, whereas includ-
ing children with less than two weeks breastfeeding
probably leads to an over estimate. In computing the
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Table I. Multiple linear regression for NLSY data, see text for explanation of covariates. R2 from the linear regression is 0.236

Coefficients SE t Stat p-value Lower 95% Upper 95%

CBIRTH −0.065 0.124 −0.522 0.602 −0.308 0.179
BFW 0.051 0.013 4.093 0.000 0.027 0.076
MAGE −0.597 0.453 −1.320 0.187 −1.485 0.290
MGRADE 0.589 0.128 4.614 0.000 0.339 0.839
MAFQT 0.262 0.012 22.513 0.000 0.239 0.285
LnINC 17.986 11.414 1.576 0.115 −4.395 40.366

Table II. Rank correlation matrix for NLSY data

MAFQT INC MGRADE CBIRTH MAGE BFW IQ

MAFQT 1.00 0.46 0.52 0.21 0.22 0.24 0.50
INC 0.46 1.00 0.46 0.62 0.62 0.17 0.32
MGRADE 0.52 0.46 1.00 0.26 0.28 0.18 0.31
CBIRTH 0.21 0.62 0.26 1.00 0.93 0.17 0.14
MAGE 0.22 0.62 0.28 0.93 1.00 0.19 0.15
BFW 0.24 0.17 0.18 0.17 0.19 1.00 0.18
IQ 0.50 0.32 0.31 0.14 0.15 0.18 1.00

effect of breastfeeding duration on IQ (Table V) both
options are given.

The output of a multiple linear regression is
given in Table I (the fat tailed covariate INC is
logged).

The rank correlation matrix of the NLSY data
displays some substantial dependence among the in-
dependent variables, which reduces the precision of
the coefficients’ estimates.

3. VINE REGRESSION

A continuous nonparametric Bayes net
(CNPBN) is constructed using the one-dimensional
empirical distributions and dependence based on
Table II. Since the (conditional) copulas in CNPBNs
are all Gaussian, they are parametrized by (condi-
tional) rank correlation. IQ is the unique sink node;
all arcs are incoming meaning that all influences are
toward IQ (see Fig. 2). MAFQT is the first root,
all its arcs are outgoing, and all rank correlations
associated with these arcs are unconditional. The
influences are interpreted as going from MAFQT
to the other nodes. The second root is INC, all
its arcs except that from MFQT have INC as their
source, and these arcs are associated with conditional
rank correlations given MAFQT. The third root is
MGRADE, and its source arcs are associated with
conditional rank correlations given MAFQT and
INC. Proceeding in this way, CBIRTH is the source

of three arcs, MAGE is the source of two arcs, BFW
is the source of one arc; its correlation reflects the
influence of BFW on IQ after the influence of other
nodes is removed. The theory of regular R-vines tells
us that these (conditional) copulas together with the
one-dimensional margins uniquely determines the
joint density and that the (conditional) copulas are
algebraically independent. For details on CNPBNs
and their relation to R-vines, see Kurowicka and
Cooke (2006), and for R-vines see Bedford and
Cooke (2002) and Cooke (1997).

If pj denotes a partial rank correlation of vari-
able j with sink node IQ in the conditioned set,
[1 – �j (1 − pj

2)]0.5 is the multiple rank correlation of
IQ on all the other variables (Kurowicka & Cooke,
2006). Its square is the vine copula-R2. Reading
the values of partial rank correlations from Fig. 2
yields vine copula-R2 = 0.2416, which is nearly equal
to the R2 from linear regression (0.236). In other
words, the fraction of variance of IQ explained by
other variables in the original predictor space is
nearly equal to the fraction of explained variance
after transforming all variables to uniform with
the probability integral transformation (the copula
space).

The partial rank correlations are derived from
the multivariate normal distributions whose rank cor-
relation matrix is closest to the empirical rank cor-
relation matrix of the data in Table II. More pre-
cisely, we transform each variable Xi with CDF Fi to
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Fig 2. Bayes net for NLSY data. Each
node shows the empirical distribution
of the corresponding variable as well
as its mean and standard deviation
(±). The Bayes net is built of nested
trees, each tree with one root, that is
a node with only outgoing arcs in that
tree. The first tree is red, the second
is blue, third is green, fourth is pur-
ple, fifth is orange, and sixth is black.
Arcs are associated with (conditional)
partial rank correlations. The red arcs
from the first tree are unconditional,
the blue arcs from the second tree
are conditional on MAFQT, the green
arcs from the third tree are conditional
on MAFQT and INC, the purple arcs
from the fourth tree are conditional on
MAFQT, INC, and MGRADE, the or-
ange arcs from the fifth tree are con-
ditional on MAFQT, INC, MGRADE,
and CBIRTH, the black arc from sixth
tree is conditional on all preceding
nodes. These partial rank correlations
together with the one-dimensional mar-
gins and the copula uniquely determine
the joint distribution.

Table III. Rank Correlation Matrix from Gaussian Bayes net left of “�” and rank correlations from NLSY data (right of “�”)

MAFQT INC MGRADE CBIRTH MAGE BFW IQ

MAFQT 1 0.45�0.46 0.52�0.52 0.2�0.21 0.21�0.22 0.22�0.24 0.47�0.5
INC 1 0.44�0.46 0.57�0.62 0.57�0.62 0.16�0.17 0.29�0.32
MGRADE 1 0.23�0.26 0.26�0.28 0.16�0.18 0.31�0.31
CBIRTH 1 0.9�0.93 0.16�0.17 0.12�0.14
MAGE 1 0.19�0.19 0.14�0.15
BFW 1 0.18�0.18
IQ 1

standard normal as Zi = � −1Fi(Xi), where � is the
standard normal CDF. Z = (Z1,…Zn) is not mul-
tivariate normal, but we consider a multivariate
normal vector Z’ with the same covariance ma-
trix as Z. Fig. 2 shows partial rank correlations
of Z’; the rank correlation matrix of Z’ is given
in Table III. It can be shown that the partials in
Fig. 2 uniquely determine the rank correlation ma-
trix (Bedford & Cooke, 2002). Together with the
one-dimensional margins and Gaussian copula with
associated rank correlations assigned to each arc,
these partials uniquely determine the joint distribu-
tion (Kurowicka & Cooke, 2006). The joint distri-

bution of (F1
−1�(Z’1),… Fn

−1�(Z’n)) is called the
Gaussian smoothing of (X1,…Xn). It replaces the
original copula of X1,…Xn with the closest Gaussian
copula.

Using the Gaussian copula, with any given vec-
tor of covariate values, we may sample the condi-
tional mean of IQ given the covariate values. Doing
this (based on 32,000 conditional samples) for each
of the 3,179 individuals in the data set, a Gaussian
smoothed predictor of IQ is found, denoted E(IQ|X).
Table IV compares the mean square error and mean
absolute deviation of the Gaussian smoothing pre-
diction (E(IQ|X)) and the linear prediction with
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Table IV. Mean square error and mean absolute deviation of the
Gaussian smoothing prediction (E(IQ|X)) and the linear

prediction with coefficients from Table I, applied to the NLSY
data

E(IQ|X) Linear Prediction

RMSE 15.45 15.46
MAD 11.59 11.59

coefficients from Table I, applied to the NLSY data.
Over the whole data set the differences are small, but
for given values of X = x, we shall see that the differ-
ences can be large.

3.1. The effect of breastfeeding duration on IQ

It is helpful to reflect on the meaning of “the ef-
fect of breastfeeding duration on IQ.” If we condi-
tionalize on one value b of BFW, then the expecta-
tion of IQ given BFW = b, E(IQ | BFW = b), will
be confounded by all the other covariates which are
correlated with BFW. This would answer a question
like “given an individual about whom we know only
that BFW = b, what do we expect his IQ to be?” In-
deed, BFW = b also tells us something about the
mother’s age and the family’s income, and so on and
this should influence our expectation of IQ. With lin-
ear regression the increment in expected IQ from b
additional weeks breastfeeding is independent of the
values of the other covariates. With vine regression
that need not be the case.

One is often interested in a different question: “If
we change only the BFW for an individual, how might
that affect that individual’s IQ?” When we change the
value of BFW, we do not change the family’s income
or the mother’s highest grade of schooling, and so
on. Putting X = (Cbirth, Mage, Mgrade Mafqt, Inc,
BFW), with possible value x, then E(IQ | X = x) gives
the expected IQ for an individual with covariate val-
ues x. The answer to the latter question is found by
considering the expected difference in IQ for individ-
ual x and another individual identical to x except that
BFW has been augmented by δ > 0, written x � xBFW

+δ. The effect of BFW on IQ is then found by inte-
grating this expected difference over values of X:

Effect BFW on IQ = EXP(1/δ)[E(IQ|X\XBFW

+ δ) − E (IQ|X )] . (3)

In other words, we integrate the scaled differ-
ence of two regression functions which differ only
in that one has δ weeks more breastfeeding than the

other. Obvious generalizations of (3) would enable
joint regression (say of IQ and INC) on multivariate
effects (say BFW and MGRADE). These condition-
alizations are readily handled with Bayes nets.

Fig. 3 shows the CDFs of IQ, E(IQ | X ), and also
the CDF of the linear regression predictor of IQ from
Table I. E(IQ | X) and the linear regression predictor
are comparable, except on the low IQ end.

The linear predictor assumes that the effect of
breastfeeding on IQ is linear; one additional week
breastfeeding adds 0.05 IQ points, adding 25 years
of breastfeeding adds 65 IQ points. By varying δ in
(3), vine regression avoids such implausible predic-
tions. Table V shows the effect of breastfeeding du-
ration on IQ for values of δ from 1 to 25. To compare
with the linear predictor, the effect scaled per week
is given. Results of including and excluding individu-
als with BFW = 1 are also shown. The weekly effect
approaches the linear predictor value of 0.05 as the
number of additional weeks increases.

In vine regression, the effect of adding δ weeks
of breastfeeding to a baseline breastfeeding level
plateaus as δ increases and as the baseline increases,
as is eminently reasonable. In consequence, the ef-
fect for low baselines and low δ is higher than the lin-
ear model predicts. The combined action of these fac-
tors, together with the marginal distribution of BFW
(Fig. 1) leads the linear model to under predict the
benefit to the population of adding, say, 10 weeks
breastfeeding to every child in the data base, relative
to the Bayes net. To illustrate, we use the estimate
of Grosse et al. (2002) that each full scale (reading
and math) IQ point lost reduces future work produc-
tivity by 1.76−2.38%, monetized by Gould (2009) at
$17,815 in discounted lifetime earnings.

Extending this calculation to the whole NSLY
data set, adding 10 weeks breastfeeding to each of
the 3,179 children would add $50,700,000 according
to the Bayes net, but only $29,000,000 according to
the linear regression.

The differences of the regression functions E(IQ
|X) and E(IQ |X� BFW + δ) scattered against BFW
(for BFW > 1) show that the effect of additional
weeks of breastfeeding is greatest for low values of
BFW. Fig. 4 shows the results for δ = 10 and 20. A
child given two weeks breastfeeding can expect to in-
crease his/her IQ by 1.5–2 IQ points by adding 10
weeks of Breastfeeding, depending on the values of
other covariates.

Fig. 5 plots the conditional standard deviation
of IQ against the conditional expectation for IQ, for
each individual vector of covariates in the NLSY data



Vine Regression with Bayes Nets 7

Fig 3. CDFs of IQ, the linear predictor of IQ, and E(IQ |X ).

Table V. Effect of breastfeeding duration on IQ for additional weeks δ

Effect of BFW on IQ: Ex [ E(IQ|X�BF + δ) − E(IQ|X)] (32,000 samples)

δ = 1 3 5 10 15 20 25
0.303 0.456 0.636 0.895 1.122 1.316 1.554

Effect per week

0.303 0.152 0.127 0.090 0.075 0.066 0.062

Effect per week (BFW > 1)

0.192 0.104 0.096 0.072 0.063 0.056 0.054

set. The conditional standard deviation is evidently
not constant. These standard deviations from the re-
gression estimate are comparable to error distribu-
tions in ordinary linear regression and are often as-
sumed to be constant even when the distributions are
not normal. Fig. 5 shows that this assumption may
be violated even when the copula is Gaussian. The
non Gaussian behavior is solely attributed to non-
Gaussian univariate margins.

4. EPICYCLES OF REGRESSION AND
GROUND TRUTH

Epicycles were used in the Ptolemaic planetary
model as ad hoc model adjustments to keep the Earth
at the center of the universe while “saving the phe-
nomena.” The term is currently used to denote mod-
eling tweaks not based on direct observations but
motivated by other means.
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Fig 4. Scatter plot of E(IQ | X � XBFW
+ 10) − E(IQ | X) (blue) and E(IQ | X
� XBFW + 20) − E(IQ | X) (red) against
the baseline BFW starting at two weeks.

Fig 5. Conditional standard deviation versus conditional mean.

Traditional regression and vine regression follow
different philosophies. In vine regression a vine
copula density is chosen from a wide set of densi-
ties with arbitrary univariate margins and diverse
dependence structures. Gaussian vines are the most
convenient from the viewpoint of conditionalization
but ignore features in the dependence structure like
asymmetry and tail dependence. Based on heuristics,
traditional regression selects an algebraic form for
the regression function and estimates the coefficients
from multivariate data. This section contrasts the
two philosophies using the NLSY dataset. The goal
is not to select an “optimal” functional form; absent

a multivariate density this is a fool’s errand. Nor
is the intention to compile an exhaustive catalogue
of regression epicycles; the set of possibilities is too
large. Instead, we illustrate a few of the more obvious
choices. From Fig. 2 we see that the standard devi-
ation of INC is almost twice the mean. This might
motivate a transformation to compress its values;
a log or rank transformation could be considered.
From Table I we see that MAGE and CBIRTH are
not statistically significant, as their 90% confidence
bands contain zero. This could motivate excluding
these variables. Suspecting that the effect of weeks
breastfeeding should taper off, one might add a
quadratic term in BFW. Table II shows relatively
high correlations of MAFQT with INC, MGRADE,
and BFW, which could be an argument for including
these three interaction terms. For good measure we
add both the interaction terms and the quadratic
term for BFW. Table VII compares the results.

In the presence of interactions and higher order
terms, we cannot simply compare the coefficient of
BFW. Instead, Table VII reports the average boost
in predicted IQ resulting from giving each subject in
the data 10 extra weeks of breastfeeding. The ratio of
largest to smallest boost is 1.4; the effect of the choice
of epicycles is in the order 40%. The most common
metrics for judging model adequacy are fraction of
explained variance (adjusted R2) and residual stan-
dard deviation, each adjusted for the number of esti-
mated parameters in the model. They give very little
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Table VI. Effect of adding 10 weeks breastfeeding to baseline for Gaussian vine regression and linear regression, monetized according to
(Grosse et al 2002) and (Gould 2009). For linear regression, the expected IQ points added to the population are 10×0.05×(Nr children at a

given baseline value for weeks breastfeeding)

Expected effects of 10 weeks additional breastfeeding

Weeks breastfed 1 2 3 5 10 15 20
No. of children 203 181 126 58 59 9 143

Gaussian vine Additional IQ points 714 287 178 56 33 6 89
Monetary value [USD] $12.7M $5.1M $3.2M $1.0M $0.59M $0.11M $1.6M

Linear model Additional IQ points 104 93 64 30 30 5 73
Monetary value [USD] $1.8M $1.6M $1.1M $0.53M $0.54M $0.08M $1.3M

Table VII. The 7 multiple regressions from left to right are as follows: (a) predictors CBIRTH, BFW, MAGE, MGRADE, MAFQT,
ln(INC); (b) similar to (a) with INC replacing ln(INC); (c) similar to (a) with rank(INC) replacing ln(INC); (d) MAGE and CBIRTH

deleted; (e) model in (a) with addition of BFW2; (f) model in (a) with addition of three interaction terms MAFQT with ln(INC),
MGRADE, BFW; (g) model in (a) with the three interactions and BFW2

Transform INC Exclude Higher order Interactions

Ave IQ boost
BFW = 10 ln(INC) (a) INC (b)

Rnk(INC
(c))

CBIRTH,MAGE
(d) BFW2 (e)

MAFQT(Ln(INC)+
MGRADE+BFW)

(f) +BFW2 (g)

0.529 0.511 0.547 0.480 0.666 0.515 0.643
Adj R2 0.239 0.234 0.242 0.238 0.239 0.241 0.241
Residual SD 15.477 15.523 15.442 15.492 15.476 15.452 15.451

Table VIII. Same multiple regressions as in Table VII, but applied to the proxy data set. The ground truth is added in the rightmost column

Transform INC Exclude Higher order Interactions

Ave IQ boost
BFW = 10 ln(INC) (a) INC (b)

Rnk(INC)
(c)

CBIRTH,
MAGE (d) BFW2 (e)

MAFQT(Ln(INC)+
MGRADE+BFW) (f) +BFW2 (g)

Ground
truth

0.422 0.416 0.422 0.408 0.573 0.469 0.575 0.809
Adj R2 0.244 0.241 0.244 0.244 0.244 0.245 0.245
Residual SD 15.291 15.325 15.297 15.294 15.288 15.287 15.287

guidance in choosing a model. It is difficult to imag-
ine how the discussion over epicycles would ever con-
clude. The discussion of Ptolemy’s epicycles went on
for some 1,500 years.

What is needed is the ground truth. If the ground
truth is the actual effect of giving each subject in this
data set an additional 10 weeks breastfeeding, then
the epicycle discussion runs no risk of ever conclud-
ing. However, the question of ground truth can be ap-
proached differently. Suppose we construct a proxy
data set resembling the NLSY data, for which the ac-
tual density is known. We can easily generate such a
proxy by drawing 3,179 samples from the density rep-
resented in Fig. 2. These samples have the same mar-
gins and similar dependence structure (see Table III,

IV, 6), but they are NOT sampled from the distribu-
tion which generated the NLSY data. That distribu-
tion will forever be unknown to us. Rather, they con-
stitute a similar multivariate data set for which the
density is known. Therefore, the conditional expecta-
tions can be computed subject only to sampling error.
We apply the epicycles of Table VII to this proxy data
set and compare the results with the ground truth.
The results are in Table VIII.

Adjusting the values in Table VIII for BFW = 1
we can infer that the coefficient of BFW in the case
“Ln(INC)” in a linear regression is 0.042 and not
0.051 as in Table I. The value 0.042 lies well within
the 90% confidence band for BFW in Table I (0.028,
0.077), but it is based on a separate sample from a
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Table IX. Comparison of Gaussian C-vine and good fitting R-vine. For these comparisons the predictions were based on conditional
medians rather than conditional means

AIC RMSE MAD
Effect of BFW on IQ

(δ = 10) (based on median)

Good fitting R-Vine −10,619 15.664 11.65 0.062
Bayes net −10,224 15.661 11.66 0.068

different distribution. The ratio between the largest
and smallest effect of 10 additional weeks breastfeed-
ing is again 1.4. The values for adj R2 are a bit higher
and those of standard error are a bit lower than in
Table VII, reflecting the fact that the distribution in
Fig. 2 is a bit smoother than the NSLY distribution
and hence a bit more predictable. The ground truth
effect in Table VIII, 0.809, is a bit lower than the com-
parable value 0.895 in Table V, V, which is based on
the actual NSLY data.

The message from Table VIII is that none of the
epicycle values are close to the ground truth, and the
common heuristics of model fit are not pointing us
in the right direction. With Table VII we have no
way of knowing the truth and the epicycle discussion
can continue unhindered. In Table VIII we know the
ground truth and we can conclude with finality that
the epicycle values are all wrong. That discussion has
ended.

One feature of a preselected functional form for
regression functions is that predictions can easily be
made for covariate values which are out of sample,
although one can debate whether this is a boon or
a bane. For vine regression, regression functions are
calculated for each individual in the data set. Predict-
ing out of sample would require fitting a multivari-
ate function to the regression functions. The difficulty
in doing this is perhaps commensurate with the diffi-
culty of predicting out of sample.

5. ASSESSING MODEL ADEQUACY

Assessing model adequacy in the case of Bayes
nets is not straightforward. Indeed, such nets apply
“Gaussian smoothing” of the dependence structure
while preserving the one-dimensional distributions.
Such models do not aspire to fit the data perfectly
but rather to capture the molar features of the data.
One way to assess adequacy in this sense is to fit a
richer model in which key assumptions are relaxed
and determine if the results change significantly.

The class of R-vines is the obvious candidate for
this purpose. They relax the model structure shown
in Fig. 2 and relax the restriction to Gaussian copu-
las. Recall that with the simplifying assumption dif-
ferent vine structures are not equivalent; some sim-
plified vines will fit the data better than others. A
good fitting R-vine for the NLSY data set was given
in Cooke, Joe and Chang (2020). Suffice to say that
only eight of the 21 bivariate copulas in the good
fitting R-vine are Gaussian, and many of the others
have asymmetry and tail dependence. The Akaike in-
formation criterion (AIC) value for the good fitting
R-vine copula is −1.06 × 104, which is smaller than
the AIC value −1.02 × 104 for the Gaussian copula,
indicating a better fit (see Cooke, Joe & Chang 2020
for a fuller discussion)

The results for a good fitting R-vine and the
Bayes net are shown in Table IX. The difference
between the effect of breastfeeding duration on IQ
based on the conditional means and conditional me-
dians reflects the fact that the disproportionately
large gains at the low end of IQ and breastfeeding
duration are not captured by the difference: Median
(IQ|X�BFW + 10) – Median(IQ|X).

Even though the good fitting R-vine produces a
better fit to the data than the Bayes net, for predict-
ing IQ based on covariates, the R-vine has scarcely
lower MAD and slightly higher MSE than the Bayes
net. The value of the R-vine comparison in this case is
to confirm the supposition that the Gaussian smooth-
ing does a reasonable job in capturing the depen-
dence between IQ and the covariates.

6. CONCLUSIONS

Vines can be a useful tool in regression analyses
in two ways. First, they provide flexible and tractable
classes of high-dimensional densities for representing
multivariate continuous data. This may be done by
Gaussian smoothing, which captures overall depen-
dence while blurring out such features as asymme-
try and tail dependence in the copula. Alternatively,



Vine Regression with Bayes Nets 11

a good fitting R-vine density can be fit to the mul-
tivariate data. Once a density is chosen, regression
functions can be computed and the result of a pol-
icy change for a set of covariates can be readily com-
puted. All regression models which are linear in the
covariates will predict an effect that is linear in the
covariates. Hence, breastfeeding for 25 years would
increase the expected IQ by 65 points. Any “satura-
tion effect” must be imposed from outside. In vine
regression there is no agonizing over the epicycles
of regression. The only question to be addressed is
whether the density provides an adequate represen-
tation of the data. At present the best heuristic for
answering this is to compare the results of a simple
Gaussian smoothed BN, with a good fitting R-vine.

The second useful employment of vines in re-
gression is to produce multivariate samples from a
wide variety of multivariate densities which can serve
to ground truth regression heuristics. From the exam-
ple analyzed here, it appears that neither adjusted R2

nor root mean square error provide reliable guides
for finding the ground truth.

The NLSY is an observational study and the
Bayes net model makes use of the univariate distri-
butions of the variables as well as a smoothed repre-
sentation of the dependence structure. Classical re-
gression does not use this information and hence
does worse for prediction.

Based on the Bayes net, the expected effects of
breastfeeding on IQ depend on IQ, on the baseline
level of breastfeeding, on the duration of additional
breastfeeding and on the values of other covariates.
A child given two weeks breastfeeding can expect
to increase his/her IQ by 1.5–2 IQ points by adding
10 weeks of breastfeeding, depending on the values
of other covariates. Such differentiated predictions
cannot be obtained by regression models that are lin-
ear in the covariates.
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