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Abstract

Averaging quantiles as a way of combining experts' judgments is studied both

mathematically and empirically. Quantile averaging is equivalent to taking the

harmonic mean of densities evaluated at quantile points. A variance shrinkage law is

established between equal and harmonic weighting. Data from 49 post‐2006 studies

are extended to include harmonic weighting in addition to equal and performance‐

based weighting. It emerges that harmonic weighting has the highest average

information and degraded statistical accuracy. The hypothesis that the quantile

average is statistically accurate would be rejected at the 5% level in 28 studies and at

the 0.1% level in 15 studies. For performance weighting, these numbers are 3 and 1,

for equal weighting 2 and 1.

K E YWORD S

averaging distributions, averaging quantiles, combing experts, expert judgment, over‐
confidence, variance shrinkage

1 | INTRODUCTION

Suppose one elicits cumulative distribution functions (cdf's) F1, … Fn

and/or probability density functions (pdf's) f1, … fn from n experts. What

should one do with this information? Some argue against combining the

distributions unless necessary for policy (Morgan, 2014, Morgan

et al., 2009). The equally weighted combination of cdfs, EW(x) = (F1(x)

+…Fn(x))/n is the legacy method. Geometric averaging, or Geometric

Weighting GW(x) = ∫z≤xΠ fi(z)
1/ndz/∫ Π fi(u)

1/ndu has been advocated as

being “independence preserving” (Laddaga, 1977) and “externally

Bayesian” (Genest & Zidek, 1986). Geometric averaging tends to

concentrate mass in regions where the experts agree. This tendency is

more pronounced with harmonic averaging or harmonic weighting

(HW). HW has found recent adherents who propose quantile averaging

as an alternative to EW. As shown below, averaging quantiles is

equivalent to harmonically averaging densities at the quantile points.

These solutions all require complete cdf's. When only fixed

percentiles, or quantiles, of each distribution, say 5, 50, and 95

percentiles, are given, the above solutions require imputing distribution

functions based on the elicited quantiles. Popular approaches are

fitting a parametric distribution (O'Hagan et al., 2006) or minimizing

information subject to quantile constraints relative to a background

support (Cooke, 1991). Averaging quantiles is much simpler; one

simply averages the 5 percentiles, the 50 percentiles, and the 95

percentiles. There is no need to impute a distribution. Although not

attested in any guidance of which the author is aware, it is often

employed as a way of summarizing data without introducing additional

assumptions. It has been adopted by the COVID‐19 ForecastHub

(https://covid19forecasthub.org/doc/ensemble/; Cramer et al., 2021;

Ray et al., 2020). Examples of others using quantile averaging include

(Christensen et al., 2018; De Gooijer & Dawit, 2019; Flandoli

et al., 2011; Kim et al., 2021; Sayedi et al., 2020; de Vries & van de

Wal, 2015). It has been promoted as an alternative to equal weighting

as horizontal averaging as opposed to vertical averaging (Lichtendahl

et al., 2013).

Here, mathematical and empirical properties of quantile averag-

ing are examined. The next section shows that quantile averaging of

distributions is equivalent to harmonically averaging their densities at
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the quantile points (taken from Bamber et al., 2016; Colson &

Cooke, 2017). and derives a variance shrinkage law: Defining Ave

Var = (1/n)Σ Var(Fi), simple calculations show:

Var EW Var Var Var Var HW= of means + Ave ≥ Ave ≥

The conditions for equality are different for the two

inequalities.

Variance shrinkage raises the question whether HW invites

overconfidence. A database of 49 post‐2006 studies (Cooke

et al., 2021) has been extended to include HW combinations for

each study. Section 3 contains a comparison of PW (item‐specific

performance‐based weighting), EW, and HW at the study level.

The following picture emerges: Whereas PW and EW as statistical

hypotheses would be rejected at the 5% level on 3 resp 2 of the

49 studies, HW is rejected on 28 (57%) studies. On 15 (31%)

studies rejection is at the 0.1% level. HW's informativeness on

average exceeds that of EW and is comparable to that of PW.

Section 3 gives results and examines whether study parameters

could predict the poor statistical performance of HW. Section 4

shows that HW is appropriate when interpolating, as opposed

to combining, distributions. A final section gathers conclusions.

Supporting Information gives mathematical details. All data and

code are available from the author on request.

2 | METHODS

Let F and G be continuous invertible cdf's from experts 1 and 2, with

densities f, g. Let HW, hw denote respectively the cdf and pdf of the

result of averaging the quantiles of F, G:

HW r F r G r( ) = 1/2( ( ) + ( ))−1 −1 −1 (1)

A good intuitive interpretation (Andrea Bevilacqua, personal

communication) notes that HW takes the average of the experts'

median values and a confidence interval (CI) whose width is the

average of the experts' CIs. The position of the median within the CI

depends on the distributions.

To gain further insight into Equation (1), take derivatives of both

sides:

hw HW r f F r g G r1/ ( ( )) = 1/2(1/ ( ( )) + 1/ ( ( )))−1 −1 −1 (2)

hw HW r
f F r g G r

( ( )) =
2

1/ ( ( )) + 1/ ( ( ))
−1

−1 −1 (3)

Equation (3) says that hw is the harmonic mean of f and g,

evaluated at points corresponding to the r‐th quantile of each

distribution. The harmonic mean of n numbers strongly favors the

smallest of these numbers: the harmonic mean of 0.01 and 0.99 is

0.0198, the geometric mean is 0.099 and the average is 0.5. To

appreciate the effect of this, consider a flexible and tractable class of

distributions on the unit interval:
















F x a F r

ln r

ln a

ln r

ln a
( ) = 1 − ;   ( ) = −

(1 − )
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( )

x

x
−
1− −1

−1b

b

b
1

a b> 1; > 0 (4)

Figure 1 shows two expert distributions from this class, F and G,

and also shows HW, EW, and GW.

For each x on the horizontal axis, the slope of HW(x) is close to the

smaller of the slopes of F(x) and G(x); causing HW(x) to grow slowly for

small and large x, resulting in a concentrated distribution. EW in contrast

has a much wider CI. Note that HW is more concentrated than GW.

Variance shrinkage is based on the Cauchy Schwarz inequality:

for any x,y ∈ ℝn, (Σxi
2)(Σyi

2) ≥ (Σxiyi)
2 with equality if and only the xi

and yi are proportional. Putting yi = 1, this says

( )∑ ∑ ∑n x x x x≥ =i i
ij

i j
2 2

(5)

with equality if and only if the xi are equal.

The cdf of the quantile average of random variables Y1,…Yn with

continuous invertible cdf's is the cdf of HW= (1/n)ΣXi when the Xi has the

same cdf as Yi and all Xi have rank or Spearman correlation r(Xi, Xj) = 1.

The joint distribution of (X1,… Xn) is such that if values x1, … xn are sampled

and if x1 realizes the qth quantile of X1, them, since all variables are

completely rank correlated xi realizes the qth quantile of Xi, i=2,… n.

Hence HW averages the quantiles of Y1,…Yn.

Although the Xi are completely rank correlated, their product

moment correlation ρ need not be 1. If r(Xi, Xj) = 1 then Xi=ϕ(Xj) for some

strictly monotonic transformation ϕ, whereas ρ(Xi, Xj) = 1 if and only if

Xi = aXj + b for some positive a and some b ∈ ℝ. If U is uniform on (0,1),

F IGURE 1 F(a = 5, b = 0.5), G(a = 5, b = 5), HW = quantile average,
EW = Arithmetic average of distributions, GW = geometric average of
distributions.

2 of 8 | COOKE

 25735152, 2023, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/ffo2.139 by C

ochrane France, W
iley O

nline L
ibrary on [24/02/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



then r(U,U10) = 1 but ρ(U,U10) = 0.66. From the Pearson formula1 relating

rank and product normal correlations for two normal variables we infer

that ρ(Xi, Xj) = 1 if and only if r(Xi, Xj) = 1 for normal variables Xi, Xj.

If the Xi have means μi and variances σi
2 it follows that












∑ ∑Var HW n σ C C Cov x x( ) = (1/ ) + ; = ( , )

i j
ij ij i j

2
1
2

≠
(6)

Equation (6) entails that Var(HW) does not depend on the means

and therefore is invariant under adding arbitrary location parameters

to the variables. Pithily put, the uncertainty of HW does not depend

on how near or far apart the variables are.

Proposition 1. (1/n)Σσi
2≥ Var(HW) with equality if and only if the σi

2

are all equal and ρ(Xi, Xj) = 1.

pf: n σ Var HW(1/ )∑ – ( )i
2
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(7)

where Cii = σi
2. ρ(Xi, Xj) =Cij/σiσj≤ 1 with equality if and only if

Xi = aXj + b, ai > 0, b ∈ ℝ. Therefore, with (5)

∑ ∑ ∑C σ σ n σ≤ ≤
i j

ij
i j

i j
, ,

1
2

(8)

so that the shrinkage [nΣσi
2– ΣijCij]/n

2 is non‐negative. The first

inequality in Equation (8) holds with equality if and only if ρ(Xi, Xj) = 1

while the second holds if and only if the σi are equal. □

For variables with unit product‐moment correlation, the first

inequality always holds with equality in Equation (8), but not the second.

Standardizing a variable by dividing by its standard deviation gives the

variable unit variance. Standardized versions of U and U10 are completely

rank correlated but the shrinkage is 17% (see Figure 2 left panel).

A similar shrinkage formula based on the means characterizes the

difference between the variance of an equally weighted combination

of distributions and the average variance. For variables X1, … Xn, with

densities f1,… fn, variances σi
2 and means μi let EW denote the

distribution with density (1/n)Σfi. We have

Proposition 2. Var EW n σ n μ μ μ n( )–(1/ )∑ = [ ∑ –∑ ]/ ≥ 0.i i ij i j
2 2 2
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(9)

The last term is non‐negative by the Cauchy Schwarz inequality

and equals 0 if and only if the μi are equal □

We recognize Equation (9) as the mean of the variances of the Fi

plus the variance of the means of the Fi. For the special case n = 2,

Equation (9) becomes

Var EW
σ σ μ μ

( ) =
( + )

2
+
( − )

4
1
2

2
2

1 2
2

(10)

Figure 2 compares powers of uniforms with unit variance (left panel)

and normals with unit variance (right panel). The shrinkage Ave Var –

Var HW on the left is due to the differences between rank and

product‐moment correlation, while that of Var EW – Ave Var on the

right is due to differences in means. The conditions for equality are

different for the above propositions, but we can put them together to

define a total shrinkage












∑ ∑ ∑ ∑

Var EW Var HW

n μ μ μ n σ C n

total shrinkage = ( )– ( )

= – + – /i
ij

i j i
ij

ij
2 2

.
2 (11)

Figure 2 suggests that when experts' central masses have little

overlap, the shrinkage from Equation (9) can be quite severe.

F IGURE 2 Left panel, cdf's of powers of uniform variables standardized to have unit variance; Right panel, normal variables N(μ,σ2) with unit
variance. The Quantile average HW is shown on both panels.
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TABLE 1 Results from 49 post‐2006 structured expert judgment studies

PW EW HW
SA inf comb SA inf comb SA inf comb #calib vbls #exprts

Arkansas 0.50 0.34 0.17 0.39 0.20 0.08 5.55E−02 0.64 3.55E−02 10 4

Arsenic D‐R 0.04 2.74 0.10 0.06 1.10 0.07 7.99E−04 1.32 1.06E−03 10 9

ATCEP Error 0.68 0.23 0.16 0.12 0.25 0.03 5.99E−04 1.07 6.38E−04 10 5

Biol agents 0.68 0.61 0.41 0.41 0.24 0.10 3.60E−02 0.88 3.18E−02 12 12

CDC ROI 0.72 2.31 1.66 0.23 1.23 0.29 7.56E−01 1.57 1.18E+00 10 20

CoveringKids 0.72 0.43 0.31 0.63 0.27 0.17 9.03E−01 0.60 5.38E−01 10 5

CREATE 0.39 0.28 0.11 0.06 0.21 0.01 2.77E−04 0.52 1.44E−04 10 7

CWD 0.49 1.22 0.60 0.47 0.93 0.44 7.07E−01 1.49 1.06E+00 10 14

Daniela 0.55 0.63 0.35 0.53 0.17 0.09 1.82E−01 0.52 9.48E−02 7 4

dcpn_fistula 0.12 1.31 0.16 0.06 0.62 0.04 8.78E−08 1.13 9.88E−08 10 8

eBBP 0.83 1.41 1.17 0.36 0.32 0.11 8.04E−02 0.95 7.67E−02 15 14

EffusiveErupt 0.66 1.12 0.75 0.29 0.80 0.23 2.65E−02 1.51 3.99E−02 8 14

Erie Carps* 0.66 0.86 0.57 0.18 0.28 0.05 3.87E−01 0.75 2.92E−01 15 10

FCEP Error 0.66 0.57 0.38 0.22 0.10 0.02 1.75E−05 0.77 1.35E−05 8 5

Florida 0.76 1.13 0.86 0.76 0.46 0.34 6.98E−02 0.88 6.15E−02 10 7

GL‐NIS 0.93 0.21 0.19 0.04 0.31 0.01 5.53E−02 0.84 4.66E−02 13 9

Gerstenberger 0.93 1.10 1.02 0.64 0.48 0.31 8.10E−02 0.97 7.82E−02 14 12

Goodheart 0.71 0.96 0.68 0.55 0.28 0.15 6.83E−01 0.89 6.07E−01 10 6

Hemophilia 0.31 0.49 0.15 0.25 0.20 0.05 3.12E−01 0.78 2.43E−01 8 18

IceSheet2012 0.40 1.55 0.62 0.49 0.52 0.25 7.96E−02 1.20 9.56E−02 11 10

Illinois 0.34 0.65 0.22 0.62 0.26 0.16 2.37E−03 0.79 1.88E−03 10 5

Liander 0.23 0.52 0.12 0.23 0.48 0.11 2.81E−03 1.20 3.36E−03 10 11

Nebraska 0.03 1.45 0.05 0.37 0.70 0.26 2.40E−05 1.19 2.86E−05 10 4

Obesity 0.44 0.51 0.22 0.07 0.24 0.02 6.68E−04 0.74 4.98E−04 10 4

PHAC T4 0.18 0.35 0.06 0.30 0.21 0.06 2.02E−02 0.70 1.41E−02 13 10

San Diego* 0.15 0.76 0.12 0.15 1.01 0.15 3.02E−03 1.58 3.32E−02 10 8

Sheep Scab 0.64 1.31 0.84 0.66 0.78 0.52 1.15E−02 1.41 1.63E−02 15 14

SPEED 0.68 0.78 0.53 0.52 0.75 0.39 2.97E−02 1.17 3.46E−02 16 14

TdC 0.99 1.26 1.24 0.17 0.36 0.06 1.24E−02 1.08 1.34E−02 17 18

Tobacco 0.69 1.06 0.73 0.20 0.45 0.09 2.11E−01 0.71 1.49E−01 10 7

Topaz 0.41 1.46 0.60 0.63 0.92 0.58 8.66E−05 1.53 1.32E−04 16 21

umd_nremoval 0.71 1.99 1.40 0.07 0.80 0.05 2.40E−03 1.22 2.93E−03 11 9

Washington 0.20 0.72 0.14 0.15 0.53 0.08 4.21E−01 0.86 3.63E−01 10 5

GeoPol 0.42 1.15 0.49 0.20 0.56 0.11 5.02E−06 1.28 6.43E−05 16 9

BFIQ 0.69 0.57 0.40 0.42 0.29 0.12 1.15E−02 0.67 7.78E−03 11 7

IQEarn 0.70 0.62 0.44 0.70 0.57 0.41 4.54E−01 0.90 4.09E−01 11 8

USGS 0.51 1.51 0.77 0.06 0.80 0.05 4.49E−04 1.54 6.90E−04 18 32

UK 0.22 0.66 0.14 0.13 0.33 0.04 1.19E−01 0.78 9.31E−02 10 6
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3 | RESULTS

The TU Delft expert judgment database contains 49 studies since

2006 involving 530 experts assessing, in addition to the variables of

interest, 580 calibration variables from their field to which true values

were known. Of these, 140 experts (26%) would not be rejected as

statistical hypotheses at the traditional 5% level. The study compares

EW and performance‐weighted combinations (PW) in which experts'

distributions are weighted according to their statistical accuracy and

informativeness (see Cooke [1991]; an updated exposition is in

Colson and Cooke [2017]; for references see Cooke et al. [2021] and

Supporting Information). For the present study, the HW combinations

have been added for each study. Four studies (with asterisks in

Table 1) involved experts who did not answer all calibration variables.

These experts were dropped, causing the numbers in those studies to

differ somewhat from those in Cooke et al. (2021). For comparing the

three combination schemes PW, EW, and HW this is immaterial.

The mean statistical accuracy scores of all three combinations are

above the traditional 5% rejection threshold for simple hypothesis

testing (for the geomean or geometrical average this holds only for

PW and EW). In 28 of the 49 studies (57%), HW would be rejected at

the 5% level, and on 15 (31%), rejection would be at the 0.1% level.

This contrasts with EW and PW where 2 resp. 3 combinations would

be rejected at the 5% level. On average, HW's informativeness was

substantially greater than EW's and slightly better than PW's. PW has

the highest combined score (the product of statistical score and

informativeness) in 40 studies, EW in 5 studies, and HW in 4 studies

(this is an in‐sample comparison with PW, for out‐of‐sample

comparisons, see Colson and Cooke [2017]; Cooke et al. [2021]

and Supporting Information). The combined score is an asymptotic

strictly proper scoring rule for average probabilities.

Statistical accuracy and informativeness are metrics for measur-

ing performance as uncertainty assessors. Forecast accuracy based

on medians is also important. The relative forecast error of various

combination schemes was extensively studied by Cooke et al. (2021)

from which the following information is extracted (Table 2). The

variations of performance weighted combinations are explained in

the Supporting Information.

As quantile averaging is often used without calibration variables,

it could be of interest to anticipate poor statistical performance of

quantile averaging based only on study characteristics without

reference to the true values. The variance shrinkage laws are

suggestive but when variables are measured in different physical

units, scale‐invariant tools are required. The Spearman rank correla-

tion matrix of HW statistical accuracy with study characteristics

(Table 3) does not show strong relationships. The number of experts

TABLE 1 (Continued)

PW EW HW
SA inf comb SA inf comb SA inf comb #calib vbls #exprts

Spain 3.59E–05 0.69 0.00 1.22E–05 0.23 0.00 1.96E−08 0.80 1.56E−08 10 5

Italy 0.45 0.47 0.21 0.22 0.20 0.04 1.25E−01 0.49 6.11E−02 10 4

France 0.65 1.96 1.28 0.08 0.43 0.03 2.66E−02 0.92 2.44E−02 10 5

all_CDC 0.97 2.54 2.46 0.25 1.08 0.27 2.06E−04 1.74 3.58E−04 14 48

Puig‐GDP 0.93 0.99 0.92 0.06 0.43 0.03 5.41E−04 1.25 6.75E−04 13 9

Puig‐oil* 0.13 0.61 0.08 0.88 0.20 0.18 2.23E−10 1.07 2.38E−10 20 6

PoliticalViolence* 0.13 1.82 0.23 0.44 1.05 0.46 1.73E−07 1.73 8.19E−16 21 16

Brexit food 0.55 0.84 0.46 0.11 0.27 0.03 7.07E−01 1.26 8.88E−01 10 10

Tadini Quito 0.93 0.85 0.79 0.42 0.23 0.10 2.02E−02 0.95 1.92E−02 13 8

Tadini Clermont 0.75 1.14 0.86 0.33 0.28 0.09 9.28E−01 0.28 2.63E−01 13 12

ICE_2018 0.94 0.93 0.87 0.13 0.55 0.07 8.97E−02 1.22 0.11 16 20

Ave 0.54 1.01 0.55 0.31 0.49 0.15 0.16 1.03 0.14

Geomean 0.37 0.19 5.1E−03

#SA < 0.05 3 2 28

#SA < 0.001 1 1 15

# Best 40 5 4

Note: “SA” denotes statistical accuracy, “Inf” denotes informativeness, and “comb” denotes the product of these two. Statistical accuracy is the p‐value at

which the hypothesis of statistical accuracy would be falsely rejected. Informativeness is Shannon relative information with respect to a background
measure. The product of these two is an asymptotic strictly proper scoring rule for average probabilities. Details for scoring are in Colson and
Cooke (2017) and Cooke et al. (2021). Numbers of experts and calibration variables are shown. Asterisks denote studies in which one or more experts did
not assess all calibration variables. Studies with bolded names were the 33 studies analyzed in detail in Colson and Cooke (2017).
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and number of calibration variables are rank correlated in this data

set at 0.53; indeed, studies with modest budgets tend to follow the

guidance of 10 calibration variables and at least 4, preferably six

experts. Better resourced studies can afford to raise both numbers.

FromTable 3, neither the number of calibration variables nor the

number of experts exerts a strong influence on the statistical

accuracy of the quantile average. However, each tends to have a

negative impact on HW's statistical accuracy. A possible explanation

is that harmonic averaging leans heavily towards the smallest value of

the densities. This would explain the negative correlation with Max

Inf as this concentrates the mass of HW in a smaller region. Adding

more experts increases the chance that one will have very high

information and that will shrink the bands of HW. Both Max Inf and

#experts correlate positively with #calib vbls.

To appreciate the problems, Figures 3 and 4 show range graphs

for two studies. For each calibration variable, the experts' 90% CIs

are shown as horizontal lines and the medians as dots. The bottom

CIs are those of HW. The realization is shown as a red vertical line.

IQearn has one of the best performances for HWSA whereas puig‐oil

has one of the poorest. In both studies, the PW and EW have good

statistical accuracy (see captions). Both studies have nonoverlapping

confidence bounds. This has the effect of increasing the support of

the uniform background measures relative to the size of the CIs and

thus increasing the average informativeness of the experts. Indeed, a

CI of [5, 6] looks more informative against a background of [1, 100]

than against [1, 10]. The average information for IQearn is 1.29 while

that of puig‐oil experts is 1.25. The key difference is the placement of

the realization (vertical red line) relative to the experts' assessments.

That, of course, cannot be inferred from study characteristics.

Without knowing the realizations, it is impossible to anticipate the

poor performance of HW for puig‐oil.

4 | WHEN QUANTILE AVERAGING IS
APPROPRIATE: INTERPOLATING VERSUS
COMBINING

Rather than combining distributions over a single uncertain

variable, we are often confronted with situations in which we must

interpolate distributions at different values of some underlying

TABLE 2 Average and standard deviation of absolute
dimensionless forecast errors for item‐specific performance weights
(PWi), global performance weights (PWg), non‐optimized global
performance weights (PWn), equal weights (EW), performance
weighted average of medians (PWQ), and equal‐weighted average of
medians (EWQ), and corresponds to HW

|(PWi −
rls)/rls|

|PWg −

rls|/rls
|PWn −

rls|/rls
|(EW −

rls)/rls|
|PWQ −

rls|/rls
|(EWQ −

rls)/rls|

Ave 2.2 2.7 2.3 3.8 278.6 1472.3

Stdev 11.8 16.0 14.7 45.2 5646.8 33,299.8

Geomean 0.38 0.40 0.37 0.43 0.42 0.63

Note: “rls” denotes “realization,” the true values of the random variables.

TABLE 3 Rank correlation matrix for harmonic weighting. Max
Inf is the maximal information score of an expert in a panel.

Spearman rank correlation matrix HW

#calib vbls #experts Max Inf

HW Stat. accuracy −0.15 −0.09 −0.25

#calib vbls 0.53 0.38

#experts 0.62

F IGURE 3 Range graphs for the case IQearn.
Experts' [5%, 95%] confidence intervals are given
as horizontal lines, medians as dots, and the
realization is given as a red vertical line. HW is
added as ninth expert at the bottom of each
graph. In this case, the statistical accuracies are:
PW = 0.7, EW = 0.7, HW = 0.45. The experts'
average information with respect to the uniform
background is 1.29.
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parameter. Oppenheimer et al. (2016) discuss an application in

which experts quantify uncertainty in crosswind dispersion of an

airborne pollutant for different downwind distances. According to

the standard Gaussian plume model, the crosswind standard

deviation of the time‐integrated concentration at downwind

distance x is σc(x) = axb for (poorly constrained) constants a, b,

(a, b > 0). Suppose experts quantify their uncertainty in σc(x) for

x = 10 km, and 20 km. Barring exceptional circumstances, the

uncertainty σc(x) increases with x.

Suppose we want the distribution for σc(15). If we take an equal

weight combination of the distributions of σ(10) and σ(20) we may

well find that the result has greater variance than that of σ(20). The

variance shrinkage laws allow us to see exactly when that happens.

Put n = 2, Var(σ(10)) = V1, Var(σ(20)) = V2, with means μ1, μ2. For the

equal weight combination of the uncertainties in σ(10) and σ(20)

Equation (10) says:



Var EW V V μ μ

V V μ μ V

( ) = ( + )/2 + ( − ) /4

> + ( − ) /2 >

1 2 1 2
2

2 1 1 2
2

2

(12)

Such an outcome would be unacceptable. By the same token,

Equation (7) says that the variance of HW is always less than or equal

to the average of the variances of σc(10) and σc(20) with equality

holding in case these distributions are normal with the same variance.

These remarks apply mutatis mutandis when interpolating at other

distances between 10 and 20 km. In cases of interpolation like the

above, quantile averaging provides a reasonable solution, whereas

equal weighting of distributions does not.

5 | CONCLUSION

If all experts say the same thing, then the three schemes considered

here are all equivalent. Data show, however, that there is a great deal

of variation in experts' assessments and in their performance.

Accordingly, there is great variation in the performance of expert

combinations. Cherry‐picked studies can produce very different

conclusions. Reliable conclusions should therefore be based on a large

set of studies of known provenance. With regard to HW, we may

conclude that it achieves higher informativeness at the expense of

statistical accuracy. In 57% of the studies, this results in over-

confidence, in 31% the overconfidence is severe. The forecast error of

averaging medians is, in aggregate, much larger than that of EW or PW.

However, when we are interpolating between distributions, rather

than combining them, quantile averaging would seem appropriate.

ACKNOWLEDGMENTS

The author gratefully acknowledges discussions with Prof. Tina Nane

and many improvements suggested by anonymous referees. All

expert judgment data are freely available at http://rogermcooke.net/

F IGURE 4 Range graphs for the case puig‐oil.
Experts' [5%, 95%] confidence intervals are given
as horizontal lines, medians as dots, and the
realization is given as a red vertical line. HW is
added as seventh expert at the bottom of each
graph. In this case, the statistical accuracies were:
PW = 0.13, EW = 0.88, HW = 2.23E−10. The
experts' average information with respect to the
uniform background is 1.25.
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